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Deleterious- and Disease-Allele Prevalence in Healthy
Individuals: Insights from Current Predictions,
Mutation Databases, and Population-Scale Resequencing

Yali Xue,1 Yuan Chen,1 Qasim Ayub,1 Ni Huang,1 Edward V. Ball,2 Matthew Mort,2

Andrew D. Phillips,2 Katy Shaw,2 Peter D. Stenson,2 David N. Cooper,2 Chris Tyler-Smith,1,* and the
1000 Genomes Project Consortium

We have assessed the numbers of potentially deleterious variants in the genomes of apparently healthy humans by using (1) low-

coverage whole-genome sequence data from 179 individuals in the 1000 Genomes Pilot Project and (2) current predictions and data-

bases of deleterious variants. Each individual carried 281–515 missense substitutions, 40–85 of which were homozygous, predicted to

be highly damaging. They also carried 40–110 variants classified by the Human Gene Mutation Database (HGMD) as disease-causing

mutations (DMs), 3–24 variants in the homozygous state, and many polymorphisms putatively associated with disease. Whereas

many of these DMs are likely to represent disease-allele-annotation errors, between 0 and 8 DMs (0–1 homozygous) per individual

are predicted to be highly damaging, and some of them provide information of medical relevance. These analyses emphasize the

need for improved annotation of disease alleles both in mutation databases and in the primary literature; some HGMD mutation

data have been recategorized on the basis of the present findings, an iterative process that is both necessary and ongoing. Our estimates

of deleterious-allele numbers are likely to be subject to both overcounting and undercounting. However, our current bestmean estimates

of ~400 damaging variants and ~2 bona fide disease mutations per individual are likely to increase rather than decrease as sequencing

studies ascertain rare variants more effectively and as additional disease alleles are discovered.
Introduction

Genetic variation contributes to human ill health. Hence,

identifying the variants that underlie the disease pheno-

types (such variants are referred to here as ‘‘disease vari-

ants’’ or ‘‘disease alleles’’) of affected individuals has been

an important goal of medical geneticists for decades. The

comprehensive catalogs of both high-penetrance variants

underlying Mendelian disorders (Online Mendelian Inher-

itance in Man and Human Gene Mutation database

[HGMD])1 and low-penetrance variants contributing to

complex disorders (National Human Genome Research

Institute [NHGRI] Catalog of Published Genome-wide

Association Studies) attest to the progress made to date.

In parallel, researchers have made attempts to predict the

functional consequences of DNA variants, particularly

missense variants (leading to amino acid substitutions) in

protein-coding genes,2,3 with the aim of identifying poten-

tially damaging mutations independently of a known

disease association. Apparently healthy individuals can,

for a number of reasons, carry many disadvantageous vari-

ants without showing any obvious ill effects: (1) they

might carry a single disease allele for a severe high-pene-

trance recessive disorder that requires two alleles to mani-

fest the disease phenotype, (2) the disorder might be late in

onset or require additional genetic and/or environmental

factors for expression (reduced penetrance), (3) or the clin-

ical phenotypemight bemild and classified as lying within

the range of normal healthy variation. Indeed, many
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damaged or entirely inactivated proteins can have no

perceptible impact on health and hence can be tolerated.

In addition, available catalogs of disease alleles are invari-

ably imperfect: not only are they far from complete,

because most variants in the human population are very

rare and disease-allele discovery has barely begun in

many populations, but, more confusingly, they can also

contain entries that have been erroneously included as

disease variants. Indeed, as many as 27% of database

entries were judged to be potentially unreliable in one

recent assessment.4 It is clearly important that such uncer-

tain records be identified in order that genomic sequences

can be reliably interpreted in a medical context, and this

will be increasingly relevant as we enter a new era of

personalized genomics.5

Assessing the magnitude of the ‘‘genetic burden’’

imposed by harmful alleles on the general population

has been an aim of medical and population geneticists

since the first half of the 20th century. In early theoretical

treatments, Muller estimated that ‘‘the average individual

is probably heterozygous for at least [eight] genes, and

possibly for scores, each of which produces a significant

but usually slight detrimental effect,’’6 whereas Morton

et al. calculated from a consideration of consanguineous

marriages that ‘‘the average person carries heterozygously

the equivalent of [three to five] recessive lethals.’’7 Subse-

quently, it has been argued that individuals could carry

as many as 100 lethal equivalents,8 and a recent consider-

ation of likely numbers of disease alleles per individual in
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the general population resulted in a ‘‘best guess’’ of 31.9

Large-scale sequencing studies have suggested that the

numbers of variants encoding amino acid substitutions

predicted to be damaging to the protein in a sample of

10,150 genes were 426 heterozygotes (range ¼ 340–534)

and 92 (range ¼ 77–113) homozygotes per individual;10

numbers over the entire genome might be twice these.

Other studies also support the view that many missense

variants are likely to be damaging.11–13 Furthermore, the

proportion of damaging substitutions appeared to be

higher in individuals of European ancestry than in those

of African ancestry.10 Although these studies focused on

coding variation, noncoding positions in the human

genome can be equally evolutionarily constrained; varia-

tion at such sites might provide the majority of functional

variation in each individual9 but is currently not as easily

studied.14,15 In an alternative approach, a survey of 437

genes known to underlie recessive Mendelian diseases

revealed 2.8 (range ¼ 0–7) severe mutations per indi-

vidual.4 It is difficult to estimate the numbers per complete

genome, but they would clearly be higher. Similarly,

another survey of 417 recessive Mendelian variants discov-

ered ~0.4 recessive lethals per individual and also that

~0.3% of the study population was homozygous or

compound heterozygous for a severe condition,16 and

a study of the Hutterite population showed ~1.1 recessive

disease mutations per individual.17 Personal genome

sequences have not only provided estimates of the number

of disease variants (e.g., 19) carried by each subject18 but

have also given us a glimpse of the likely complexity of

the functional interpretation of such data.19 Taken

together, theoretical and experimental studies suggest

that individuals typically carry hundreds of mildly disad-

vantageous variants and several severe disease alleles.

Such findings emphasize the difficulties of interpreting

variant function and hence point to the need for addi-

tional information.

Advances in sequencing technology now allow genetic

variation to be discovered efficiently throughout most of

the genome in population samples.20 In a pilot study for

the 1000 Genomes Project, we reported the numbers of

disease alleles, defined by reference to the disease-causing

mutations (DMs) listed in HGMD,1 in population samples

of African, European, and East Asian origin. These

numbers were surprisingly high, for example, 57–80

disease alleles per individual (interquartile range) in

a sample of 179 participants. Moreover, further examina-

tion of these numbers showed that 191 disease alleles

were present in the homozygous state in at least one indi-

vidual and hence were not present simply because their

effects were masked by a normal allele. Although little

phenotypic information other than sex, ethnicity, place

of origin, and relationship to other participants is available

for the 1000 Genome Project donors, the project’s ethical

process requires that sample donors be nonvulnerable

adults who are competent to consent to participation in

the project. It seems unlikely that they will have suffered
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from overt genetic disease at the time of sampling. Instead,

it seems important to seek some other explanation for the

high numbers of DMs. For example, the penetrance of the

disease alleles might be lower than previously realized.

Most past studies have identified a genotype given a disease

phenotype; this is very different from identifying a pheno-

type given a (disease-associated) genotype. Alternatively,

these alleles might not actually be pathogenic at all—

theymight have been erroneously reported and then inap-

propriately entered into the mutation database. Finally,

they might represent sequencing errors in the 1000

Genomes Project data.21 These considerations prompted

us both to re-examine the disease-allele findings of the

1000 Genomes Pilot Project and to extend the analyses

to other categories of potentially harmful variants.

For this follow-up study, we adopted two different

approaches. We evaluated the predicted properties of

missense variants in the data set irrespective of whether

they are currently annotated (in the HGMD) as disease

alleles. In addition, we expanded the sample of disease

alleles (defined as those present in the HGMD) to include

other categories. HGMD entries are currently classified in

two distinct ways: first by function (DMs, disease-associ-

ated polymorphisms [DPs], DPs with additional support-

ing functional evidence [DFPs], or in vitro or in vivo

functional polymorphisms [FPs]) and second by variant

type (base substitutions [further subdivided into missense,

nonsense, regulatory, and essential splice variants],

microindels, microdeletions, microinsertions, and some

additional categories not employed here). We therefore

identified the overlap of each of these categories (by

combining microindels, microdeletions, and microinser-

tions into one category, henceforward referred to as ‘‘in-

dels’’) with the 1000 Genomes Pilot data and concentrated

on the Low-Coverage Pilot because the Exon Pilot identi-

fied fewer overlaps and because these have already been re-

analyzed in some detail.22 We then applied a number of

different approaches to evaluate the likely functional

impact of these overlapping variants and hence the

apparent ‘‘genetic burden’’ experienced by the human

population.
Material and Methods

Data Sources
1000 Genomes Low-Coverage Pilot data20 were downloaded from

the 1000 Genomes Project website. This data set is based on the

NCBI human reference genome build 36, which is used here as

well. HGMD data were obtained from HGMD Professional release

2009.4. Overlaps were identified as variants sharing the same

genomic coordinate and, for base substitutions, the same nucleo-

tide. The number of overlapping DMs was corrected from 57820 to

577 (Table 1). Indel overlaps were those present in both the Low-

Coverage Pilot data and the ‘‘small insertion,’’ ‘‘small deletion,’’

and ‘‘small indel’’ classes of HGMD data. We initially allowed 5

10 bp in genomic coordinate and subsequently manually exam-

ined the indels to assess whether or not the variant structures
rnal of Human Genetics 91, 1022–1032, December 7, 2012 1023



Table 1. Summary of HGMD Data

Variant Types

DM FP DFP DP

HGMD
Total Overlap

Homozygous
Overlap

HGMD
Total Overlap

Homozygous
Overlap

HGMD
Total Overlap

Homozygous
Overlap

HGMD
Total Overlap

Homozygous
Overlap

Missense and
nonsense SNPs

50,361 577 191 1,210 313 157 273 208 168 1,068 767 633

Regulatory
SNPs

626 44 19 341 245 208 378 340 317 338 294 271

Essential
splice sites

5,830 7 0 40 3 1 2 2 2 7 3 1

Other
splice sites

2,229 95 36 62 37 31 39 39 36 157 141 124

Small indels 1,319 0 0 14 0 0 4 0 0 4 0 0

Small
deletions

14,411 5 3 70 7 6 4 1 1 21 4 3

Small
insertions

5,934 1 0 29 0 0 5 0 0 7 1 1

‘‘HGMD Total’’ represents variants found in the HGMD data set. ‘‘Overlap’’ represents variants found in both the HGMD and the 1000 Genomes Low-Coverage
Pilot data sets. ‘‘Homozygous overlap’’ represents those variants found in both data sets and observed in the homozygous state in one or more individuals. The
following abbreviations are used: DM, disease-causing mutation (pathological mutation reported to be disease causing in the report entered into HGMD); FP,
in vitro or in vivo functional polymorphism (polymorphism reported to affect the structure, function, or expression of the gene [or gene product] but with no
disease association reported as yet); DFP, disease-associated polymorphism with additional supporting functional evidence (polymorphism reported to be in
significant association [p < 0.05] with disease and that has evidence of being of direct functional importance [e.g., as a consequence of altered expression,
mRNA studies, etc.]); and DP, disease-associated polymorphism (polymorphism reported to be in significant association [p < 0.05] with a disease or phenotype
and that is assumed to be functional [e.g., as a consequence of location, evolutionary conservation, replication studies, etc], although there might not yet be any
direct evidence [e.g., from an expression study] of a functional effect).
were the same. The ancestral states used were those annotated in

the 1000 Genomes genotype (.vcf) files; the few sites lacking

ancestral annotation were excluded from analyses requiring this

information.

HGMD DM Genotype Validation
Two approaches were used for validation of the HGMD DM geno-

type calls. Twenty of the pilot samples were sequenced to high

coverage by Complete Genomics with independent tech-

nology.23 In these overlapping samples, 318 of the 577 DMdisease

alleles were called by the 1000 Genomes Project. Among these, the

disease allele was also called by Complete Genomics at 316 sites,

although in a different individual in one case. These 316 DM

site calls were regarded as validated, and two were not validated,

giving a site validation rate of 99.4%. Genotype concordance

was 97.9% (6,224/6,360, Table S1, available online) and 100%

among the DM sites that were variable and invariable, respectively,

in these 20 individuals. In addition, five sites, including all HGMD

DMs in the filtered list found as homozygotes and not already vali-

dated, were tested by capillary sequencing. All were confirmed as

being homozygous for the disease allele (Figure S1).

Statistical Analyses
Derived allele-frequency (DAF) spectra were compared with

a Mann-Whitney U test, and the overrepresentation or underrep-

resentation of the lowest frequency bin (0%–10%) was assessed

with a Chi-square test. The dependence of DAF on consensus dele-

teriousness (Condel) scores24 was analyzed with Spearman’s and

Kendall’s rank correlations.

Manual Curation of Variants
We sought further data on variants of interest in PubMed andGoo-

gle by using the dbSNP reference SNP ID number, gene name, or
1024 The American Journal of Human Genetics 91, 1022–1032, Dece
disorder name as a search term and by identifying publications

that cited the reference listed in the HGMD PubMed Unique Iden-

tifier field. Disease association was accepted when association with

disease in the original reference or an additional source was statis-

tically significant or when functional data, such as cell line or

model-organism studies, identified a relevant biological effect.

All of the overlapping indels and essential splice sites, as well as

an initial 20 missense DMs chosen randomly from the list of

577 and all 71 filtered DMs listed in Table 2 and Table S2, were as-

sessed in this way.

Functional Prediction of Missense-Variant Deleterious

Properties
Weused Ensembl (release 65)-computedmodifiedCondel scores,24

which combine PolyPhen-22 and SIFT3 scores. We established

Condel score R 0.99 as a cutoff for disease variants on the basis

of the discrimination between Condel scores for HGMD DMs that

do not overlap with the 1000 Genomes Project Pilot data set on

the one hand and 1000 Genomes Project variants that have a fre-

quency>10%andat least onehomozygote and thatdonotoverlap

with HGMD DMs on the other (Figure 1). The accuracy of the

Condel predictions has been estimated to be about 88%–90%.24
Results

Characterization of Missense Variants in Low-

Coverage Pilot Sequences

The most readily recognized deleterious variants are those

that disrupt a protein-coding gene either by leading to loss

of function (e.g., nonsense or frameshift variants) or by

altering an amino acid. Because the former category has

been the subject of an independent follow-up study,25 we
mber 7, 2012



Table 2. Filtered Disease Variants either Causing Dominant Disease or Causing Recessive Disease and Observed in the Homozygous State

RefSeq
Accession
Number Disease (MIM Number) Inheritance Gene Chr Position

HGVS
cDNA
Mutation

Protein
Alteration

Total
Homozygotes

Total
Heterozygotes Comments

NM_000051.3 ataxia telangiectasia
(MIM 607585)

AR ATM 11 107,665,560 c.4258C>T p.Leu1420Phe 1 3 low-penetrance breast cancer
susceptibility allele

NM_206933.2 Usher syndrome type IIA
(MIM 276901)

AR USH2A 1 214,490,898 c.2137G>C p.Gly713Arg 3 22 literature is ambiguous;
probable complex pathogenicity;
neutral in YRI?

NM_015102.3 nephronophthisis 4
(MIM 606966)

AR NPHP4 1 5,862,830 c.2542C>T p.Arg848Trp 1 2 growth retardation; adult-onset
renal disease

NM_000529.2 Cushing syndrome
(MIM 607397)

AR MC2R 18 13,874,685 c.833T>G p.Phe278Cys 1 10 hormonal disorder; variable
sex-specific symptoms; variant is
functionally defective in vitro

NM_000443.3 low-phospholipid-associated
cholelithiasis (MIM 171060)

AR ABCB4 7 86,887,281 c.2363G>A p.Arg788Gln 2 9 adult onset

NM_000256.3 cardiomyopathy,
hypertrophic (MIM 115197)

AD MYBPC3 11 47,320,810 c.1519G>A p.Gly507Arg 0 2 late onset; incomplete penetrance

NM_139281.2 glaucoma, primary open
angle (MIM 609887)

AD WDR36 5 110,473,878 c.1586G>A p.Arg529Gln 0 1 adult onset; variant is functionally
defective in vitro

NM_000249.3 colorectal cancer,
nonpolyposis (MIM 609310)

AD MLH1 3 37,064,024 c.1742C>T p.Pro581Leu 0 1 adult onset; variant is functionally
defective in vitro

NM_144997.5 renal cell carcinoma
(MIM 144700)

AD FLCN 17 17,066,604 c.715C>T p.Arg239Cys 0 1 late onset

NM_000185.3 heparin cofactor 2
deficiency (MIM 612356)

AD SERPIND1 22 19,464,223 c.623G>A p.Arg208His 0 2 deficiency state; no overt disease;
risk factor for thrombophilia

NM_005577.2 Lp(a) deficiency
(MIM 152200)

AD LPA 6 160,926,067 c.4289þ1G>A essential
splice site

0 5 risk factor in heart disease;
late onset

See Table S2 for full details of these variants. The following abbreviations are used: chr, chromosome; AR, autosomal recessive; AD, autosomal dominant; and YRI, Yoruba in Ibadan, Nigeria.
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Figure 1. Condel-Score Distribution for
HGMD-Only DMs, Variants Only in the
1000 Genomes Low-Coverage Pilot, and
Overlap Variants
Shown are Condel scores for HGMD-
only DMs (blue), variants only in the
1000 Genomes Low-Coverage Pilot data
(yellow), and overlap variants (green).
Condel scores range from 0 (the amino
acid change is predicted to not damage
the protein) to 1 (the amino acid change
is predicted to damage the protein). The
top decile of Condel scores is further subdi-
vided in the panel on the right-hand side.
have focused here mainly on missense variants, consid-

ering the eight validated loss-of-function variants overlap-

ping with HGMD only in the final filtered data set. We

counted the number of derived heterozygous and homozy-

gous missense variants carried by each individual in

the 1000 Genomes Low-Coverage Pilot data (Table 1 and

Table S3). This analysis differs slightly from the earlier

study,20 where nonreference allele numbers were reported.

Derived missense-allele numbers per individual ranged

from ~13,000 (range ¼ 12,253–13,868) for the YRI (Yoruba

in Ibadan, Nigeria) samples to ~12,000 (range ¼ 11,715–

12,439 for CEU [Utah residents with ancestry from

northern and western Europe from the CEPH collection]

and 11,197–12,352 for CHB [Han Chinese in Beijing,

China] þ JPT [Japanese in Tokyo, Japan]) for the European

and Asian samples, as expected from the known higher

level of genetic variation in African populations.26

We next classified these variants according to the extent

of their predicted damaging effect on the protein.24

Around 3% fell into themost damaging class with a Condel

score R 0.99, and some differences were evident between

populations: there were, per individual, 377 [324–468]

for YRI, 321 [281–375] for CEU, and 435 [342–515] for

CHB þ JPT). Homozygous variant numbers in this most

damaging class were considerably lower: 53 (40–70), 62

(53–75), and 70 (51–85), respectively, for the same three

populations. These numbers, corresponding to a few

hundred damaging missense variants per individual, are

in line with previous estimates,10 although they are some-

what lower here, probably because amore stringent predic-

tion of damaging effect was employed. We could not

confirm the previously reported higher proportion of

damaging variants in individuals of European ancestry

(2.7% in CEU vs. 2.9% in YRI), although we did find

a greater proportion in East Asians (3.7%). However, the

biological interpretation of this discrepancy is not straight-

forward because the differences between populations in

our data are confounded by differences in both read depth

and error rate between the populations.20

Characterization of HGMD Variants in Low-Coverage

Pilot Sequences

We identified a total of 2,630 HGMD entries that were

present in the 1000 Genomes Low-Coverage Pilot data
1026 The American Journal of Human Genetics 91, 1022–1032, Dece
(Table 1 and Table S4). These were very unevenly distrib-

uted between the different categories. Forty-two percent

of the combined polymorphism classes (DP þ DFP þ FP)

were represented, whereas only 0.9% of the DMs were

present (Figure 2A). A large difference might be expected

because those entries classified as polymorphisms have

small (perhaps negligible) effects on disease risk and

received the designation ‘‘polymorphism’’ largely because

of their estimated R1% frequency, whereas DMs are detri-

mental and generally rare. Similarly, there were also large

differences between the different variant types; for

example, 55% of the regulatory SNPs were present,

whereas only 0.08% of the combined ‘‘indel’’ classes were

(Figure 2B). These differences partly reflect the incomplete

discovery of indels in the 1000Genomes data, but there are

also differences within the SNP class. SNP types other than

regulatory SNPs are less frequently represented: 2.6% of

missense and nonsense SNPs, 0.2% of essential splice

SNPs, and 10% of nonessential splice SNPs. Frequency

differences between the SNP types are likely to reflect their

differential functional impacts.

In addition to the simple presence or absence of HGMD

variants in the Low-Coverage Pilot data, their frequency in

the population is likely to be informative. This can usefully

be summarized as a derived allele-frequency spectrum and

assessed by comparison with a variant class assumed to be

approximately neutral, such as synonymous SNPs, which

avoids interpretation biases as a result of the frequency-

dependent ascertainment bias inherent in low-coverage

sequencing. As reported by the Pilot Project,20 the spec-

trum for nonsynonymous SNPs is skewed more toward

lower frequencies than is that for synonymous SNPs in

all populations, reflecting their tendency to be slightly

deleterious (Figure 3). Of the HGMD overlap SNPs, all of

the polymorphism classes were skewed toward higher

frequencies, probably as a consequence of their ascertain-

ment as ‘‘polymorphisms;’’ however, the DMs were skewed

toward lower frequencies, consistent with their presumed

deleterious nature. Most of these differences were highly

significant (Figure 3; Table S3). This skewwasmost extreme

in the CEU samples, perhaps as a result of the better ascer-

tainment of low-frequency variants in this population

and/or a European publication bias influencing entry

into HGMD.
mber 7, 2012



0 

0.1 

0.2 

0.3 

0.4 

0.5 

0.6 

DM FP DFP DP 

Fr
eq

ue
nc

y 
in

 lo
w

-c
ov

er
ag

e 
pi

lo
t 

Disease-variant functional catergory 

0 

0.1 

0.2 

0.3 

0.4 

0.5 

0.6 

M
is

se
ns

e/
no

ns
en

se
 

S
pl

ic
in

g 
(E

ss
en

tia
l) 

S
pl

ic
in

g 
(O

th
er

) 

R
eg

ul
at

or
y 

sm
al

l d
el

et
io

n 

sm
al

l i
ns

er
tio

n 

sm
al

l i
nd

el
 

Fr
eq

ue
nc

y 
in

 lo
w

-c
ov

er
ag

e 
pi

lo
t 

Disease-variant type 

Figure 2. Representation of HGMD Variant Classes in the 1000
Genomes Low-Coverage Pilot
(A) HGMD variants subdivided by functional category. The
following abbreviations are used: DM, disease-causing mutation;
FPs, in vitro or in vivo functional polymorphism; DFP, disease-
associated polymorphism with additional supporting functional
evidence; and DP, disease-associated polymorphism.
(B) HGMD variants subdivided by variant type. The first four types
are all SNPs.
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As a consequence of these differences in frequency, the

numbers of homozygous variants per individual differ

greatly between classes. They are generally high for the

polymorphism classes (Table 1), but the DMmissense vari-

ants still show an average of 15 (9–24), 10 (5–17), and 11

(3–22) for the YRI, CEU, and CHB þ JPT samples, respec-

tively. In addition, small numbers of disease-causing essen-

tial splice-site SNPs and indels were noted (Table 1).

Overall, the proportion of DP, DFP, and FP entries found

in the Low-Coverage Pilot data, as well as their allele-

frequency spectra, can be understood in terms of the

consequences of their relatively mild phenotypic effects

and ascertainment. However, although the low proportion

and skewed allele-frequency spectra of DMs are consistent

with, and indicative of, their expected deleterious proper-

ties, these variants are still surprisingly numerous and

frequent, both as heterozygotes and homozygotes. Valida-

tion rates of these specific variants were high, both for sites

(>99%) and for individual genotypes (~98%), so these

numbers are unlikely to reflect genotyping errors (Table

S1). We therefore investigated their disease implications

in more detail.

Refinement of HGMD DMs Present in Low-Coverage

Pilot Sequences

We next adopted two approaches to further assess the

overlapping DMs. First, we undertook manual recuration

of a sample to determine whether there was any addi-

tional published evidence for or against their pathoge-

nicity. Manual recuration was applied to all the disease-

causing ‘‘indels’’ and essential splice-site SNPs, as well as

to a proportion of the missense variants. Among the five

indels in this class, one (and 0/14 in the polymorphism

classes), a single-base deletion (c.50delT in PRF1 [MIM

170280; RefSeq accession number NM_001083116.1],

associated with the severe disease familial haemophago-

cytic lymphohistiocytosis) found in the heterozygous

state in a single YRI sample, was judged likely to be caus-

ative (entry CD993068 in the supplemental data sheet).

Of the seven essential splice-site SNPs, all were considered

likely to be causative, although they were associated with

mild phenotypes in four cases and with a moderate

phenotype, deafness, in a fifth case. In all seven, the

disease allele was observed only in the heterozygous state

in one to ten individuals. Among the missense DMs, we

found known pathological variants, such as HBB (MIM

603903; RefSeq NM_000518.4) c.20A>T (p.Glu7Val),

which leads to increased resistance to malaria in heterozy-

gotes but to sickle cell disease in homozygotes27 (there

were 12 heterozygotes and 1 homozygote in YRI, but

0 in CEU or CHB þ JPT). In addition, we found variants

exemplified by USH2A (MIM 276901; RefSeq

NM_206933.2) c.2138G>C (p.Gly713Arg), reported as

being causal for Usher syndrome type 2,28 a recessive

disorder characterized by combined deafness and blind-

ness and found in the homozygous state in three YRI

samples, despite the fact that it represents a phenotype
rnal of Human Genetics 91, 1022–1032, December 7, 2012 1027
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Figure 3. Derived Allele-Frequency
Spectra of Nonsynonymous and Synony-
mous Variants and HGMD SNPs in Three
1000 Genomes Low-Coverage Pilot
Samples
The following abbreviations are used:
NSV, nonsynonymous variant; SV, synon-
ymous variant; DM, disease-causing
mutation; FP, in vitro or in vivo functional
polymorphism; DFP, disease-associated
polymorphism with additional supporting
functional evidence; and DP, disease-
associated polymorphism.
unlikely to be found among the sample donors. In the

case of this mutation, a subsequent report concluded

that this variant was unlikely to be causal for the disease

given that it was found in 2/200 controls;29 this complex

variant is considered further in the Discussion. Thus,

manual curation revealed the presence of three variant

classes among the DMs: (1) plausible severe disease-

causing variants, (2) variants convincingly causative for

pathological conditions yet compatible with adult life,

and (3) probably incorrect disease-status assignments.

However, it also became apparent that little or no relevant

additional information was available for the majority of

variants examined, and therefore, alternative approaches

to reassessment are required.
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In a second approach, we used the

damage prediction, as measured by

the Condel score implemented in

Ensembl, to stratify all 577 missense

variants. Using a score of R 0.99 as

a filter, we found that 55 DMs were

predicted to be damaging. Compared

with the initial 577 variants, these

55 were present at a significantly

lower frequency in the population

(p ¼ 0.007, Mann-Whitney U test).

A smaller proportion was seen as

homozygotes, and the number per

individual was also much smaller

and ranged from 0 to 7, of which

0 or 1 were homozygotes (Table 1).

Thus, this filter served to greatly

reduce the number of probable

disease alleles per individual.

The 55 damaging missense

DMs, the eight validated nonsense

DMs, and the splice-site and single-

base-deletion DMs discussed above

(the filtered shortlist of disease

alleles), along with the outcome of

their recuration, are summarized in

Table 2, Table S2, and the supple-

mental data sheet. Compared with

the HGMD as a whole, this filtered

set did not include any significantly
overrepresented disease categories, perhaps because the

small numbers of alleles provided low power for

identifying such effects (Figure S2). Of the 71 entries, re-

curation caused three to be reclassified as FPs, 22 to

be considered probably not pathogenic, and two to be

considered truncating variants, leaving 45 judged to

be pathogenic. Most of these cause recessive disorders

and were found only in heterozygotes; this class of

variant is expected to be present in the general popula-

tion. Two groups, however, were unexpected. Six DMs

cause dominant disorders, and five DMs cause recessive

disorders but were found in the homozygous state in

one or more individuals. These 11 variants are discussed

further below.



Discussion

The 1000 Genomes Project Pilot data, as the first available

population-scale whole-genome sequence data set, has

provided an opportunity for researchers to assess the issues

accompanying the interpretation of apparently harmful

genetic variants in the human population. These data

must, however, be interpreted in the light of some signifi-

cant limitations. False disease-allele genotype calls,

however, are very low. False-discovery rates in the project

as a whole were controlled to be <5%, so the variants re-

ported are mostly reliable. Further, the erroneous variant

calls are unlikely to correspond to real variants logged in

mutation databases. In support of this, validation experi-

ments confirmed that genotyping error contributes very

little (<2%) to the results presented in this study; the

particularly low error rate most likely reflects the above-

average quality of the read mapping to gene regions. Simi-

larly, somatic mutations in the cell lines sequenced by the

project are also unlikely to correspond to HGMD entries.

False-negative rates in the Low-Coverage Pilot data were,

however, substantial for rare variants and represent a limi-

tation of this data set. Discovery in the Low-Coverage Pilot

was near complete for variants of frequencyR 5% but was

only about 30% for variants of 1% frequency. Thus, disease

variants, which are generally rare in the population,22 tend

to be underrepresented. Consequently, the numbers in the

current study should be regarded as conservative lower

bounds to the actual numbers in the general population.

One clear conclusion from this and other studies4 is that

there is an urgent need to improve disease-allele annota-

tion. Of the 577 HGMD DMs present in the Low-Coverage

Pilot data set, >90% were not predicted to be severely

damaging to the protein. Such predictions have error

rates > 10%,24 but the fact that higher scores are strongly

associated with lower allele frequencies (Table S5 and

Figure S3) indicates that they are, on average, subject to

stronger negative selection and are thus enriched with

deleterious alleles. Protein damage does not, of course,

invariably give rise to disease; this is most strikingly illus-

trated by the finding that each individual carries ~100

severe loss-of-function variants, ~20 of which are in the

homozygous state, without manifesting any evidence of

overt genetic disease.25 Conversely, the well-known HBB

sickle cell allele is clearly disease causing but has a Condel

score of 0.956 and hence lies outside our severely

damaging category. Like many loss-of-function variants,

some of the homozygous DMs are deleterious on a purely

biochemical level and hence manifest as a presumed defi-

ciency state (e.g., c.280C>T [p.Arg94*] in MOK [formerly

RAGE1 (MIM 605762; RefSeq NM_014226.1)]; Table S2)

without causing any overt disease in the individual con-

cerned. Some homozygotes are population specific,

leading to the possibility that these alleles might well be

deleterious in one population, but not in another (e.g.,

c.598A>G [p.Met200Val] in DMC1 [MIM 602721; RefSeq

NM_007068.2]).30,31 In addition, several of the homozy-
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gotes occur in association with phenotypes that require

a specific environmental trigger (e.g., STOX1 variants and

preeclampsia predisposition).32,33 Such considerations

point to the complexities of the annotation process

required. Nevertheless, it seems probable that many of

the 191 DMs identified here in the homozygous state are

likely to represent disease-allele-annotation errors. Because

HGMD inclusion is largely made on the basis of publica-

tion in the peer-reviewed literature, we can infer that the

editorial criteria for accepting a given variant as disease

causing in the original literature need to be made more

stringent. We suggest, for example, that missense variants

found in one or a few disease cases and in zero out of a few

hundred controls should no longer automatically be

accepted as disease causing in the absence of additional

functional evidence, particularly because the availability

of data from the 1000 Genomes Project and other studies

now makes determining allele frequencies in many popu-

lations relatively easy. This should serve to reduce the

proportion of putatively pathological missense variants

that turn out to be spurious, albeit at the price of falsely

excluding some truly pathogenic variants.

Nevertheless, simply tightening the criteria for inclusion

in mutation databases would not address the relevant bio-

logical issue of reduced penetrance. One of the best charac-

terized examples of incomplete penetrance is provided

by the c.845G>A (p.Cys282Tyr) mutation in the hemo-

chromatosis-associated gene HFE (MIM 613609; RefSeq

NM_000410.3). p.Cys282Tyr homozygotes are found at

a frequency of approximately 1 in 200 people of northern

European origin.34,35 Available data suggest that 38%–50%

of p.Cys282Tyr homozygotes develop iron overload

and that 10%–25% develop some form of hemochroma-

tosis-associated morbidity. However, there appears to be a

sex-dependent effect: large studies that have specifically

assessed liver disease in newly diagnosed p.Cys282Tyr

homozygotes have shown that disease manifests in

24%–43% of males and 1%–14% of females.36 The extent

of clinically relevant reduced penetrance inmutation data-

bases remains poorly understood but is an issue that

urgently needs further consideration.

Our conclusions about the high frequency of spurious

reported disease alleles do not, of course, apply to the

vast majority of HGMD DM entries, which were not found

in the 1000 Genomes samples. A simple best estimate of

the number of questionable entries in HGMD would lie

between 191 (overlapping homozygous DMs) and 577

(total overlapping DMs), i.e., 0.4%–0.9% of the total

number of entries, and >99% of these would be bona

fide by this criterion. Nevertheless, investigators se-

quencing individuals (in a clinical context) or personal-

genomics participants in order to understand their genetic

disease status are likely to encounter many erroneous

disease alleles. What steps can be taken for facilitating

interpretation in such a situation? One approach that

might be considered would be to regard all variants

found in the 1000 Genomes Project samples as being
rnal of Human Genetics 91, 1022–1032, December 7, 2012 1029



noncausative for disease. This, however, would be overly

conservative because disease variants are to be expected

in such a population, and indeed, a number of compelling

dysfunctional variants are observed. An alternative

approach would be to flag variants according to their

frequency in the 1000 Genomes Project samples, their

presence in the homozygous state, and/or their predicted

damage as part of the HGMD entry so that investigators

can make an informed judgment about their medical

relevance. In the longer term, more comprehensively

annotated databases of pathological or disease-associated

variants will be required; in the meantime, however, we

believe that the type of iterative approach to variant valida-

tion advocated here is the most efficient and hence most

appropriate way to go about constructing a comprehensive

lexicon of DMs, loss-of-function alleles, and damaging but

nonpathogenic amino acid substitutions; this will be

essential if personalized genomics is to enter the realm of

routine clinical practice.

After applying all the criteria for identifying true disease

alleles available to us, we were left with a list of 45 filtered

candidates (Table 2 and Table S2). Of these, 34 were present

only in carriers and do not require further discussion here.

Among the remaining 11, the 6 linked to dominant disor-

ders can be understood because they either have late onset

(e.g., c.1519G>A [p. Gly507Arg] inMYBPC3 [MIM 115197;

RefSeq NM_000256.3]) or no overt disease phenotype

(e.g., c.623G>A [p.Arg208His] in SERPIND1 [MIM

612356; RefSeq NM_000185.3]). Similarly, the presence

of homozygotes for four of the five recessive disorders

can be explained by late onset and/or reduced penetrance.

Accounting for c.2138G>C (p.Gly713Arg) in USH2A (MIM

276901; RefSeq NM_206933.2) is the most difficult; this

variant is strongly predicted to be damaging to the protein

by multiple approaches, including in silico modeling and

in vitro laboratory analysis.37 Despite this, the variant is

evidently nonpathogenic in some populations, such as

the YRI, yet is regarded as pathogenic in other popula-

tions.4 One explanation for this apparent contradiction

could be that in the YRI population, the USH2A locus is

subject to copy-number variation38 that could either

reflect the nonessential nature of the locus in YRI or

provide functional complementation of the mutant gene.

Usher syndrome type IIA is a rare disease found primarily

in populations of European descent39,40 and might not

be found in the YRI population at all, lending support to

this postulate. However, this possibility needs to be

investigated in a future study. Such ambiguities could

perhaps be clarified by genotype-based recall for further

phenotypic analyses or further CNV evaluation of study

participants; these approaches are not applicable to the

fully anonymized 1000 Genomes Project participants but

could be informative in other studies.

Our findings are also relevant to discussions about ‘‘inci-

dental findings,’’ which are, in this context, the uninten-

tional discovery of information about the future disease

prospects of the participants.41 Particularly relevant are
1030 The American Journal of Human Genetics 91, 1022–1032, Dece
the dominant diseases, as well as the recessive diseases

for which homozygotes were found. In all, 19/179 (11%)

individuals were affected (Table 2 and Table S2). In most

of these, the primary explanation for the absence of disease

at the time of recruitment is likely to be the age of onset,

although penetrance is often variable as well, and some

phenotypes, such as loose anagen hair syndrome (caused

by c.1009G>A [p.Glu337Lys] in KRT75 [MIM 600628;

RefSeq NM_004693.2]; Table S2), might not even be re-

garded as ‘‘diseases.’’ Nevertheless, several participants

might later develop a genetic disease. In this situation,

the participants might benefit from advice about risks to

avoid or monitoring as they age. 1000 Genomes Project

participants cannot be recontacted, but our findings

suggest that incidental findings relevant to health and

well-being might be detected in ~11% of subjects

sequenced; this number is likely to be an underestimate

because of our incomplete discovery of rare variants.

It is now abundantly clear that the number of functional

genes in the human genome varies between individuals,

perhaps by up to 10%, because of large-scale duplications

and deletions,42,43 small loss-of-function mutations,25,44

damaging missense substitutions,11,12and other forms of

genetic variation. It is also clear that much of this variation

has, at most, minor consequences for health. Nevertheless,

it is noteworthy that DMs, loss-of-function alleles, and

damaging amino acid substitutions (Table S5) as classes

are rarer in the population than variants that are approxi-

mately neutral, indicating that they are disadvantageous

and subject to purifying selection on an evolutionary time-

scale. They thus contribute to the ‘‘genetic burden’’ in the

general population. From the 1000 Genomes Pilot data, we

now see that an average individual typically carries ~60

missense variants that severely damage protein structure

and ~100 loss-of-function variants.25 These numbers are

probably biased upward in the sense that not all damaged

or inactivated protein-coding genes are harmful to health.

However, they are also certainly biased downward not only

because the use of a Condel-score cutoff of 0.99 is arbitrary,

and many variants with lower scores are likely to be delete-

rious to health, but also because the contribution of indels

and regulatory variants to these categories is likely to have

been seriously underestimated. Similarly, the observation

of 2.0 (range ¼ 0–7) filtered DMs per individual is affected

by a likely residue of noncausative variants that are not

removed by our filtering scheme but is also far from

complete because many disease-causing mutations still

remain to be discovered and entered into HGMD.9 There-

fore, giving a definitive estimate of the number of either

deleterious or disease-causing variants per individual is

impossible at this stage. We nevertheless speculate that as

our understanding improves, the effect of removing

spurious variants in combination with discovering many

more truly harmful ones will lead to a net increase in these

numbers. On the basis of our current findings, we predict

that the average individual might eventually be found to

carry >400 damaging variants and >2 disease-causing
mber 7, 2012



ones (~5, if we assume that most disease mutations would

be singletons in this data set and apply a simple correction

for incomplete singleton ascertainment), estimates

remarkably consistent with several of the early theoretical

studies.6,7 Now, however, in addition to knowing the

numbers, we also know the identities of at least some of

these damaging and disease-causing variants.

Supplemental Data

Supplemental Data include three figures, five tables, and a supple-

mental data sheet on HGMD variants and can be found with this

article online at http://www.cell.com/AJHG.
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