日本語
 
Help Privacy Policy ポリシー/免責事項
  詳細検索ブラウズ

アイテム詳細


公開

学術論文

Dynamic structure factor of a stiff polymer in a glassy solution

MPS-Authors
/persons/resource/persons173529

Hallatschek,  Oskar
Max Planck Research Group Biological Physics and Evolutionary Dynamics, Max Planck Institute for Dynamics and Self-Organization, Max Planck Society;

External Resource
There are no locators available
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
フルテキスト (公開)
公開されているフルテキストはありません
付随資料 (公開)
There is no public supplementary material available
引用

Glaser, J., Hallatschek, O., & Kroy, K. (2008). Dynamic structure factor of a stiff polymer in a glassy solution. Europhysics Journal E, 26(1-2), 123-136.


引用: https://hdl.handle.net/11858/00-001M-0000-0029-13D1-E
要旨
We provide a comprehensive overview of the current theoretical understanding of the dynamic structure factor of stiff polymers in semidilute solution based on the wormlike chain (WLC) model. We extend previous work by computing exact numerical coefficients and an expression for the dynamic mean square displacement (MSD) of a free polymer and compare various common approximations for the hydrodynamic interactions, which need to be treated accurately if one wants to extract quantitative estimates for model parameters from experimental data. A recent controversy about the initial slope of the dynamic structure factor is thereby resolved. To account for the interactions of the polymer with a surrounding (sticky) polymer solution, we analyze an extension of the WLC model, the glassy wormlike chain (GWLC), which predicts near power law and logarithmic long-time tails in the dynamic structure factor.