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ABSTRACT: The effect of a series of aminooxy analogues of the biogenic polyamines
spermidine and spermine on the conformation of calf thymus DNA is studied. These
new molecules are isosteric and charge insufficient analogues that are suitable to study
the roles of both charge distribution and structural requirements in the molecular
physiology of the biogenic polyamines. They are also evidenced as useful tools to inhibit
polyamine biosynthesis and cell growth. Circular dichroism (CD) spectra of solutions
containing DNA and the aminooxy analogues at different concentrations (100—1000
pM) and different pH values, (5—-7.5) are recorded. We use both sonicated and highly
polymerized calf thymus DNA. The CD spectra of sonicated DNA showed the formation
of W-DNA, a highly ordered aggregated structure similar to liquid crystals, in the
presence of the aminooxy analogues. Aggregation induced by an aminooxy derivative of
spermine is followed by DNA collapse when increasing the polyamine concentration.
The features of W-DNA are not detected for highly polymerized DNA. Temperature
melting measurements support a high degree of structural order of the aggregates. The
CD experiments indicate that dications are unable to induce major changes on the
macromolecular structure of DNA. In addition, aggregation is only observed when the
trimethylene moiety is present between two adjacent positive charges. The observed
differences among the CD spectra of DNA solutions with different aminooxy derivatives
of spermidine indicate different roles for different amino groups of this biogenic poly-
amine when interacting with DNA. Our results support the idea that aminooxy ana-
logues can be used as good models in studying the physiological functions of biogenic
polyamines. © 2002 Wiley Periodicals, Inc. Biopolymers (Biospectroscopy) 65: 148157, 2002
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INTRODUCTION

The biogenic polyamines putrescine, spermidine,
and spermine are ornithine-derived organic poly-
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cations involved in a wide variety of biological
functions.'™ They are present in all living organ-
isms, from microorganisms to superior animals,
where they act as metabolic regulators in cell
proliferation and differentiation and as agents
that stabilize nucleic acid structure and confor-
mation.?~® Polyamines are known to protect DNA
from external agents, such as reactive oxygen
species or radiation.”® Efforts were made in the
past to explain how the polyamines bind to nu-
cleic acids supported different proposals for the
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DNA polyamines interaction, from purely electro-
static models®!° to those largely based on struc-
tural specificities.'""'> Raman spectroscopy was
recently applied to obtain new data about this
question, and several preferential binding models
were proposed.13-1°

From extensive research directed toward the
understanding of the interaction between nucleic
acids and the polyamines, it seems clear that
molecular charge and the polyamine structure
are the two essential factors in these interactions.
In short, the biological functions and activities of
polyamines are determined by the molecular ge-
ometry, which is largely the location of positively
charged nitrogen atoms; the nature of the link-
ages between these nitrogen atoms; and the de-
gree of these charges. The latter is well illustrated
by the discovery of tertiary and quaternary poly-
amines in thermophilic bacteria.'®

A suitable way to study the role of these factors
is the use of structural analogues of biogenic poly-
amines. In the last few years, a series of isosteric
analogues of putrescine, spermidine, and sperm-
ine were synthesized by replacing the terminal
aminomethylene group with an aminooxy
(H,NO-) one,'”'® which made the analogues in-
sufficiently protonated at physiological pH (pK, of
the aminooxy group is about 5). This replacement
also converted putrescine, spermidine, and
spermine into typical carbonyl reagents. These
aminooxy derivatives were demonstrated to be
useful tools to inhibit polyamine biosynthesis and
to investigate the peculiarities of the functional
structure of polyamines. Thus, the aminooxy an-
alogue of putrescine, 1-aminooxy-3-aminopro-
pane (APA), turned out to be an effective inhib-
itor of ornithine decarboxylase both in vitro and
in cultured cells.'®2?° The aminooxy analogues
of spermidine and spermine 7-[(amino)oxy]-4-
aza-l-aminoheptane trihydrochloride (APAPA),
7-[(amino)oxy]-5-aza-1-aminoheptane trihydro-
chloride (AOEPUT), and 11-[(amino)oxy]-4,9-
diaza-1-aminoundecane tetrahydrochloride (AOSPM)
were proved as inhibitors or substrates of the
enzymes involved in methionine and polyamine
metabolism.?! These analogues were capable of
penetrating inside cells, had low cytotoxicity, reg-
ulated catabolic stability, and inhibited cell
growth in a cell-type specific manner.?%23

In the present study we used circular dichro-
ism (CD) spectroscopy to investigate the effect of
three aminooxy analogues of biogenic polyamines
(Fig. 1) on the conformation of calf thymus (CT)
DNA. APAPA and AOEPUT are isosteric with
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Figure 1. The chemical structures of the polyamine
aminooxy analogues under study.

spermidine, AOSPM is isosteric with spermine,
and all of them are charge insufficient analogues;
they are therefore suitable molecules to analyze
the structure—activity relationships of the bio-
genic polyamines. On the other hand, the pK, of
an aminooxy group is about 5, so that APAPA and
AOEPUT are dications at physiological pH and
AOSPM is a trication. The three molecules would
increase their positive charge by decreasing the
pH, which can be used to control the charge dis-
tributions of spermidine and spermine without
changing the molecular topology significantly.

MATERIALS AND METHODS

DNA and Aminooxy Analogues

Highly polymerized (HP) CT-DNA was purchased
from Worthington Biochemicals (Freehold, NJ).
The The ratio of the absorbance at 260 nm versus
that at 280 nm) (Ayg0/Asg,) Was 1.88, indicating
that the DNA was free of protein contamination.
Short DNA fragments were prepared by ultra-
sonication® using a Branson Sonicator (Branson
Ultrasonics Corp., Danbury, CT). The average
molecular size, which was checked by gel electro-
phoresis, was about 150 bp. The sonicated DNA
was extensively dialyzed against 10 mM Tris
buffer. The final concentration was determined by
measuring the absorbance at 260 nm and using a
molar extinction coefficient of 6900 mol ! cm 1.
Details of the synthesis of the AOEPUT,
APAPA, and AOSPM aminooxy analogues of the
biogenic polyamines are given elsewhere.!”23
Solutions at different aminooxy concentrations
were prepared for both sonicated and unsonicated
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CT-DNA. The DNA concentration was always
5.86 X 10~° M, as obtained from an A,g, of 0.4043
optical density. For each aminooxy concentration,
different pH values were adjusted using hydrogen
chloride. Samples were kept at 4°C, and the CD
spectra were recorded 2 h after preparing the
solutions.

Electronic Spectroscopy

The CD spectra were recorded at room tempera-
ture (22°C) in an AVIV 62DS CD spectrometer
(AVIV Associates, Lakewood, NJ). A 1-cm path-
length quartz cell was used for all measurements.
The spectra were recorded after buffer correction.
The CD spectra corresponded exclusively to DNA,
because none of the aminooxy analogues had
measurable CD signals. The molar ellipticity, [0],
was calculated from the equation

0
c Xl

[0] = (1)

where 0-is-the ellipticity, ¢ is the DNA molar
concentration, and / is the cell pathlength (cm).?®
Melting experiments were performed using a
Beckman DU 640 spectrophotometer supplied
with a sample block for six cells. The temperature
range was 30—100°C at a rate of 0.5°C/min. The
Asgo was measured simultaneously for the com-
plete block after thermal equilibrium was
reached. The melting temperature (7,,) was ob-
tained by computing the first derivative of the
absorbance versus the temperature curve. The T,
value thus determined was comparable to that
derived from the midpoint of the absorbance ver-
sus temperature curve, and the reproducibility
was *0.5°C in repeated measurements of the
same sample. Melting experiments were per-
formed at physiological pH (7.5) using the same
stock solution as for the CD experiments.

RESULTS

Spermine Aminooxy Analogue AOSPM

Figure 2 shows the CD spectra of sonicated CT-
DNA with 10 mM Tris-HCI in the presence of
different concentrations of AOSPM at pH 5, 6, 7,
and 7.5. At each pH the CD spectrum showed the
standard features of a B-DNA conformation with
positive peaks at 222 (weak) and 276 nm (strong)
and a negative peak at 246 nm (strong). All of

these bands were assigned to = — =* electronic
transitions, although the positive strong band
could also have some n — 7* contribution.?® No
major changes were detected in the CD spectrum
of sonicated CT-DNA with changes in the pH
within the range studied.

The CD spectrum of DNA with AOSPM at pH 5
[Fig. 2(A)] showed a dramatic increase in molar
ellipticity, when increasing the aminooxy poly-
amine concentration, of the band at 276 nm,
which was accompanied by a redshift of about 10
nm. The positive DNA band at 222 mn also ex-
hibited an intensity increase and blueshift in the
presence of this aminooxy polyamine. Maximum
changes were observed when the concentration of
AOSPM was 250 uM. At concentrations higher
than 250 uM, the intensity of the CD signal de-
creased, being negligible at a AOSPM concentra-
tion of 1000 uM. This observation is indicative of
DNA collapse, as was easily visible from the ap-
pearance of a solid precipitate. In some of these
spectra the ellipticity did not approach zero in the
350-nm region. This may be due to differential
scattering of right- and left-handed polarized
light by condensed DNA particles.?”

When the pH of the solution was increased, the
following features were observed. The maximum
increase in the ellipticity occurred in all cases at
an AOSPM concentration of 250 uM. At pH 6, a
solid phase was observed when the aminooxy
polyamine concentration reached 1000 wM. Solu-
tions at higher pH values did not exhibit any
precipitation phenomena within the range of con-
centrations studied. As can be observed in Figure
2(C,D), the CD spectra from solutions at 500 and
1000 wM aminooxy polyamine concentrations still
showed increases in the molar ellipticity, com-
pared to the CD spectrum of control CT-DNA. In
addition, the intensity of the band at 276 nm
increased with increasing pH at a 250 uM
AOSPM concentration.

The CD spectra of HP CT-DNA at identical
experimental settings were also studied. The re-
sults are depicted in Figure 3. The spectra did not
exhibit noticeable changes in relation to the
change of the pH. As can be observed, there were
no variations in the molar ellipticity at AOSPM
concentrations lower that 250 uM; at 500 uM the
CD signal disappeared in all cases, supporting the
formation of a solid phase. Further, additions of
aminooxy polyamine did not provoke significant
alterations in the CD spectra.

The important CD features described above led
us to investigate the influence of this aminooxy
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Figure 2. The CD spectra of sonicated calf thymus DNA with 10 mM Tris-HCI at pH
values of (A) 5, (B) 6, (C) 7, and (D) 7.5 in the presence of AOSPM concentrations of (O)
0; (@) 100; (A) 250, ((J) 500, and (®) 1000 uM.

polyamine in the thermal stability of DNA. Figure
4 shows the melting curves for solutions contain-
ing sonicated CT-DNA in the presence of AOSPM
at physiological pH. The melting temperature in-
creased with increasing AOSPM concentration;
the T',, values were 66.4°C for the control and 86.2
and 95.6°C for samples containing 100 and 250
uM AOSPM, respectively. DNA solutions contain-
ing 250 and 500 uM AOSPM also showed small
absorbance increases at room temperature com-
pared to the control CT-DNA solution. In the
presence of 500 uM AOSPM, the absorbance at
260 nm monotonically decreased with increasing
temperature from 30 to 80°C and stabilized be-
tween 80 and 100°C. This could be a consequence
of DNA condensation or precipitation.

Spermidine Aminooxy Analogues APAPA
and AOEPUT

The CD spectra of sonicated CT-DNA with differ-
ent concentrations of APAPA and AOEPUT and

pH values ranging from 5 to 7.5, are displayed in
Figure 5 and 6, respectively. These spermidine
analogues are dications at physiological pH and,
as described for AOSPM, their molecular charges
increased with decreased pH.

Regarding the CD spectra of DNA/APAPA at
pH 5 [Fig. 5(A)], the positive DNA bands at 222
and 276 nm showed a significant increase in the
molar ellipticity at APAPA concentrations of 500
and 1000 uM. Lower concentrations did not in-
duce significant changes. This behavior was ac-
companied by a blueshift of the three DNA bands
at 270, 240, and 209 nm. No precipitation phe-
nomena were observed under our experimental
conditions. At pH 6 [Fig. 5(B)] an intensity in-
crease was observed only for the 1000 uM solu-
tion, while the CD spectra at pH 7 and 7.5 did not
increase with the APAPA concentration. How-
ever, the peak intensity of the three DNA CD
bands slightly decreased with increasing ana-
logue concentrations.

As shown in Figure 6, the CD spectra of CT-
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DNA/AOEPUT solutions did not show any in-
crease in intensity within both pH and concentra-
tion ranges examined. At pH 7 and 7.5 AOEPUT
is a dication, and the spectra did not show major
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Figure 4. The melting temperature profiles of soni-
cated calf thymus DNA with 10 mM Tris-HCI at phys-
iological pH in the presence of AOSPM concentrations
of (O) 0, (@) 100, (A) 250, and (1) 500 wM.

changes by adding this aminooxy polyamine up to
1000 uM. However, at low pH values (5 and 6) the
CD signal almost disappeared at a 1000 uM
AOEPUT concentration, indicating DNA precipi-
tation.

Finally, we also recorded the CD spectra of HP
CT-DNA in the presence of APAPA and AOEPUT.
With AOEPUT (Fig. 7) the results did not show
significant deviations with respect to those ob-
tained for sonicated DNA. The CD spectra of
APAPA and HP CT-DNA also followed similar
trends. As discussed below, this behavior corre-
lates well with that observed from HP CT-DNA/
AOSPM solutions (Fig. 3) and with the protona-
tion equilibrium of the aminooxy moiety.

DISCUSSION

The CD spectra of DNA-AOSPM solutions showed
significant increases in intensity with increasing
aminooxy polyamine concentration, which, in
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Figure 5. The CD spectra of sonicated calf thymus DNA with 10 mM Tris-HCI at pH
values of (A) 5, (B) 6, (C) 7, and (D) 7.5 in the presence of APAPA concentrations of (O)
0, (@) 100, (A) 250, (OJ) 500, and (®) 1000 wM.

some cases, was followed by DNA precipitation.
This phenomenon is interpreted as the formation
of a tertiary structure described as a highly or-
dered, liquid-crystal like form of DNA,?®-32 which
is termed W-DNA (psi for polymer and salts in-
duced).?® The characteristic CD spectrum of
W-DNA arises because the interaction of circu-
larly polarized light with the polymer can no
longer be described from the nearest neighbor
contributions,?* but new long-range terms are in-
troduced.?” The transition from B-DNA to ¥-DNA
is usually manifested by DNA aggregation. How-
ever, it is important to note the difference be-
tween aggregation and precipitation; while aggre-
gates are described as anisotropic, fluid phases in
solution,?® precipitates are out of solution, solid
phases. Several in vitro studies demonstrated the
ability of both short and long DNA chains to form
condensed states in the presence of polyca-
tions®%¢: these condensates remain in solution
when the DNA concentration is on the micromo-
lar order. Recently, the fine characteristics of dif-

ferent DNA condensates in the presence of the
biogenic polyamine spermine were investigated
by microscopy techniques,?” which indicated that
the DNA aggregates formed in very dilute solu-
tions had a liquid crystalline structure. The bio-
logical importance of aggregates comes from ag-
gregation being required for transfection of
oligonucleotides in living cells®®*~%° and for cate-
nation of DNA to topoisomerases.*! This fact en-
hances the role of biogenic polyamines in vivo.
Although the electronic absorbance is directly
sensitive only to base stacking,*? breaking of hy-
drogen bonds is a prerequisite to base unstacking.
The melting profiles shown in Figure 4 therefore
demonstrate that the aggregate formation en-
hances the forces that hold the two DNA strands
together (base pairing and base stacking). The
small increases in the absorbance observed for
the 250 and 500 uM AOSPM solution at room
temperature would indicate that the stacking
forces were slightly relaxed as a consequence of
aggregation, although the influence of solvation
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Figure 6. The CD spectra of sonicated calf thymus DNA with 10 mM Tris-HCI at pH
values of (A) 5, (B) 6, (C) 7, and (D) 7.5 in the presence of AOEPUT concentrations of (O)
0, (@) 100, (A) 250, (OJ) 500, and (®) 1000 wM.

effects in DNA cannot be discarded. The solution
at 500 uM AOSPM concentration exhibited a de-
crease in the absorbance by increasing the tem-
perature. Because this result cannot be origi-
nated by a DNA duplex stabilization at high
temperatures, it could be better attributed to a
thermally favored aggregation or precipitation of
DNA, which settled to the bottom of the cell,
thereby reducing the absorbance of the solution
phase. On the other hand, an increase in the
temperature will favor states with higher entropy
content, which could be interpreted because the
cholesteric phase reaches a more ordered state
than the precipitated phase, at least under our
experimental conditions.

A comparison of the CD spectra of AOSPM
with sonicated and HP-DNA indicates that aggre-
gation is more favored from short chains than
from long chains of DNA. As can be observed in
Figure 3, none of the CD spectra of HP-DNA
suggested the formation of aggregated structures;
the only effect we could see is DNA precipitation

when augmenting the aminooxy polyamine con-
centration. A similar behavior was observed for
the aminooxy analogues of spermidine. It is easy
to imagine that intramolecular interactions will
be dominant for long CT-DNA while intermolec-
ular interactions will be dominant for short DNA.
As a consequence, short DNA fragments will be
less sterically hindered to fold in larger ordered
macrostructures in the presence of polycations.
Previous studies on DNA-daunomycin complexes
supported this statement with the use of different
sonication times.?’ In the case of HP-DNA, poly-
cations would induce aggregation on specific se-
quences with significant biological importance,
which would restrict further folding or packaging
of neighbor sequences. This partial folding would
not be enough to originate a CD signal increase,
which is what happens when sonicated DNA is
employed. Thus, long DNA chains undergo pre-
cipitation without adopting an intermediate ag-
gregate form.

The influence of the aminooxy polyamine
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Figure 7. The CD spectra of highly polymerized calf thymus DNA with 10 mM
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charge on the interaction of these analogues with
DNA can be derived from changes in the CD spec-
tra at different pH values. The CD spectra of HP
CT-DNA and AOEPUT (Fig. 3) show that at a
lower pH, which increases the protonation of the
aminooxy compound, precipitation requires lower
concentrations. In addition, no precipitation was
observed for the spermidine analogue at pH val-
ues higher than 6, when it was a dication. This
result shows that dications cannot precipitate
DNA, in agreement with previous works.*3~4°
The influence of the positive charge can also be
evaluated from the CD spectra of sonicated DNA
(Figs. 2, 5, and 6). The aminooxy analogues
APAPA and AOEPUT were unable to provoke
relevant macromolecular changes in the DNA at
pH values higher than 6, while they induced ag-
gregation (APAPA) or precipitation (AOEPUT) at
pH 5 and 6. Concerning AOSPM, which is a tri-
cation at physiological pH, the CD spectra in (Fig-
ure 2C,D) show an increase in the molar elliptic-
ity when the aminooxy polyamine concentration

reaches 250 uM. Further addition of AOSPM did
not condense sonicated CT-DNA into a solid pre-
cipitate under our experimental settings. How-
ever, at pH 5 and 6 [Fig. 2(A,B)], aggregation was
followed by a complete precipitation of DNA at a
concentration of 1000 wM. Summarizing, our CD
spectra prove that dications do not induce major
macromolecular changes on both sonicated and
HP-DNA. Molecules with a higher charge can in-
duce either aggregation or precipitation at suit-
able concentrations, depending on the structural
specificities.

The aminooxy polyamines allow us to study the
structural specificities involved in DNA aggrega-
tion—precipitation. The CD spectra shown in Fig-
ures 2(D), 5(A), and 6(A) indicate that molecules
having a charge higher than +2 can originate
macromolecular effects on sonicated DNA. How-
ever, at pH 5 AOEPUT induced DNA precipita-
tion while APAPA induced DNA aggregation.
Both aminoxy polyamines are isosteric of spermi-
dine; however, N1 nitrogen is charge deficient in
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the case of AOEPUT, while N8 nitrogen is charge
deficient in the case of APAPA. The observed dif-
ference in the effects of AOEPUT and APAPA is
the direct indication of the nonequivalent contri-
bution of the N1 and N8 amino groups of spermi-
dine in the interaction with DNA. On the other
hand, an APAPA molecule always presents tri-
methylene chains between two positive charges,
which are separated by two and four methylene
groups in AOEPUT. As shown in Figure 1,
AOSPM also presents a trimethylene moiety,
having a positive charge distribution along the
molecular chain that is rather similar to the fully
protonated APAPA. The CD spectra indicated ag-
gregate formation for the AOSPM and APAPA
solutions but not for the AOEPUT solutions. How-
ever, the more intense CD signal was obtained at
250 uM for AOSPM (pH 7.5) and at 1000 puM for
APAPA (pH 5). Concentrations of AOSPM greater
than 250 uM originated a decrease in the molar
ellipticity, without observing precipitation up to
1000 wM. Because both molecules have the same
charge at their corresponding experimental con-
ditions, these differences have to have originated
from the different molecular weight and/or from
the aminooxy group. The O—NH,, group does not
have a net charge for AOSPM at pH 7.5; however,
the lone pair of the heteroatoms could act as a
nucleophilic reactive, so that they would be able
to interact with DNA sites having an electron
defect (acidic hydrogens, etc.).

The CD spectra obtained for AOSPM (Fig. 2)
can be compared to those reported for sonicated
CT-DNA in the presence of biogenic polyamine
spermine at physiological pH.*® The spectra of
DNA/AOSPM at pH 5 and DNA/spermine at
physiological pH exhibit similarities. As an exam-
ple, the strong CD band of DNA at 276 nm was
shifted to higher wavelengths with increasing in-
tensity by adding both polyamines, reaching max-
imal molar ellipticity values between (2 and 3)
X 10* deg cm? dmol . However, greater concen-
trations were necessary for AOSPM than for
spermine to reach a similar CD increase; as a
consequence, the maximal CD signal was reached
at a spermine concentration of 50 uM while for
AOSPM a concentration of 250 uM was required.
On the other hand, characteristic CD spectra of
W-DNA are reported for long DNA chains in the
presence of spermine,*” which are different from
those observed for HP CT-DNA/AOSPM solutions
at low pH values [Fig. 3(A,B)]. These observations
enhance the functional differences between a par-
tially protonated aminooxy group and a fully pro-

tonated amino group, thus supporting the role of
the structural specificities in the DNA-—poly-
amines interaction.

Studies on DNA condensation in the presence
of trication spermidine*®*®~5° demonstrated the
efficiency of this biogenic polyamine as a precipi-
tating or aggregating agent. It was also reported
that the biogenic polyamine putrescine, which is a
dication at physiological pH, is unable to induce
major changes in the macromolecular structure of
DNA.#851 This fact is compatible with the present
results. Thus, DNA condensation or aggregation
was observed for AOSPM at physiological pH,
while for the spermidine aminooxy analogues we
only observed macromolecular effects at low pH
values.

In summary, the aminooxy analogues of poly-
amines can induce aggregation and/or precipita-
tion on DNA with increasing concentration. For-
mation of W-DNA was only observed with
sonicated DNA under our experimental condi-
tions. Precipitation was observed with both soni-
cated and HP-DNA. Partial folding could be pos-
sible for HP-DNA, although this was not detected
from our CD spectra. These processes were gen-
erally enhanced when increasing the charge of
the analogues. Neither precipitation nor aggrega-
tion was observed for dications. Compounds with
higher molecular charges were capable of provok-
ing aggregation, depending on their molecular
structure. Our CD results indicated that aggrega-
tion was only induced when the trimethylene moi-
ety was placed between two adjacent positive
charges. Otherwise, sonicated DNA precipitated
without adopting a previous aggregated struc-
ture. The CD studies also indicate that primary
amino end groups of the biogenic polyamine sper-
midine could have differential interactions with
DNA.
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