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I Abstract

Organic semiconductors form an active and promising field of research since they can be
used to develop and construct highly efficient and flexible (opto)electronic devices with
tailored structural and electronic properties, e.g., band gaps and conductivities. Typically,
these properties do not only depend on the chemical composition but also on the growth
conditions, e.g., on the strain or pressure applied during fabrication. However, little is yet
known about these dependencies since a systematic assessment of these effects is challenging
for experiment and theory alike. To shed light on these aspects, we have developed and
implemented techniques to study the pressure dependence of the geometry and of the
electronic structure of organic semiconductors with the help of density-functional theory.

Nowadays, isolated molecules (< 100 atoms) can be described with high accuracy by
quantum chemistry methods. Applying these techniques to molecular crystals, i.e., periodic
lattices of such molecules, is to date computationally extremely challenging. Therefore,
density-functional theory is still the workhorse electronic-structure tool to investigate these
systems — in spite of its deficiencies. In this thesis, we critically discuss to which extent they
can be cured by van der Waals corrections and hybrid functionals, which include a portion
of Hartree-Fock exchange.

To investigate the pressure dependencies, the stress tensor defined as the total energy
derivative with respect to the strain tensor is required. In this thesis, the analytical strain
derivatives have been derived and implemented in the electronic-structure code FHI-aims
including the terms that stem from van der Waals corrections and Hartree-Fock exchange.
The excellent accuracy and performance of our implementation is demonstrated by exten-
sive benchmark calculations for a wide range of inorganic and organic crystals.

In particular, we discuss the prototypical organic semiconductors anthracene and poly-
acetylene, which are built from molecules and polymer chains, respectively. To capture
their weakly bonded nature, van der Waals corrections are required, and for polyacetylene,
hybrid functionals are critical for the correct description of the equilibrium geometry. We
find that the interactions between the molecules or chains of the organic crystals signifi-
cantly influence the electronic band structure and lead to band splitting. Under hydrostatic
pressure, both crystals are strongly compressed, which increases these interactions, thereby
modifying the band structure.

Eventually, the electrical band conductivity of both organic semiconductors is investigated
with the Boltzmann transport equation in the constant relaxation time approximation to
clarify to which extent the discussed changes in geometry and electronic structure can affect
macroscopic properties. We calculate the pressure-dependent trend of the charge carrier
concentration and band conductivity for intrinsic and doped systems and point out the
dominant transport directions. It is discussed how the behavior of the conductivity can be
attributed to the changes in the band structure. Comparison with experiments shows that
our calculations yield consistent results.
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I Kurzfassung

Organische Halbleiter bilden ein lebhaftes und vielversprechendes Forschungsgebiet, da sie
zur Entwicklung und zum Bau hoch effizienter und biegsamer (opto)elektronischer Gerate
mit mafigeschneiderten strukturellen und elektronischen Eigenschaften, z.B. Bandliicken
und Leitfdhigkeiten, eingesetzt werden konnen. Diese Eigenschaften hangen typischerweise
nicht nur von der chemischen Zusammensetzung ab sondern auch von den Wachstumsbe-
dingungen, z.B. von Verformungen oder Druck wihrend der Fertigung. Uber diese Abhin-
gigkeiten is bisher jedoch wenig bekannt, weil ein systematischer Zugang zu diesen Effekten
fir Experiment und Theorie herausfordernd ist. Um diese Aspekte zu beleuchten, haben
wir Methoden entwickelt und implementiert, um die Druckabhingigkeit der Geometrie
und Elektronenstruktur von organischen Halbleitern mit Hilfe der Dichtefunktionaltheorie
zu untersuchen.

Heutzutage konnen Molekiile (< 100 Atome) mit hoher Genauigkeit mit quantenchemi-
schen Methoden beschrieben werden. Diese Methoden auf Molekulkristalle, also periodi-
sche Gitter solcher Molekiile, anzuwenden, ist bislang duflerst herausfordernd. Deshalb
ist die Dichtefunktionaltheorie noch immer die gangige Elektronenstrukturmethode, um
diese Systeme zu untersuchen — trotz ihrer Defizite. Im Rahmen dieser Dissertation disku-
tieren wir kritisch, in welchem Mafle diese behoben werden konnen durch Van-der-Waals-
Korrekturen und Hybridfunktionale, die anteilig Hartree-Fock-Austausch beinhalten.

Um die Druckabhingigkeiten zu untersuchen, wird der Spannungstensor benétigt, wel-
cher als die Ableitung der totalen Energie nach dem Verformungstensor definiert ist. Die
analytischen Ableitungen nach der Verformung sind im Rahmen dieser Dissertation im
Elektronenstrukturcode FHI-aims implementiert worden und beinhalten die Beitrage der
Van-der-Waals-Korrekturen und des Hartree-Fock-Austauschs. Die exzellente Genauigkeit
und Effizienz unserer Implementierung wird durch umfangreiche Benchmark-Rechnungen
fur ein breites Spektrum an anorganischen und organischen Kristallen demonstriert.

Insbesondere behandeln wir die prototypischen organischen Halbleiter Anthracen und Po-
lyacetylen, die aus Molekiilen bzw. Polymerketten aufgebaut sind. Um ihre schwach gebun-
dene Natur zu erfassen, werden Van-der-Waals-Korrekturen bendtigt und fiir Polyacetylen
sind Hybridfunktionale entscheidend fiir die korrekte Beschreibung der Grundzustands-
geometrie. Wir zeigen, dass die Wechselwirkungen zwischen den Molekiilen oder Ketten
der organischen Kristalle die elektronische Bandstruktur signifikant beeinflussen und zu
einer Bandaufspaltung fithren. Unter hydrostatischem Druck werden beide Kristalle stark
komprimiert, was diese Wechselwirkungen erhoht und dabei die Bandstruktur modifiziert.

Schliefilich wird die elektrische Bandleitfahigkeit beider organischer Kristalle mit der
Boltzmann-Transportgleichung in der konstanten Relaxationszeitnaherung untersucht,
um zu kldren, in welchem Mafle die behandelten Geometrie- und Elektronenstruktur-
veranderungen makroskopische Eigenschaften beeinflussen konnen. Wir berechnen den
druckabhangigen Verlauf der Ladungstragerkonzentration und der Bandleitfahigkeit fiir
intrinsische und dotierte Systeme und zeigen die dominanten Transportrichtungen auf. Es
wird besprochen, wie das Verhalten der Leitfahigkeit auf die Veranderungen in der Band-
struktur zuruckgefiihrt werden kann. Vergleiche mit Experimenten zeigen, dass unsere
Berechnungen konsistente Ergebnisse liefern.
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Introduction

The synthesis and optimization of semiconducting organic crystals, i.e., bulk materi-
als built from periodically repeated organic compounds, has paved the route towards
organic electronics and photonics. They allow the development and construction of
highly efficient, flexible, easy-to-process, and low-cost (opto)electronic devices such as
organic light-emitting diodes, organic photovoltaic cells, and organic field-effect transis-
tors [For04, Heill, Pod13]. Most prominently, these materials have been used in recent
years to construct curved displays in consumer electronics, e.g., mobile phones and tele-
visions. For these kinds of applications, there are two classes of organic semiconductors
that are relevant: crystals made up from 7m-conjugated polymers and crystals composed
of small organic molecules, which themselves contain conjugated 7 electrons [For04].
In both classes, the 7 electrons are the key for the electronic behavior of the organic
crystals and thus, determine the semiconducting or even metallic behavior.

Historically, anthracene became a prototype for an organic photoconductor and led to
an emerging interest in organic semiconductors made up from molecules [KarOla]. In
turn, this led to the development of high-quality molecular crystals with high charge
carrier mobilities. As an example, the mobility in single crystal rubrene can reach values
in the order of 107>m?/(Vs) [Pod13]. For comparison, single crystal silicon has mobilities
only one order of magnitude larger (1072m?/(Vs) [Pod13]). Also, light-emitting diodes
made from organic molecules were realized in the late 1980s [Tan87].

In 1977, it was discovered that doped polyacetylene, a conjugated polymer, shows
a high electrical conductivity comparable to metals [Chi77, Shi77]. For these findings,
the 2000 Nobel Prize in Chemistry was awarded jointly to Alan J. Heeger, Alan G.
MacDiarmid, and Hideki Shirakawa “for the discovery and development of conductive
polymers” [Nob00, Hee01, Mac01, Shi01]. In highly oriented polyacetylene, electrical
conductivities in the order of 10°(Qm)~! can be achieved [Vik93]. For comparison,
metals typically have a conductivity in the order of 10° to 107 (Qm)~! [Tip08]. This
discovery sparked the interest in this field and led to the development of light-emitting
diodes based on conjugated polymers in the late 1980s [Bur90].

As it is the case for inorganic semiconductors, all these transport properties depend
on the structural and electronic properties of organic semiconductors, e.g., band gaps
and conductivities, which in turn depend on the growth conditions during fabrica-
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tion [Heil1]. Hence, strain, stress, and pressure employed during crystal growth will
affect the performance of materials and devices. For instance, Kim et al. [Kim07] showed
that the performance of organic light-emitting diodes can be notably improved by
applying external pressure while processing the organic layers of the device. Along
these lines, is was demonstrated by Giri et al. [Girl1] that the charge carrier mobility
in TIPS-pentacene can be doubled by applying shear forces to the organic film during
growth. This procedure led to strained crystals with reduced stacking distance between
the molecules. For most organic crystals, however, the pressure dependence of their
electronic properties is still unknown due to the associated experimental difficulties in
the fabrication and characterization under these thermodynamic conditions — in spite
of the fact that such strain effects can be of utmost importance in curved or flexible
devices. The creation of high-quality organic crystals is very challenging and measuring
transport properties under exactly determined pressures is no easy task. Therefore,
the development of a microscopic theory and of atomistic models to understand the
underlying electronic effects is desirable.

However, a theoretical investigation of these effects in organic crystals is challenging
as well: High-level quantum chemistry methods are indeed able to describe isolated or-
ganic molecules (< 100 atoms) with high accuracy, but their excruciating computational
cost (scaling O(N*~N7) with number of atoms N) prevents their application for periodic
systems of molecules, i.e. organic crystals. Therefore, other electronic-structure methods
are typically used for such investigations, most prominently density-functional theory
with (semi-)local exchange-correlation functionals. This method is a computationally
extremely efficient ab initio tool to compute the ground state electron density and energy
of molecules and solids. However, this comes at a price: The involved approximations
fail under certain circumstances, which is particularly critical for organic molecules.
On the one hand, long-range, non-local van der Waals interactions are known to play a
decisive role in organic crystals but are not at all accounted for in the typical (semi-)local
functionals used to describe the exchange-correlation in density-functional theory. On
the other hand, also the local self-interaction error of such (semi-)local functionals
can cause severe artifacts especially in 7t-conjugated systems and thus result in funda-
mentally different geometries and electronic structures. Hence, the approximations of
the exchange-correlation need to be critically evaluated and checked with higher-level
methods and experiments. Last but not least, the influence of these effects on strain,
stress, and pressure need to to be accounted for as well to achieve a reliable microscopic
description.

This thesis addresses exactly these issues with the final goal to theoretically study
and predict the pressure dependence of the electronic structure and the electronic
transport properties of organic semiconductors and to lay the founding for a microscopic
understanding of the pressure dependence in the properties of organic crystals. For this
purpose, we employ density-functional theory in the Born-Oppenheimer approximation
and critically discuss the accuracy of the employed exchange-correlation approximations.
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The description of solids under stress and pressure requires the stress tensor; a quantity
that is not easily accessible in the framework of density-functional theory and is defined
as the total energy derivative with respect to the strain tensor!.

In order to achieve our goal, we have derived and implemented the analytical strain
derivatives of the total energy in the numeric, atom-centered orbitals based all-electron
electronic-structure code FHI-aims [Blu09]. For the analytical derivation of these deriva-
tives, every contribution to the total energy that changes under strain has to be consid-
ered: Since the atomic positions and lattice vectors of the crystal change under strain,
many contributions are affected. Therefore, strain derivatives of the kinetic, electrostatic,
and the exchange-correlation energy expressions used in density-functional theory are
required. Our derivation and implementation includes the strain derivatives of popular
approximations to the exchange-correlation energy, namely local-density approxima-
tion, generalized gradient approximation, and hybrid functionals, which incorporate a
portion of Hartree-Fock exchange. Special care has to be taken if integrals are involved
whose boundaries are the unit cell of the crystal. Since the unit cell changes under
strain, a so-called Jacobi term occurs. Other non-trivial contributions arise because the
electronic-structure code FHI-aims uses atom-centered basis functions, which move un-
der strain. Also, the strain derivatives of van der Waals corrections, which are of pivotal
importance for organic crystals, are accounted for. We critically evaluate the accuracy
and efficiency of our implementation by performing extensive benchmark calculations
for a wide range of inorganic and organic crystals. Additionally, the consistency for
various numerical settings is checked and tests for the optimization of unit cells under
pressure are performed.

We then employ our implementation to study organic crystals under hydrostatic
pressure — exemplary for the two prototypical organic semiconductors anthracene and
polyacetylene. In this context, it is crucial to choose an appropriate approximation for
the exchange-correlation functional since the geometric and electronic structure of these
materials can be critically affected by this approximation — even fundamentally as in
the case of polyacetylene: The local-density approximation and generalized gradient
approximation wrongly predict a metallic ground state of pure crystalline polyacetylene.
In contrast, hybrid functionals yield the correct semiconducting ground state. Also,
it is important to incorporate van der Waals interactions in density-functional theory
calculations since the weak bonding between the molecular constituents of organic
crystals typically stems from these interactions [For04]. For instance, this can be achieved
by explicitly adding the long-range 1/R® tail of the van der Waals energy [Tka09].

Under pressure, crystalline anthracene and polyacetylene are compressed, which in-
creases both the intermolecular and interchain interactions. These interactions strongly
influence the electronic band structure of the crystals in a non-trivial fashion. In partic-
ular, the dispersion (band width) increases dramatically under pressure, which in turn

1 The strain tensor measures the elastic deformation of a crystal relative to a reference state (see Chapter 5).
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reduces the direct and indirect gaps and thus determines the respective thermodynamic
properties.

With respect to macroscopic transport properties, it is essential to note that there are
several possible mechanisms of charge carrier transport in organic semiconductors, for
instance pure electronic hopping, coupled electron-phonon transport (e.g. polarons),
or electronic band transport as in traditional inorganic semiconductors. However, no
simple a priori distinction between these mechanisms can be made in most cases since
all mechanisms are active in most organic crystals and dominate over another in dif-
ferent limits. Hopping, for instance, is typically important for higher temperatures
(e.g. T > 100K in rubrene and pentacene [Pod13]). Conversely, band transport has been
experimentally shown to dominate for highly ordered organic crystals at low temper-
atures [Sch78, War85, Kar03, Pod13]. Nevertheless, this thesis solely focuses on band
transport as one of the possible limits of transport behavior in organic crystals. Still,
it allows qualitative insight to which extent changes in the geometric and electronic
structure under pressure affect macroscopic equilibrium (charge carrier concentration)
and non-equilibrium properties (electrical band conductivity). For anthracene and poly-
acetylene, we find that changes in band transport due to pressure are predominantly
driven by the respective band gap reduction, which enhances the charge carrier concen-
tration exponentially in the intrinsic case. Accordingly, we identify dominant transport
directions for intrinsic and doped semiconducting crystals and trace back the behavior of
their electrical conductivity under hydrostatic pressure to the changes in the electronic
band structure.

Overall, the concepts and methods developed in this thesis are hoped to substantially
contribute to our ability to predict and design the electronic and transport properties
of organic semiconductors, much beyond the prototypical example systems considered
here. These methods may additionally serve as a solid basis to incorporate additional ef-
fects that are not yet covered, such as hopping-type transport, electron-phonon coupling,
or the impact of defects, all of which play a critical role in the design and manufacture
of real organic electronic devices.

The structure of this thesis is as follows: Chapter 2 explains the basic principles of
density-functional theory and Chapter 3 discusses the basic concepts on how electronic-
structure calculations are performed by the electronic-structure code FHI-aims. Chap-
ter 4 briefly summarizes how we calculate electrical band conductivities using the
Boltzmann transport equation in the constant relaxation time approximation. The list-
ing of all relevant total energy contributions in Chapter 3 is the cornerstone for our
implementation of the stress tensor discussed in Chapter 5. A full derivation of the ana-
lytical strain derivatives is given including a description on how the stress tensor is used
to optimize the unit cell of crystal structures under pressure. Chapter 6 is dedicated to
the validation of our implementation by extensive benchmark calculations. The organic
crystals anthracene and polyacetylene are studied in Chapters 7 and 8, respectively.
Their ground state properties (geometry, electronic band structure) are investigated
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as well as their behavior under hydrostatic pressure. These investigations include the
behavior of macroscopic properties (intrinsic charge carrier concentration and electrical
band conductivity) under pressure. Lastly, a summary and an outlook are presented in
Chapter 9.
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Theoretical background






The many-electron problem and
approximations to it

Our goal is to accurately and efficiently compute and predict the properties of materials
in an ab initio manner by calculating the electronic structure of materials from first prin-
ciples. This chapter will present the underlying theoretical framework employed in this
thesis. This framework includes the fundamental Hamiltonian, the Born-Oppenheimer
approximation, the Hohenberg-Kohn theorems, which are the foundation of density-
functional theory, and eventually, the Kohn-Sham equations. Furthermore, approxima-
tions to the exchange and correlation energy are discussed, which are needed to solve
the Kohn-Sham equations in practice. In order to keep the notation concise, explicit spin
indices are omitted and atomic units are used (see App. A).

Molecules and materials are a collection of interacting atoms. They can be described
as a set of N electrons and N, atomic nuclei, which interact via electrostatic forces.
The Hamiltonian of such a system is given by [Mar04, Koh06]

H = Tel + Tnuc + Velfel + Velfnuc + Vnucfnuc- (2-1)

The individual terms are the kinetic energy operator of the electrons

N,
1 el
52 M (2.2)
1
the kinetic energy operator of the nuclei
Niu
1
Thue = =3 Z M, (2.3)
Ji
the electron-electron interaction
Nel Nel
N 1 1
Vel = = _ 2.4
el el 2Z / |r1'_r]'| ( )
i jwi
the electron-nuclear interaction
Nel Nnuc
N Z;
Velnue = — = (2.5)
el-nuc i - |1‘1' _ R[|
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and the nuclear-nuclear interaction

1 Nhue N
nuc nuc — E Z Z le (2-6)
I J=I

The position vectors of electrons and nuclei are denoted by r; and R;, respectively. The
charge of the nuclei Z; is given in units of the elementary charge and the mass of the
nuclei M; in units of the electron mass. The Laplacian is denoted by A. The energy
spectrum of the system is then determined by the stationary Schrodinger equation

HY =EVY, (2.7)

in which W is the full many-body wave function of the combined electrons-nuclei system
and E its energy.

In order to reduce the complexity of the problem, the so-called Born-Oppenheimer
approximation is applied. The mass ratio between an electron and a proton is less than
0.1%. Therefore, it is often assumed that the electrons instantaneously adapt to any
movement of the nuclei and thus, adiabatically occupy the respective electronic ground
state. This allows a separation of the full many-body wave function W into an electronic
and a nuclear part, ¥ = )9y, c. Hence, the Born-Oppenheimer approximation allows
to decouple the dynamics of electrons and nuclei and leads to the fundamental equation
of electronic-structure theory,

Hellgbel = Eellpell (2-8)
with the electronic Hamiltonian
Hel = Tel + Vel—el + Vel-nuc + Vnuc—nuc (2-9)

and the energy of the electronic system E,. Here, the positions of the nuclei enter the
equation only parametrically. The corresponding Schrodinger equation for the nuclei is

nuc AI

_E Z MI + Eel({RI}) ltbnuc = Enucll)nucr (2.10)
I

and E, . is the energy of the nuclear system. Accordingly, the solution of Eq. (2.8) for
different sets of nuclear positions {R;} provides the potential energy surface on which
the nuclei move.

2.1 Density-functional theory and Hohenberg-Kohn theorems

Solving the many-body electronic Schrodinger equation (2.8) requires to determine
the Nj-electron wave function, which depends on 3N, coordinates. The intriguing
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B first HK theorem

Vext < no
Eq. (2.8) Eq. (2.11)
4’el,m > lPel,O

ground state

Figure 2.1: Schematic representation of the first Hohenberg-Kohn theorem. Starting from the
top left, the external potential vey; fully determines the Hamiltonian H, in Eq. (2.8). The set of
electronic many-body wave functions 1| ,, is then obtained by solving the Schrodinger equation.
Choosing the ground state wave function yields the ground state density n, via Eq. (2.11). At
last, the circle is completed by the first HK theorem. It states that the external potential vy, is
determined up to a constant by the ground state density ny.

principles of density-functional theory (DFT) allow to simplify this problem by showing
that any ground state property of a system of interacting particles is a functional of the
electron ground state density ng. Thus, it is possible to obtain the ground state energy
via a variational principle using only the electron density 7, i.e., the probability to find
an electron at a given point r,

n(r) = Ng f-fdrz...drNel [er (1, rz,...,rNel)|2. (2.11)

This reduces the complexity of the problem considerably since the density depends only
on three spatial coordinates and not on 3N, coordinates as the many-body wave function.
The fundamental basis of DFT are the two Hohenberg-Kohn (HK) theorems [Hoh64,
Mar04].

First Hohenberg-Kohn theorem: For any system of interacting particles in an external
potential veyy, the potential vey is determined up to a constant by the ground state density n.

The external potential vey; can be any interaction between the system and its surround-
ings. In our case, it is the interaction between the electrons and nuclei. Together with
the external potential, the Hamiltonian describing the system is fully determined up to
a constant energy shift. Thus, all ground state properties are determined by the ground
state density. Figure 2.1 shows a schematic representation of the first HK theorem.

Second Hohenberg-Kohn theorem: A universal functional for the energy E[n] in terms of
the electron density n can be defined, valid for any external potential vey. For any particular
potential Veyy, the exact ground state energy of the system is the global minimum value of this
functional, and the density that minimizes the functional is the exact ground state density ny.

In the HK scheme, a universal functional means that it does not depend on the external
potential, but only on the electron density (and the form of the internal interactions).
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Formally, the energy functional is defined as

Eracln] = Fea[n] + fdrvextmnm (2.12)

with the HK functional
Fux([n] = Ta[n] + Eej.el[1], (2.13)

which includes all internal energies of the interacting system, namely the kinetic energy
of the electrons T, and the electron-electron interaction energy E.j.;. One important
remark is that the HK theorems are only valid for v-representable densities, i.e., densities
that are derived from electronic ground states 1] ¢ that are solutions of the many-body
electronic Schrodinger equation (2.8).

The HK theorems state that the energy of a system is a universal functional of the
electron ground state density. However, this statement itself is not helpful in solving
the many-electron problem because it does not provide a recipe on how this universal
functional can be constructed. In the next section, such a recipe will be presented.

2.2 Kohn-Sham equations

The pioneering work of Kohn! and Sham provides a recipe on how to actually calculate
the ground state energy. Without their contribution, DFT would not be such a helpful
and successful theory in the field of electronic-structure calculations. The main idea of
Kohn and Sham was to replace the interacting many-electron system with an auxiliary
system that gives the same electron density — and thus the same ground state energy —
but is easier to solve. For this purpose, they have used a non-interacting system, which
has several advantageous properties.

Auxiliary non-interacting system

For the auxiliary system, the following holds: There is a system of non-interacting
electrons embedded in an auxiliary potential v,,, whose ground state density is the
same as the one of the interacting system, see Fig. 2.2. The Hamiltonian H,,, of this
system is a sum of single particle Hamiltonians,

Nel

Nel
Haux = E haux,i = §
i i

1 Walter Kohn was awarded with one half of the 1998 Nobel Prize in Chemistry “for his development of
the density-functional theory”. The other half was awarded to John A. Pople “for his development of
computational methods in quantum chemistry” [Nob98, Koh99, Pop99].

A
_E + vaux(ri)]' (2'14)
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Figure 2.2: Sketch of the main idea of the Kohn-Sham scheme. The system of interacting elec-
trons is replaced by an auxiliary system of non-interacting electrons embedded in an auxiliary
potential v,,4. The ground state electron density n is the same for both systems.

The single particle orbitals’> ®; are the eigenfunctions of the single particle Hamil-
tonian f1,,, with eigenvalues €;. Hence, the ground state wave function ¥,y ¢ of the
Hamiltonian H,,, is the single Slater determinant of N orbitals ®; corresponding to
the N, lowest eigenvalues €;. The Slater determinant is defined as

Oy(ry)  Dy(ry) -+ Dy, (1)
1 | Di(ra)  Dy(ry) - Dy, (1)
Yaux(r1, 121N = ——=| T P (2.15)
Nei! : : ‘. :
Oy(rn,) DPo(rn,) -+ Py, (rwy)

which yields a fully antisymmetric wave function under exchange of two electrons and
thereby obeys the Pauli principle.

For orthonormalized orbitals, (®;|®;) = o;
wave function is

j» the electron density (Eq. (2.11)) of such a

n(r)=) fil®i(r). (2.16)

Here, the usual bra-ket notation was used for the inner product in Hilbert space, which
corresponds to an integral in real space,

(D;]01D;) = [dr®;(r)OD;(r), (2.17)

O being an arbitrary operator. The occupation numbers f; determine how many electrons
are located in orbital @;. In the electronic ground state, they are one for the orbitals that
correspond to the N, lowest eigenvalues €; and zero otherwise so that the kinetic energy

2 The term orbital is used here instead of wave function because the @; are one-electron functions.
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of the non-interacting system T is given by
1
To==5 ) f(®@AID). (2.18)
1

In classical electrostatics, the Coulomb interaction between the electron density n and
itself is given by the Hartree energy”

1 _n(r)n(f)

Mapping of Kohn-Sham

The HK theorems state that the ground state energy of the above described non-
interacting auxiliary system is equal to the ground state energy of the interacting
system, if they have the same ground state density. Accordingly, the Kohn-Sham (KS)
approach provides a mapping between the fully interacting system and an auxiliary
non-interacting system with exactly the same ground state density. Although there
is no general proof that such a system of non-interacting particles always exists, this
assumption seems to be justified in many cases in practice [Mar04].

In the KS approach, the HK energy functional (Eq. (2.12)) of the interacting system is
rewritten in the following way:

Exs[n] = Tln] + Exln] + jdrvextmn(r) +(Tuln) = Tyln)) + (Eealn] - Enln)

(2.20)
= T,[n] + Enln] + jdrvextmn(r) + Eqln]

Formally, the kinetic energy T as given in Eq. (2.18) is indeed a functional of the
electron density n since the single particle orbitals ®; are functionals of the density as
well. However, no explicit and exact expression for the kinetic energy T; in terms of the
density is known. Therefore, Ty must be explicitly expressed in terms of the orbitals,
which removes some of the elegance of the HK theorems. All energy contributions
that are not accounted for by T; and Ey in Eq. (2.20) are subsumed in the exchange-
correlation functional E, .. The first parenthesis denotes the difference between the
kinetic energy of the interacting and of the non-interacting system. This difference is
non-zero due to the correlation of interacting electrons. The second parenthesis is the
energy contribution of the electron-electron interaction due to the quantum nature of
the electrons. Accordingly, all complex interactions of the many-electron system are
condensed into the exchange-correlation functional E,..

3 Treating the electron-electron interactions fully quantum mechanically gives rise to the non-classical
exchange term.
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Finding the ground state electron density

In order to find the solution for the ground state electron density, the KS energy func-
tional in Eq. (2.20) has to be minimized with respect to the electron density n. Because
the kinetic energy of the non-interacting system T is only explicitly known in terms
of the single particle orbitals ®;, the minimization has to be done with respect to the
orbitals. Minimizing with respect to the orbitals is equivalent to minimizing with respect
to the density since varying the orbitals over the space of continuous functions covers all
allowed densities for the KS energy functional Egg [Par89]. The single particle orbitals
are constrained to be orthonormalized, (®;|®;) = 6;;, and this constraint is equivalent to
the conservation of numbers of electrons under consideration of Eq. (2.16) since

N
jdrn(r) = Zf,- Jdr@i(r)lz = Z1 = Ng. (2.21)

Using the Lagrange multipliers ¢;, the Lagrange function L corresponding to this opti-
mization problem is given by

LU®i}] = Exs[(@i)] = ) frei((@ilr) 1), (2.22)

The KS energy Ekg is also a functional of the single particle orbitals @; since the electron
density n and orbitals are linked via Eq. (2.16). This means that the total ground state
energy E,. of the system, i.e., a system of interacting electrons coupled electrostatically
to interacting nuclei, is

Etot - r{nq)l’r}l[EKS Zfz <CD |q) > 1)] nuc-nuc (2-23)
with the nuclear-nuclear interaction energy
Npue N
nuc nuc ZIZ]
mm—zzww| (2.24)

The set of single particle orbitals ®; that minimizes the Lagrange function L can be
obtained by taking the functional derivative with respect to the orbitals and setting it to
zero,

oL 6T, oE oE OEy. | o
_ oL +[ ext | OFH xc] n —e;®; =0 (2.25)

507 T 507 | on | on | on |07

with E. = Idr Vext(7)n(r). The chain rule was used to reintroduce the functional deriva-
tive with respect to the electron density n. Evaluating the individual derivatives yields
the KS equations [Koh65]

fZKSqu = Eich' (226)
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with the KS Hamiltonian A
fiKs = -3 + Doyt + VH + Vxer (2.27)

the external potential (interaction with nuclei)

Niyc
Dext = — B _Z;m, (2.28)
the Hartree potential
Uy = de |f(_fi~|, (2.29)
and the exchange-correlation potential
bye = 5E§Cn[”]. (2.30)

In the context of the KS formalism, the @; are called KS orbitals and the €; KS eigenvalues.
The ground state density is then given in terms of the KS orbitals by Eq. (2.16). By
comparing Eq. (2.14) with Eq. (2.27), it can be seen that the auxiliary potential v,,, of
the auxiliary system is given by v,y = Vext + VH + Vxc. It is important to note that the
KS equations are exact within the Born-Oppenheimer approximation. The only formal
constraint is that such an auxiliary system has to exist as explained above.

Two obstacles remain that complicate the solving of the KS equations in practice.
Firstly, the Hartree potential vy and the exchange-correlation potential v, depend
on the electron density n (Egs. (2.29) and (2.30)), which in turn depends on the KS
orbitals @; (Eq. (2.16)), which depend on the aforementioned potentials (Eq. (2.26)).
Hence, the KS equations have to be solved in a self-consistent manner. Secondly, no
explicit expression for the exact exchange-correlation functional E, is known so that
approximations are needed. A selection of common approximate exchange-correlation
functionals is discussed in the next section.

The KS orbitals ®; and the KS eigenvalues €; are a mathematical result of the mini-
mization of the KS energy Exs. Accordingly, the actual total energy of the system E,;
is not just a sum of the single particle energies } ;€; (see Sec. 3.6). Therefore, their
physical meaning is limited. A detailed discussion about their meaning can be found
in Refs. [AIm85, Koh96, Mar04, Koh06] and references therein. Nevertheless, the KS
eigenvalues usually give a reasonable first approximation to the energy levels of the
interacting system.

In summary, the KS equations present a recipe on how to obtain the electron ground
state density by means of the KS orbitals and Eq. (2.16). Consequently, this determines
the total ground state energy E via Eq. (2.23). This was achieved by replacing the highly
complex initial system of interacting electrons with a system of non-interacting electrons
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under the utilization of the HK theorems. However, the KS scheme reintroduced wave
functions in DFT through the kinetic energy of non-interacting electrons (Eq. (2.18))
and therefore, the 3N, degrees of freedom of the electrons appear in the formalism.
Of course, the huge advantage of using wave functions is that the kinetic energy of
non-interacting electrons, the major part of the full kinetic energy, is exact [Par89].

2.3 Approximations to exchange and correlation energy

The KS equations provide a procedure to obtain the exact ground state energy and
density of the many-electron system. No explicit expression for the universal, exact ex-
change-correlation functional E,. is known, though, so that approximations are needed.
These approximations are usually called exchange-correlation functionals, too.

In general, the exchange-correlation energy is small compared to the total energy
because most of the physics is already captured by the kinetic energy of non-interacting
electrons and the Hartree energy, see Eq. (2.20). Hence, already relatively simple ap-
proximations often give reasonable results. However, this is not always the case (see
Chap. 8) so that the employed approximate exchange-correlation functionals need to
be validated against higher-order methods to enable predictive calculations. In the
following, a selection of common density-functional approximations (DFAs) is briefly
presented. More in-depth discussions can be found in Refs. [Mar04, Koh06, Coh12].

It is convenient to split the exchange-correlation energy E,. into an exchange (Ey) and
a correlation part (E.), Exc = Ey + E. [Per03]. The exchange part is typically defined as

Ex[n] = <71baux,0|vel-e1|lzbaux,0> - EH[”] (2'31)

using the ground state wave function .,y o of the KS auxiliary system defined in
Eq. (2.15). The correlation part is the missing rest, namely,

Ec[n] = Exc[n] - Ex[n]

N A . N (2.32)
= <1;bel,0|Tel + Velfel|l;bel,0> - <lgbaux,0|Tel + Velfel|1;baux,0>'

2.3.1 Local-density approximation

The main idea of the local-density approximation (LDA) is that in a first order ap-
proximation the electron density n can be assumed as locally constant, i.e., that the
inhomogeneous electron system can be treated as a locally homogeneous electron gas.
Under this assumption, the exchange-correlation energy E, . can be written as a weighted
spatial average of the exchange-correlation energy per electron €,,,

ELPA[n] = J‘drn(r)e)I;?A(n(r)). (2.33)
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LDA

For every point in space, €y

(n) is the respective value for a homogeneous electron gas

with density n. The exchange part eLPA is known exactly [Dir30],
1/3
3(3
elPA(n) = _Z(%) n'’3, (2.34)

whereas the explicit form of the correlation part €. is unknown. Only its low- and
high-density limits are known from the work of Wigner and of Gell-Mann and Brueck-
ner, respectively [Mar04]. Therefore, accurate parametrizations of €. = €,. — €, for
intermediate densities were introduced on the basis of quantum Monte Carlo calcu-
lations [Cep80]. Amongst others, there exist parametrizations by Vosko, Wilk, and
Nusair [Vos80], Perdew and Zunger [Per81], and Perdew and Wang [Per92].

The LDA exchange-correlation potential can be derived using Egs. (2.30) and (2.33)
and is given by
dexA(n)

ALDA(n) LDA
on

Vye =€ (n)+n (2.35)

2.3.2 Generalized gradient approximation

In order to treat inhomogeneities of the electron density n more accurately, the gradient
of the density Vn is taken into account in the generalized gradient approximation (GGA)
of the exchange-correlation energy,

ESSA[n] = Jdrn(r)egGA(n(r),Vn(r)). (2.36)

The GGA is called a semi-local functional because it depends on the density gradi-
ent Vn. There is no unique choice for e$%4 so that two different approaches exist in
practice [Koh06]: 1) Deriving a functional form and parameters that satisfy as many
formal properties (e.g., asymptotic behavior) as possible, e.g., as done by Perdew, Burke,
and Ernzerhof (PBE) [Per96a], 2) fitting the parameters of a certain functional form to
experimental data, e.g., as done by Becke, Lee, Yang, and Parr (BLYP) [Bec88a, Lee88].
In the physical community, the probably most used GGA functional is PBE [Per96a].

Its general form is given by
ecM(n(r), Vn(r)) = ex2(n(r) ) Fxc(n(r), Vn(r)). (2.37)

The function F,. is called enhancement factor and modifies the LDA exchange-corre-
lation energy per electron e:PA to account for the density gradient at the considered
point. There have been many modifications to the PBE functional, e.g., revPBE [Zha98],
RPBE [Ham99], PBEsol [Per08], PBEint [Fab10]; different GGA functionals such as

AMO05* [Arm05] have been proposed as well.

4 The ‘05" in AMO5 stands for the year of publication.
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The exchange-correlation potential of GGA can be derived in the same fashion as in
the LDA case but an additional term appears due to the density gradient

GGA (13, V) = €GGA

0eSCA(n, 9eCGA (1,
ﬁxc XcC (n,Vn)+n Exe ( Vﬂ)_ (n xe (n Vn))

on d(Vn)
GGA €S54 (n, V) 2eS5A (n, V) (238)
— XC 4 XC ’
=€ (n,Vn)+nT—2V(n(Vn)W)
Here, the squared absolute value of the density |Vn|?> was introduced since €S54 only

depends on the magnitude of the gradient (‘;'(Vv’ﬂj = 2Vn).
A step beyond the GGA functionals are the so-called meta-GGA functionals. These
approximate functionals additionally include the second derivative of the electron

density (kinetic energy density) of the KS orbitals [Per99, Sun15].

2.3.3 Hybrid functionals

Hybrid functionals are a further advance in approximating the universal, exact exchange-
correlation functional. The initial idea was derived by Becke [Bec93a] using the adiabatic
connection for the KS formalism [Har84]. In hybrid functionals, a DFA (LDA or GGA) is
mixed with the Hartree-Fock (HF) exchange EIF, the so-called exact exchange, which is
defined as [Mar04, Koh06]

me_ L D (r) D (r)@; (7)D; ()
Ex —_E ;ﬁﬁffdrdr |r—f| i (239)

This expression is exact for wave functions that are a single Slater determinant. In DFT,
the HF exchange is evaluated using the KS orbitals ®;. The HF exchange is non-local
since its corresponding potential depends both on r and 7. Its explicit form will be
presented below. Furthermore, the exchange in hybrid functionals is

hyb
EY

(a) = aEFF 4+ (1 — a)EPFA (2.40)
with the real-valued parameter a € [0,1] determining the amount of HF exchange
added. The value for a may be obtained by fitting to experimental data or by theoretical
considerations. In general, the value of a can be system dependent [Marl1] and there
are efforts to obtain it in an ab initio manner [Ric13, Atal3b].

Hybrid functionals typically reduce the so-called self-interaction error. The Hartree
energy Ey (Eq. (2.19)) describes the classical Coulomb interaction between the electron
density n and itself and thus includes the unphysical interaction of an electron with
itself. This spurious interaction is called self-interaction [Per81] and is canceled in the
exact exchange-correlation functional, but not in most of the approximate exchange-
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correlation functionals, e.g., LDA and GGA. In HF theory, however, the diagonal terms
(i = j) of the HF exchange (Eq. (2.39)) cancel exactly the one-electron self-interaction of
the Hartree energy and thus the spurious one-electron self-interaction. Hence, including
a fraction of HF exchange partially cures the self-interaction error of DFA.

One popular hybrid functional is the PBE0® functional [Per96b], which uses the PBE
functional as DFA and o = 1/4,

EEPE0 = EEPE + 4 EL— EFPE) (2.41)

Another widely used hybrid functional, especially in the chemical community, is the
B3LYP functional [Bec93b, Ste94]. It employs three parameters® ay, a,, and a., which
are fitted to experimental data,

EB3YP — (1 — ) ELPA 4 o EFF 4+ 0, AEB® 4+ (1 — a0 )EYWN + 0 EDYP (2.42)

with
ap=020, a,=072, a.=0.81. (2.43)

Here, AEB® is the gradient correction of the LDA exchange by Becke [Bec88a], EYWN
the parametrization of the LDA correlation by Vosko, Wilk, and Nusair [Vos80], and
ENYP the GGA correlation by Lee, Yang, and Parr [Lee88].

Since the HF exchange is orbital dependent, the functional derivative of the exchange-
correlation functional E,. with respect to the electron density n in Eq. (2.25) has to be
modified. The HF exchange part of E,. must be differentiated separately with respect
to the KS orbitals ®; (analogously to the kinetic energy of non-interacting electrons Tg).
This leads to a modified KS equation

—% + Doyt (1) + Dpp (r) + 925 (1, a))cp,-(r) +a deﬁ,{lFu, F)D;(7) = €;D;(r) (2.44)

with the a-dependent DFA exchange-correlation potential
Dl (1, @) = Dt (r) — a0 (r) (2.45)
and the non-local HF exchange potential

D;(r)D*(F
oHE (1, 7) = — Zf]M (2.46)

: |r — 7|
]

The external potential ve,, the Hartree potential vy and the DFA exchange-correlation
potential v2FA are given in Egs. (2.28), (2.29), and (2.30), respectively. The potential

XC

5 The ‘0’ in PBEO stands for zero parameters in the functional.
6 The ‘3’ in B3LYP stands for these three parameters.
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of the exchange part v2FA follows from Eq. (2.30), too, by using the exchange EPFA

instead of the full exchange-correlation EDFA, Equation (2.44) is also called generalized
Kohn-Sham equation [Sei96] and must be solved in a self-consistent manner as the

normal KS equations.

2.3.4 Screened hybrid functionals

One property of the HF exchange is that it is an integral over the Coulomb interaction
1/|r — 7|, which is long ranged. However, the Coulomb interaction is screened in large
systems and solids. In order to incorporate this’, a range separation of the Coulomb
interaction into a long-range (LR) and short-range (SR) part is introduced with the help

of the error function
1 erfc(wlr-7]) erf(wlr—7)

= 2.47
|r — 7| |r — 7 |r — 7| ( )

SR LR
with the real-valued screening parameter w > 0, also called inverse screening length. The
higher the value of w is, the stronger is the screening. Equation (2.40) is now modified in
such a way that the DFA exchange is replaced by the HF exchange only in the short-range
region,
EX™™(a,w) = aEFFSR(w) + (1 - a) EPPASR () + EPPAIR (@), (2.48)

A popular screened hybrid functional is HSE06® by Heyd, Scuseria, and Ernzerhof
(HSE) [Hey03, Hey06, Kru06]. This functional employs PBE for the DFA part, a = 1/4
as PBEO, and w = 0.11bohr™!, which was determined by fitting to experimental data. In
principle, the screening parameter w should be determined system dependent just as «
and there are approaches doing this in an ab initio manner [Ste10].

As for the hybrid functionals in the previous section, the KS orbitals for screened hy-
brid functionals are determined by the generalized Kohn-Sham equation (2.44). The only
change is that the DFA exchange-correlation potential and the HF exchange potential
become w-dependent,

ﬁ,l?cFA(r, a,w) = v)I?CFA(r) - aﬁ,I?FA’SR(r,a)) (2.49)
erf(wlr — 7|)P;(r)D;(7)
AHF (., = _ J j
v (1, F,w) = E fi P . (2.50)

j
2.3.5 Functional families

In the previous sections, many different functionals approximating the exchange-correla-
tion energy were introduced. Some of them can be summarized in a unified picture, the

7 The screening also reduces the computational effort [Hey03].
8 The ‘06" in HSE06 stands for the year of publication.
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HSE family of functionals. The functionals of this family are characterized by the two
parameters @ (amount of added HF exchange) and w (screening parameter of Coulomb
interaction) and are denoted with HSE(«, w). The HSE(a, w) functional has the following
exchange-correlation energy expression:

E,I({CSE(a,w) = E,I:CBE + a(E,I({F‘SR(a)) — E,I:BE‘SR(a))), a€el0,1], w=>0. (2.51)

The following DFAs are special elements of the HSE family and were presented in the
previous sections:

HSE06 = HSE(§,0.11bohr™! ) (2.52)
PBEO = HSE(},0) (2.53)
PBE = HSE(0, w). (2.54)

The PBE functional has no added HF exchange (« = 0) and thus, no dependence on w.
This means that the value of w in Eq. (2.54) is irrelevant and is only kept for formal
reasons.

2.3.6 Van der Waals corrections

All DFAs presented so far lack long-range van der Waals (vdW) interactions (disper-
sion) [Pér95]. Please note that there exist various definitions of the vdW interactions.
In this thesis, we define it as the interaction between fluctuating multipoles. The vdW
interactions arise from the correlated movement of electrons and there are three main
approaches to incorporate them in DFT calculations: 1) Adding explicitly the leading
1/R® vdW energy term with semi-empirical parameters to the exchange-correlation
energy [Ahl77, Wu02, Gri04, Tka09], 2) constructing approximate exchange-correlation
functionals that include a non-local correlation energy [And96, Dio04, Vyd08, Leel0],
3) using the random phase approximation for the correlation energy [Boh53, Ren12b].
In this thesis, we will concentrate on the first approach. This means the vdW en-
ergy Eyqw is explicitly added to the exchange-correlation energy EDFA obtained from a
DFA,
EDFA+vAW _ EDFA L i (2.55)

For the formulation of the vdW energy, we use the scheme by Tkatchenko-Scheffler
(TS) [Tka09]. Like in other methods [Ahl77, Wu02, Gri04], the vdW energy E qw is
written as a sum over all pairwise interatomic interactions between atoms I and J. In
first order, the vdW interaction has a 1/R® decay,

Nuue N,
1 nuc nuc ( 61]
E =—= E E R, Ry)——. 2.56
vdW 2 fdamp( I ])|RI R]|6 ( )

I J=I
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The isotropic C¢; coefficients contain the information about the vdW interaction be-
tween atom I and J. The damping function fy,mp helps to avoid singularities at close
distances and double counting of correlation effects at intermediate ranges that are
already included in the DFA.

An advantage of the TS scheme is that the heteronuclear Cg}; coefficients do not have
fixed empirical values, but that they are determined in each calculation from the ground
state electron density n. Therefore, the Cq;; coefficients reflect the chemical environment
of atoms I and J. In general, they are given by

2Cs11[n]Cejy[n]
Ceryln] = e i

ao
a—écﬁn[n] + ;?Cw]["]

(2.57)

with the homonuclear Cg;; coefficient and the static polarizability a? of atom I. The
homonuclear Cgj; coefficient is linked to the Cgrf]e coefficient of the free isolated atom
via the volume V; of the atom in the molecule or solid and the volume VIfree of the free

atom by

2
Cerr[n] = Cgﬁe(m] . (2.58)

The volume of the free atom VIfree is defined as a volume integral weighted by the
electron density of the free atom n?ee [Joh05],

vfree = Jdr|r|3n§fee(r). (2.59)

In order to obtain the volume of an atom in a molecule or solid, the so-called Hirshfeld
partitioning [Hir77] is employed. It allows to partition the electron density n of the
system into atomic contributions with the help of a partitioning scheme py,

free
Vi[n] = fdr|r|3p1(r)n(r) with p;(r)= Z?Z#;Z(ﬂ (2.60)

0 are taken from

The values for the Cgree coefficients and the static polarizabilities a
tabulated reference data [Chu04].

In principle, the functional form of fq,mp can be choosen freely as long as it becomes
zero at close ranges and one at long ranges. In the TS scheme, a Fermi-type function was

chosen,
1

3 IR;-R| A\
”eXp[ d(sR(erW[nHR;dW[n]) 1)]

fdamp(RIxR]): (2.61)
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R}’dw is the vdW radius of atom I in the molecule or solid and depends on the electron

density n. d and sg are parameters. The vdW radius R}’dw is linked to the vdW radius of

the free atom R‘I/dw’free via the atomic volumes,

1/3

4w dW, free | Vi[n]

R}I [1/[] = R}I ree(W] . (262)
I

The free atom vdW radius is derived from the vdW radius of noble gases. The steepness
of the damping function is determined by 4 and a value of d = 20 is chosen. The vdW
energy depends only slightly on the choice of d [Tka09]. The parameter sg controls the
onset of the vdW correction and depends on the underlying DFA. It is determined for
each DFA by fitting to the S22 database that consists of binding energies for 22 pairs of
small molecules [Jur06]. The so determined values of sg are in the range around one.

It is important to note that in the TS scheme the contribution of the vdW energy E,qw
to the exchange-correlation potential vy, (Eq. (2.30)) via its functional derivative with
respect to the electron density n is neglected. Hence, the vdW correction does not
enter the KS equations (2.26). This means that after the KS equations are solved self-
consistently with a DFA and the ground state electron density is obtained, the vdW
energy of Eq. (2.56) is added to the total energy. Thus, this method can be seen as a
post-processing step after a DFT calculation. A shortcoming of the TS scheme is that
it includes only pairwise interatomic interactions and lacks the description of long-
range electrodynamic response, e.g., screening. This response becomes crucial for large
systems and there exists an extension to the TS scheme for finite-gap systems in order to
include them [Tkal2, Amb14].



Solving the Kohn-Sham equations
with FHI-aims

While the previous chapter has outlined the theoretical framework of DFT and KS ap-
proach, this chapter discusses the numerical techniques used to solve the KS equations
in a computer code. In this thesis, we focus on the Fritz Haber Institute ab initio molec-
ular simulations (FHI-aims) package [Blu09] for our electronic-structure calculations.
FHI-aims is an all-electron electronic-structure code, i.e., each electron is treated at the
same level of theory. Accordingly, core electrons are taken into account in an explicit
fashion in contrast to the approximate approach of pseudopotential methods.

This chapter is dedicated to briefly review the underlying principles of FHI-aims,
which includes the discussion of the used basis functions, the numerical integration
scheme, and the treatment of periodic systems. Additionally, we present in detail how
the total energy is calculated in FHI-aims. This will be the cornerstone for our imple-
mentation of the stress tensor discussed in Chap. 5.

3.1 Self-consistent field method

The KS equations (2.26) have to be solved in a self-consistent manner as explained in
Sec. 2.2. Figure 3.1 shows the flow chart of this self-consistent field (SCF) cycles used to

obtain the solution. As a first step, an initial electron density nﬁ) has to be “guessed” in
iteration m = 0. In the case of FHI-aims, the superposition of the free atom densities is
used as initial guess. The Hartree (vyy) and exchange-correlation potential (vy) are then
calculated according to Egs. (2.29) and (2.30) from the initial density, respectively. Next,
the KS equations (2.26) are solved numerically by diagonalization, which yields the

orbitals CDEO). These are used to calculate the new density nf)?l)t according to Eq. (2.16). In

each iteration m, it is checked if the solution is self-consistent, e.g., if input and output
density are numerically equal': ngl”) = niﬁz In practice, it is checked whether the root

mean square of the difference between input and output density is below a certain
threshold. If this is the case, the solution has been found and desired quantities such as

UIn order to test for self-consistency, one can additionally check whether the change of the sum of

eigenvalues and of the total energy between the current and the previous iteration is below a certain
threshold.

25
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Initial guess for iteration m = 0

Calculate potentials

ﬁH[?l;::z)] and ﬁxc[ng)]

Y

m=m+1

Y

Solve KS equations

7 (m) - (m) (m) + (m)
hgs @ =€, @;

New input density
(m+1) (m) (m)
i = fmin s nout) Y

in » Mout

A Calculate new electron density

e A
i

l

Self-consistent?

No

Yes

Output quantities

Total energy, band structure, forces, stress, ...

Figure 3.1: Flow chart of the self-consistent field cycle for the solution of the KS equations (2.26)
adopted from [Mar04].
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the total energy can be calculated. Otherwise, a new input density has to be constructed
with the help of a function f. In the easiest case, a linear mixing between the input
2 ('n)) (m) (m)

in »Mout ) = (1 - a)nin T angt

and output density can be used, f( and a € [0,1]. Now, one

advances to the next iteration m = 1 and the cycle is closed by calculating the Hartree
) This SCF cycle is

and exchange-correlation potential with the new input density n;
repeated until self-consistency is achieved.

There exist different mixing schemes f that accelerate the convergence of the SCF
cycle, e.g., the Pulay mixing scheme [Pul80]. The densities of previous iterations” are
incorporated in the construction of the new input density in this scheme. Usually, a SCF
cycle takes 10 to 20 iterations to converge to a reasonable accuracy for “well-behaved”

systems.

3.2 Numeric atom-centered basis functions

A fundamental choice for the numerical solution of the KS equations (2.26) is the specific
form of the basis functions utilized to span the one-electron Hilbert space. These basis
functions ¢; are used to expand the KS orbitals

;= chi(Pj (3.1)
j

with the expansion coefficients cj;. In practice, this expansion has to be truncated.
Therefore, one has to ensure that the set of basis functions is large enough and has
sufficient flexibility for the expansion of the KS orbitals. There are two main categories
of basis functions: extended and localized ones. A prominent representative of extended
basis functions are plane waves. They are the natural choice to study periodic systems
but are computationally expensive for localized (core) orbitals so that pseudopotentials
are de facto required.

Conversely, FHI-aims utilizes localized numeric atom-centered basis functions of the
following general form:
(1’) — unl(r)

r

Yin(0,9) (3.2)

using the real expression for the spherical harmonics

i

Re chompl(G,d)) form>0

m

3.3
TmY 2" (6, ¢)  for m <. 3.9)

Yim (0, §) = {

The radial part u,;(r) is numerically tabulated and fully flexible. The basis function
index i summarizes the principal (n), angular (I), and magnetic (m) quantum number.

2 For example, the densities from iteration m—1, m -2, m— 3, and so forth.
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The basis functions are real-valued by construction because Eq. (3.3) is used to obtain

Y1,,(0, ¢) from their complex definition chrzmpl((?,(j)). Appendix B.1 explains how the
exact form of the radial part u,,(r) is determined. The final three-dimensional form of
the basis functions is then obtained by multiplying the generated radial functions u,,(r)
with the 2/ + 1 spherical harmonics Y;,,(0, ¢) according to Eq. (3.2).

The utilization of atom-centered basis functions in FHI-aims implies that each atom
has a set of basis functions associated with it. These basis functions depend on the
species of the atom and are centered on the atom. Therefore, the basis set expansion in
Eq. (3.1) takes the following explicit form:

Niye
q)i(f') = ZZCji(p]'(T—R]). (34:)
Jo

The sum runs over all atoms J and basis functions j that are associated with atom J, and
R; denotes the position of atom J.

3.3 Generalized eigenvalue problem

With the basis set expansion of Eq. (3.1), the minimization of the KS total energy Exs
with respect to the KS orbitals @; in Eq. (2.23) becomes effectively a minimization with
respect to the expansion coefficients c;;. Furthermore, the difficult problem of solving the
KS equations (2.26) can be cast into an algebraic problem. Substituting ®; in Eq. (2.26)
with Eq. (3.1), multiplying from the left-hand side with ¢;, and integrating over the real

space coordinates yields
Zhljcji =€ Zsljcji (35)
; -

]

with the Hamilton matrix
hij = <(Pl|f1Ks|(Pj> = |dr (PT(f)fle@j(f) (3.6)

and the overlap matrix
sij ={@ilpj) = |drej(r)p;(r), (3.7)

where the previously introduced bra-ket notation (Eq. (2.17)) is used. Equation (3.5) is
a generalized eigenvalue problem and can be solved by numerical eigenvalue solvers.
Please note that for the numeric atom-centered basis functions of FHI-aims, the overlap
matrix is not the unity matrix since the basis functions of different atoms are not
orthonormal to each other.
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Figure 3.2: Two-dimensional schematic of the  Figure 3.3: Two-dimensional schematic for

atom-centered grid of FHI-aims. The atom sits ~ the effect of the radial multiplier n,,);. The

in the middle and the black circles are the  atom sits in the middle and the black circles

spherical integration shells on which the red  are the integration shells for #,,,;; = 1. Increas-

angular integration points are distributed. ing the ny, to 2 adds the red integration
shells.

3.4 Numerical integration

To ensure parallelization and accuracy, the real space numerical integration in FHI-aims
is performed by employing a partitioning technique [Bec88b, Del90, Str96]. The inte-
grand is divided into pieces, each of them localized at different atoms, and the individual
pieces are then integrated by standard numeric methods. The partitioning of an inte-
grand f is performed with the help of atom-centered partitioning functions® p; so that
integrals can be rewritten in the following way:

Nnuc

[arrn=)[arpmnson (5.8)
I

with ")

ai\r
(r)= =——. (3.9)

S ITIC)

In principle, g; is an arbitrary function that is strongly peaked at atom I. One choice
is the n/r2-type partitioning function suggested by Delley [Del90], which uses g;(r) =
ngree(r)/lﬂ2 and n?ee(r) is the electron density of the isolated free atom I. In the case
of the Stratmann partitioning scheme [Str96], a modified version of which has been

3 The expression“partitioning function” in the context of integration must not be confused with the
partition function from statistical mechanics.
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implemented in FHI-aims (see App. B.3), the partitioning function also depends on the
position of the atoms with respect to each other.

Each of the atom-centered pieces p;(r)f(r) in Eq. (3.8) is then integrated on a grid of
overlapping atom-centered grids. Each of the atom-centered grids consists of N, spheri-
cal integration shells r(s) (s = 1,..., N;) that are centered around the corresponding atom
and extend up to an outermost shell at distance 7y, from the nucleus. In FHI-aims, the
positions of the integration shells are determined according to Baker et al. [Bak94] by

log[l—(s/(Nr + 1)2)]
log[1-(N/(N; + 1)2)]'

r(S) = Touter (3.10)

On each shell, angular integration points are distributed so that spherical harmonics up
to a certain order are integrated exactly. This kind of grid is called Lebedev grid and a
version provided by Delley [Del96b] is employed. The number of angular integration
points N, on each shell depends on the distance between shell and nucleus. More
points are needed for far away shells than for those close to the nucleus since their
circumference is larger. Figure 3.2 shows a two-dimensional schematic of the atom-
centered grid in FHI-aims.

The accuracy of the grid can be increased uniformly by placing additional shells at
integer fractions of the original grid. The radial multiplier n,,;; denotes the denominator
of these fractions. For example, a radial multiplier of 2 places additional shells at
s=1,5= %,...,s =N, + 1, resulting in 2N; + 1 total shells. Figure 3.3 shows the effect of
the radial multiplier. In general, there are (N, + 1) — 1 integration shells in total.

3.5 Periodic systems

Solids can appear as ordered systems and thus form crystals in which the constituents
are periodically arranged. Such periodic systems in three dimensions are described by
a set of three lattice vectors a,, which define the unit cell of the crystal, and the basis,
which specifies the position of the atoms within one unit cell. The lattice vectors can be
written as the columns of a matrix A = [a;a,a3] and the unit vectors of the reciprocal
lattice b, are given by

B= 27((AT)_1 (3.11)

with the matrix B = [b; b,b3]. The translation vector from the central unit cell to another
unit cell M is T(M) = A-M with M = (M, M,, M3) being a vector with integer numbers.
M = (0,0,0) stands for the central unit cell. The periodicity of the crystal imposes
constrictions on the form of the KS orbitals @;, the so-called Bloch theorem [Mar04,

Koh06],

o

1

(r)=e* ur) with w(r+T(M)) = u (1) (3.12)
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Accordingly, KS orbitals that are periodically shifted by T (M) have to satisfy the condi-
tion
® (). (3.13)

(D;k)(r + T(M)) = eik'T(M)QDZ
The KS orbitals and eigenvalues now depend on the additional quantum number k,
which is a vector in reciprocal space. The KS equations (2.26) can be solved separately

for each k-point and they are coupled through the electron density (see Eq. (2.16))

_ 1 (k) g, (K)
n(r)_@JVBde Zf 1D (r)2 (3.14)

with Vg7 the volume of the Brillouin zone. The vector k is a continuous variable but in
practice, it is sufficient to sample the Brillouin zone with a discrete and finite k-point
grid [Cha73, Mon76], thus replacing the integration by a summation. Still, the density
of the k-point grid is critical for the accuracy of a calculation. For instance, metals need
denser grids than semiconductors and insulators due to their intricate Fermi surface,
which has to be captured accurately [Koh06].

In the case of FHI-aims, Bloch-like generalized basis functions x;(r) that fulfill
Eq. (3.13) are used. They are derived from the atom-centered basis functions residing
in different unit cells M, @; p(r) = @;(r — Ry + T(M)). These generalized basis functions
are [Blu09]

Ky =Y R TM g, () (3.15)
M

Therefore, matrix elements like h;; from Eq. (3.5) become k-dependent:
k k)7 k
1 = G ligs ). (3.16)
®)
ij
ing Eq. (3.15) into Eq. (3.16) leads to two sums over the unit cells. Due to periodicity,
they reduce to one sum for the matrix elements per unit cell,

— k 1 . A
i =) T g sl ), (3.17)
M

For calculations, the matrix elements per unit cell are needed, denoted with h:. . Insert-

in which the index 0 is a shorthand notation for the central unit cell. The sum over the
unit cells M is finite due to the finite extent of all basis functions since they are bounded
by a confinement potential (see App. B.1).

The matrix elements in Eq. (3.17) represent integrals over the whole space. However,
it is more convenient to integrate them in separate pieces. Integrals over just one specific
unit cell are calculated, and then all contributions are added up. Due to periodicity, all
integrations can be performed in the central unit cell, which leads to

Y ialislosn =Y [ drpinicsian(r (3.18)
M MNYV
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Integral over whole space Integral over central unit cell
i
Central A
unit cell ---7 T

Figure 3.4: Illustration of two ways to calculate the overlap integral (blue stripes) between
basis function ¢; o (red, solid) centered at the corner of the central unit cell (black frame) and
one of its periodic images ¢; s (orange, dashed). For simplicity, a spherical basis function and
a rectangular unit cell are used. The left picture shows the straightforward approach: Both
functions are integrated over the whole space to obtain the overlap integral. Alternatively, the
integration can be separated into pieces lying inside individual unit cells, which can be mapped
into the central unit cell due to periodicity. This approach yields the picture on the right hand
side. There, the overlap integral is calculated by an integration over the central unit cell by
considering those periodic images of the basis functions that extend into the central unit cell.

with V the volume of the central unit cell. The sum }”); yruns only over those unit
cells that contain basis functions that have a non-zero contribution in the central unit
cell. Figure 3.4 illustrates the location of these integration volumes. With Eq. (3.18),
Eq. (3.17) becomes

i Z/eik.[T(N)—T(M)]f dr @i n (ks @i (1) (3.19)
! M,N v ’ ’

so that it incorporates the Bloch phase factors. Analogously, all other inner products
in Hilbert space are evaluated as integrals over the central unit cell in FHI-aims, e.g., a
k-dependent expression can be derived for the overlap matrix elements s;; in Eq. (3.5).

3.6 Total energy in FHI-aims

This section lists all contributions to the total energy accounted for in FHI-aims. Detailed
explanations and derivations are given in the corresponding publication [Blu09]. This
list of terms then serves as a basis for the derivation of the stress tensor in Chap. 5. The
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equations for the total energy E,y (Eq. (2.23)) and the KS energy Exs (Eq. (2.20)) are

| EKS th <(I) |(D > 1)] + Enuc -nuc (3'20)

Eiot = min
(0} {(1)

1

and
Exs[n] = T,[n] + Enln] + fdrvex«r)n(r) +Eglnl (3.21)

3.6.1 Kinetic energy of non-interacting electrons
Non-relativistic kinetic energy

The kinetic energy in the non-relativistic case, see Eq. (2.18), is

i 1
Tsnon rel _ _E Zﬁ(q)llAlq)l> (3.22)
i

Relativistic kinetic energy

In principle, the four-component Dirac equation has to be solved for the correct relativis-
tic description of electrons. A scalar-relativistic Schrodinger equation can be derived
from the Dirac equation by neglecting spin-orbit coupling [Blu09],

c?

-V. mv-i'v CD,‘ = €iCDi: (323)
1

with c the speed of light and v the full potential of the system. The relativistic kinetic

energy operator in Eq. (3.23) is approximated in the “scaled ZORA” (zeroth order regular
approximation with scaled eigenvalues) approach [vLe94] as

c2

2c2 -9

fzora = -V~ V. (3.24)
To maintain gauge invariance with respect to shifts in the potential zero, each eigen-
value €; in Eq. (3.23) is rescaled by the factor 1/(1 —(®;|V - 2VlCD )) after the self-
consistent solution has been found.

Another possible approximation of the relativistic kinetic energy operator in Eq. (3.23)
is “atomic ZORA” (zeroth order regular approximation with on-site free-atom poten-
tials) [Blu09] Here, the full potential v in Eq. (3.24) is replaced by the on-site free-atom

2c2

potential vf oo ) of atom J with the associated basis function j and the kinetic energy

operator becomes
2

A C
fat zoRAlP)) = =V - ————=Vip)). (3.25)
2c2 - vfree
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In this case, no scaling of the eigenvalues is needed and the relativistic kinetic energy
has the following form:

Nnuc

1 N PN
T = > ZZﬂcijcik[<(l)j|tat.ZORA|(Pk> +(prlfarzorale))] (3.26)
K TR

The on-site free-atom potentials in Eq. (3.25) are obtained by solving a one-dimensional
differential equation for each orbital for non-spinpolarized spherically symmetric free
atoms with the same scalar relativistic approximation and DFA as employed in the
full calculation later. However, there are exceptions to this approach, e.g., for hybrid
functionals, the underlying (semi-)local DFA without HF exchange is used. In principle,
solving the four-component Dirac equation with exactly the same DFA as employed
in the full calculation later would be desirable. Still, the presented approach produces
reliable results in practice and the difference between “atomic ZORA” and “scaled ZORA”
is very small (usually in the order of 0.1 meV per atom for heavy elements, less for lighter
elements) [Blu09, DCD].

3.6.2 Electrostatics

The electrostatic energy is described by three terms: classical electron-electron inter-
action (Hartree term) Ey, electron-nuclei interaction E.,;, and nuclei-nuclei interac-
tion E, yc.nuc- These three terms cannot be treated separately in a numerical approach
since they diverge under periodic boundary conditions. This problem can be avoided by
treating electrons and nuclei together by defining a total electrostatic energy

Ees = Ex + Eext + Enuc-nuc- (3-27)

Then, only energy contributions arising from electrostatically neutral subsystems are
handled, leading to a finite value of the total electrostatic energy.

To achieve a rapid and accurate description of the electrostatic interactions, the
electron density 7 is partitioned into contributions n; associated with the individual
atoms I (see Sec. 3.4 for a discussion of the partitioning function py),

ni(r—R;) = Jdrpl(r)n(r). (3.28)

With this partitioning scheme, the Hartree potential (Eq. (2.29)) becomes

Nnuc Nnuc

vy(r) = Zv{{(r—Rl) = vadfw. (3.29)
I

I r—7l
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Adding the external potential v, (Eq. (2.28)) defines the total electrostatic potential

Nnuc NHUC

Veo(r) = ) _vi(r=Rp)= ) [vfs(r=Rp)+vhu(r—Ry)]. (3.30)
1

I

Accordingly, the total electrostatic energy, which includes the electron-electron, electron-
nuclear, and nuclear-nuclear interaction, becomes

1 nuc
Eeszzjvdrn JVes (T Z,ZI

Here, ZIVII{(O) is the on-site term and it describes the interaction of atom [ with its own
electrons.

In practice, the total electrostatic potential is calculated in three steps: First, the
electron density associated to the superposition of the isolated free atoms nfree is used
to define the difference density

Nn

UH es(R]_RI)]' (331)
J=I

F)= ) Miee(r=Ry) (3.32)

with respect to the total density n (Eq. (2.16)). Second, this difference density on is
partitioned according to Eq. (3.28) and expanded in a multipole (MP) expansion omyp.
This expansion yields an approximate description of the electron density 7, the so-called
multipole density

NHUC anlC

nvp(r) = Z”II\/[P(") = Z[nfree(r -Rp)+ 6nIIv[P(r—RI)]. (3.33)
i

I

Third, the potential vflree generated by the density nfree and nucleus I is calculated.
This means that the external potential v., is included in the free-atom potential vfr cer
Furthermore, the potential 5v generated by the density 6nlp is calculated so that the
total electrostatic potential consists of these two terms,

Ves(T f[vﬁ,eer R1)+bves(r RI)] (3.34)

Here, the potentials vfree of the isolated free atoms are calculated as a cubic spline
function on dense logarithmic grids, while the potential vl is split up into three
contributions:

Svly(r—Ry) = vl (r = Rp) + vip(r— Rp) + v{ g (r = Ry). (3.35)
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A

atom [ d}{/ﬂ) dc1>ut

Figure 3.5: One-dimensional sketch of the different contributions and used radii for the calcula-
tion of the electrostatic potential in FHI-aims. The abscissa shows the distance d; to atom I and
the partitioned difference density ni, of atom I is depicted (blue). For distances less than dp
where 5”{%1) is non-zero the potential vII\IU (red, solid) is obtained by explicitly solving Poisson’s
equation. Outside the density, the potential is determined by the Ewald short-range term véR

(red, solid), which extends up to d. ,. Any long-range tails of the potential are accounted for by

the Ewald long-range term v{R (orange, dotted).

This potential is calculated with the help of the Ewald summation for multipole
charges [Del96a]. The first term is the numerical potential vII\IU, which solves the elec-
trostatic potential explicitly for short ranges d; = |[r — R;| < d{vﬂ, where the difference
density onj,p of atom I is non-zero, see Fig. 3.5. This is done by the Green’s function for
Poisson’s equation of multipoles from classical electrostatics,

dp 7142 () 1

I -d % - d

vnulr—Rp) = ZYlm(QI’(PI) . dd Wénl,lm(d) + ] dd ﬁénl,lm(d) . (3.36)
I,m I I

Y1,,(01, ¢1) is the real form of the spherical harmonics (Eq. (3.3)) with 6; and ¢; the angles
of vector r — R in spherical coordinates. The 61y ;,,, are the multipole components of the
difference density associated with atom I, onp ,,(r) = ﬂdqﬁ dO sin O p;(r)on(r)Y;,,(0, P).
The other terms are the Ewald short-range (SR) potential [Del96a]

VeR(r=Rp) =Y QpumErnFP" (dp)(dy ¥ (dy ) o (dy )P0, (3.37)

I,m

which extends up to a specific distance d. , from atom I, see Fig. 3.5, and the Ewald

long-range (LR) potential [Del96a]
212
47 exp(—%)

) = S1(G)exp(iG 1) (3.38)

vip(r—Rp) =
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with

S1(G) =) QuimGinmexp(=iG - R)I”(Gy Y (Gy)P(G,) . (3.39)
I,m

The coefficients E;,,,, Gy, the exponents A;,,, Biys Cins Dines Xims Yims Zim, and the func-
tion FPU")(d) are expressions that only depend on the numbers ! and m. The analytical
expression for these terms can be found in the publication by Delley [Del96a]. The Qy j,

are the atomic multipoles, Qj ;,,, = \/%Idr rl+26n1,1m(r), G = (Gy, Gy, G,) is a vector of
the reciprocal lattice (G = |G]), « is the Ewald parameter, and (dy,y, dy,y, d1,.) = r — Ry.

In periodic boundary conditions, the zero level of the electrostatic potential is not well
defined. To achieve consistency across systems, the zero of the electrostatic potential

is manually set to the spatial average of the potential ov.s generated by the difference
density onyp,

1
Vavg = v fv droves(r). (3.40)

Accordingly, the total electrostatic potential in Eq. (3.34) becomes*

Nnuc
Ves (1) = Z[vl{ree(r -Rp)+ 6vés(r - RI)] — Vavg- (3.41)
i

In order to reduce the error in the total electrostatic energy expression due to the
multipole expansion to quadratic order with respect to the maximal angular momentum
used in the expansion [Dun79], the total electrostatic energy (Eq. (3.31)) is calculated as
follows:

Nnuc

1
Fuu= | ar|nt)= e+ 5 )

NH\JC

vl (0)+ ngs(R, —RI)]. (3.42)
J=I

Here, the electron density n in Eq. (3.31) has been replaced by

%n(r) — n(r)— %”MP(")- (3.43)

4 The G = 0 term of the Ewald summation does not appear explicitly.
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3.6.3 Exchange-correlation energy
LDA and GGA

For the LDA and GGA functionals, the exchange-correlation energy is calculated accord-
ing to Eqgs. (2.33) and (2.36), respectively,

E)ECDA = f drn(r)e,%?A(n(r)). (3.44)
\%

ESCGA[n] = f drn(r)escGA(n(r), Vn(r)). (3.45)
1%

Hybrid functionals

For hybrid functionals, we here discuss the one parameter case® for the sake of simplicity,
where a fraction @ of GGA exchange is replaced by HF exchange (with and without
range separation). The respective exchange-correlation energy has the following form,
see Secs. 2.3.3 and 2.3.4:

B (0,00) = GO + a EFPSR () - ESOASR (o)) (3.46)

In the following, it is concisely described how the HF exchange energy is actually cal-
culated in FHI-aims. The explanation is based on the publication by Ren et al. [Ren12a].
For a given basis set expansion as defined in Eq. (3.1), the HF exchange energy is defined
as

1 ..
EHF = - ZDjkDil(zjlkl). (3.47)
ijkl

The one-particle density matrix is defined using
Djk = mecjmckm (3.48)
m

and the indices i, j, k, [ run over all basis functions. The occupation numbers f,, and the
expansions coefficients c;,, have been introduced before. The expression (ij|kl) denotes
the four-center two-electron Coulomb integral

(ijlK]) = ﬂdrdmi(r)(pj(r)v(h— Ao (Fr(7) (3.49)

with the Coulomb kernel v(|r|). No complex conjugate quantities appear since the basis
functions are chosen to be real valued in FHI-aims, see Sec. 3.2. For PBEOQ, the Coulomb

5 Functionals with more than one parameter can be handled analogously using the formalism for the
calculation of the ingredients (exchange and/or correlation of LDA, GGA, or HF) discussed in this thesis.
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kernel is simply the Coulomb potential 1/|r|, while v(|r|) = erfc(w|r|)/|r| for HSE06 so
that only the short-range part of the Coulomb potential is included.

With the help of the resolution of identity (RI) [VAI88], one can expand the product
@i(r)p;(r) of two basis functions (centered at atoms I and ], respectively) in a finite
auxiliary product basis set Py (r),

@i(r)gj(r)~ ) ClPy(r), (3.50)

with the expansion coefficients Cl“]I Using the auxiliary basis set, the HF exchange energy
can be rewritten as
HF 1 m n
B =— ZDjkDil C Vo Cly (3.51)

ikl
mn

with the Coulomb matrix
Vi = (mnn) = J]drdme(r)v(h'— 1) Py (7). (3.52)

In the so-called RI-V formalism, the error in the four-center Coulomb integrals that
stems from the product basis expansion is minimized [Vah93] by choosing the expansion
coefficients to be
R = Z(iﬂn)v;r;. (3.53)
n
With the so-called RI-LVL formalism [Ihr15], the computational effort can be further
reduced within negligible losses in accuracy by using a locally restricted expansion,

i(r)gj(n~ ) ClPy(r), (3.54)
meP(I])

with P(I]) = P(I) UP(]). The set of all auxiliary basis functions that are centered at

atom [ is denoted with P(I). For a basis product @;¢;, this means that the index m runs

only over those auxiliary basis functions that are centered on atom I or J. Consequently,

the expansion coefficients become

Z (ijim)LL,  for m e P(I])
Cii = qneP() (3.55)
0 else

-1
with LV = (VU ) being the inverse of the Coulomb matrix that includes only auxiliary
basis functions centered at atom I or J. With this locally restricted expansion, Eq. (3.51)

becomes
Nﬂ\lC

1
HF _
EF-2Y Y DjkDil[c;;?vmnc,gl] (3.56)
17 ijkIeB(I])
m,neP(I])
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with B(I]J) = B(I) U B(]) the set of all basis functions that are centered on atom I or
J — similar to P(I]).
Van der Waals correction

According to Eq. (2.56), the correction for the vdW interactions is

1N ¢ N C

61]
=—= E E (R, R))————, 3.57
Evaw ) — damp I ] |R1—R]|6 ( )

and the form of the damping function fy,mp is given in Eq. (2.61). For periodic systems,
the vdW correction is calculated by explicitly including the periodic images of the atoms
in the summations. Since the 1/R® function falls off quickly with increasing distance,
only few neighboring unit cells are needed to obtain converged results.



Calculating electrical band
conductivities with BoltzTraP

This thesis solely focuses on electronic band transport, which is one of the possible
macroscopic charge transport mechanisms in organic semiconductors. As explained in
the introduction (Chap. 1), other possible transport mechanisms are electronic hopping
and coupled electron-phonon transport. Band transport can be a dominant contribution
to the electrical conductivity for highly ordered organic crystals at low temperatures.
The BoltzTraP code [Mad06] is used in order to estimate electrical band conductivities
from electronic band structures of crystals. Therefore, this chapter briefly summarizes
the underlying methodology and how the formalism is used for the calculations of
charge carrier concentrations and electrical band conductivities.

4.1 Band conductivity from Boltzmann transport equation

The electrical band conductivity ¢ being a tensor of rank two can be obtained by solving
the semiclassical Boltzmann transport equation. For a constant external electrical field
and using the relaxation time approximation, the electrical band conductivity of a
crystal is [Mah96, Mad06]

¢(Ep, T) = —fd(—: WE(Q (4.1)
Here, f is the Fermi function,
f(e,Ep,T)= S — (4.2)
1+ exp( ek;? )

with the Fermi level Eg, the Boltzmann constant kg, and the temperature T. The transport
distribution function Z(E) is a tensor of rank two defined as

1
=N

(1]

(€)=Y 5(e-eilk))Tiv;(k) @ vi(k) (4.3)

ik
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The sum runs over all bands i and k-points in the Brillouin zone. Ny is the number
of sampled k-points, 7; ; the relaxation time, and ¢; the energy of band i. The group
velocities v; of the electrons in the crystal are given by

vk = 29,

(4.4)

The relaxation time 7, ;. introduced as an approximation is an effective measure how
fast the system returns to its equilibrium state from non-equilibrium, e.g., after an
electron is scattered. In this approximation, it only depends on the band index i and the
direction of k. Due to the derivative of the Fermi function in Eq. (4.1), only bands close to
the band gap (i.e. Fermi level) contribute to the conductivity. In first order approximation
the relaxation time can be assumed to be (a) band index and (b) direction independent,
which further simplifies the formalism. Hence, we use a constant relaxation time 7 for
our studies.

In order to calculate electrical band conductivities, we compute the band energies €;(k)
on a fine k-point grid and pass them to BoltzTraP. The code performs then a Fourier
expansion of these band energies and calculates the conductivity tensor ¢ divided by
the relaxation time 7 according to Eq. (4.1). Because the relaxation time is unknown,
we are not able to calculate absolute values for the conductivity. However, we can still
investigate trends of the conductivity under pressure assuming that the relaxation time
stays constant.

4.2 Determining the Fermi level and charge carrier
concentrations

The conductivity calculated by BoltzTraP depends on the Fermi level Ep besides the
temperature, see Eq. (4.1). Therefore, the Fermi level has to be determined based on our
calculations. For intrinsic semiconductors, the Fermi level lies between the valance and
conduction band and its exact position depends on the type and amount of doping as
well as on the temperature T [Ash76]. n-doping induces an excess of negative charge
carriers (electrons) and shifts the Fermi level towards the conduction band; p-doping
induces an excess of positive charge carriers (holes) and shifts the Fermi level towards
the valence band. In the intrinsic case, the charge carrier concentration of electrons and
holes must be the same due to charge carrier conservation.

The electron density per energy range is given by the product of density of states
(DOS) and Fermi function f (Eq. (4.2)) [Ash76]. The total charge carrier concentration of
electrons . is then given by the concentration of electrons above the conduction band
minimum (CBM), i.e.,

ne = Jw de f (e, Eg, T)DOS(€). (4.5)

Ecem
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The total charge carrier concentration of holes p, is given by the concentration of holes
below the valence band maximum (VBM)!, i.e.,

Evem
Dy = J de(1-f(e,Ep, T))DOS(e). (4.6)
Hence, Egs. (4.5) and (4.6) allow to determine the Fermi level for a specific temperature T.
For the case of n-doping (p-doping) with a specific charge carrier density n. (py), we
numerically solve Eq. (4.5) (Eq. (4.6)) for the Fermi level Eg; for the intrinsic case, the
equation n. = p,, is solved numerically. Additionally, the solution yields the intrinsic
charge carrier concentration n; = n. = p,.

! Since we consider holes, the distribution (1 - f) instead of f is used.
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Stress in crystals

The strain tensor ¢ of rank two describes the elastic deformation of a crystal relative to a
reference state, see Fig. 5.1. This corresponds to a linear transformation of the crystal
structure, i.e., the atomic positions R; and lattice vectors a,, are transformed according
to

Riale) =) (Sap+eap)Rip(0) (5.1)
B

Gan(€) =) (Sap +€ap)apn(0) (5.2)
B

with respect to the zero strain reference R;(0) and a,(0), respectively. a, f denote the
Cartesian components. The strain tensor is defined to be symmetric since an asymmetric
component corresponds to a rigid rotation of the crystal [Nye85]. Straining a crystal
leads to a response, called stress, similar to atomic forces, which are a response to the
displacement of atoms. For a unit cell with volume V, the stress tensor ¢ is defined
as the first order change in the total energy of the unit cell E,; under a symmetrical,
infinitesimal strain deformation ¢ [Nye85, Nagl1],

_ ]. aEtot
1% 85/\” 5:0'

0/\/4 (53)

o

—>

strain €

Figure 5.1: The strain ¢ describes the elastic deformation of a crystal structure. In response to
the distorted lattice, the stress ¢ arises, which drives the crystal back to its equilibrium position.
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48 5 Stress in crystals

Since the strain tensor is symmetric per definition, the stress tensor is symmetric as
well and thus, consists of six independent entries. Although the definition of Eq. (5.3) is
unique, a practical implementation in an electronic-structure code depends very much
on the numerical details chosen for the DFT formalism, e.g., on the basis set type.

Historically, Nielsen and Martin [Nie83, Nie85] first demonstrated that the stress
can be efficiently and accurately assessed in a DFT framework. For this purpose, they
employed a plane-wave basis set expansion (together with norm-conserving pseudopo-
tentials) and the local-density approximation. In later works, the stress tensor implemen-
tation for plane waves was extended to ultra-soft pseudopotentials [Foc95] including the
contributions of the generalized orthonormality condition. Thonhauser et al. [Tho02]
as well as Nagasako et al. [Nagl1] reported the strain derivatives for the linearized
augmented plane wave method. The former derived a surface term due to the discon-
tinuities at the boundaries between muffin tins and interstitial region and the latter
presented a correction because the number of plane waves in the interstitial region
changes under strain. For the projector augmented-wave method, Kresse et al. [Kre99] as
well as Torrent et al. [Tor08] derived the stress tensor and discussed the additional terms
arising from the compensating charges of this method. Kudin et al. [Kud00] discussed
the implementation of the stress tensor for Gaussian-type orbitals while evaluating
the electrostatic contributions entirely in real space using a fast multipole method.
Doll et al. [Dol04, Dol10] employed Gaussian-type orbitals, too, and included the strain
derivatives for Hartree-Fock calculations. In addition, Soler et al. [Sol02] presented the
strain derivatives for numeric atom-centered orbitals with norm-conserving pseudopo-
tentials calculating the electrostatics by Fast Fourier Transformation (FFT).

For this thesis, we derive the analytic strain derivatives, i.e., the stress tensor com-
ponents, in the all-electron, numeric atom-centered orbital based density-functional
formalism of FHI-aims. For this purpose, the general mathematical formulae and rela-
tions of strain derivatives are presented followed by a detailed derivation of the various
contributions to the stress tensor arising from the total energy detailed in Sec. 3.6. Fi-
nally, details of the numerical implementation are given as well as how the stress tensor
can be used to optimize crystal structures under external pressure. The derivations in
this chapter follow the results published in [Knul5].

5.1 Fundamental formulae for strain derivatives

5.1.1 Properties of strain derivatives
The total energy derivative with respect to the strain in Eq. (5.3) can be written as

aEtot aEtot aul
Z Bul aew -

I 20

, (5.4)
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where the chain rule was used and the sum runs over all parameters u; that enter the
total energy and change under a strain transformation. For specified numerical and
computational settings (basis set, integration grids, and DFA), the total energy solely
depends on the chemical species (mass, nuclear charge, and electronic configuration)
and the positions of the individual atoms. Because of periodic boundary conditions,
the latter also includes the lattice vectors a,, since the periodic images of an atom with
coordinate vector R; are given by R; = R; + ), M, a, with M, being integer numbers.
Accordingly, the atomic positions in the unit cell and the lattice vectors are the only
quantities changing under a strain transformation and their respective strain derivatives
are derived below. There is no contributions from the coefficients for the basis set

expansion c¢;; in Eqg. (3.1) because the total energy is minimized with respect to them
P ij q gy P

(see Sec. 3.3), i.e., % = 0. Since the atom-centered basis functions (see Sec. 3.2) and
)

the real space grid (see Sec. 3.4) used for the electronic degrees of freedom move with
the respective nuclear degrees of freedom, their contributions to the strain derivatives
need to be accounted for as well. However, some contributions to the total energy
do not depend directly on the atomic positions or the lattice vectors. Instead, they
depend on derived quantities. These are the volume of the system V and the reciprocal
lattice G-vectors. To achieve a more concise formalism, the strain derivatives for these
quantities are derived here as well.

5.1.2 Strain derivative of position vectors

Following the respective strain transformation given in Eq. (5.1), the strain derivative of
a general position vector R is

= ZémaﬁﬂRﬁ = 6a1R,. (5.5)

In many cases, terms f(rag) appear that do not depend on the absolute position but on
position differences rap = ro — rg. Following the chain rule in Eq. (5.4), we thus obtain

df (Rag)
88,‘\”

_ df (Rag)

af(RAB)R _ df(Rpp)
aRA’/\

QRB,,\ By = aRA’/\

RA,]A+ (RA,y_RB,y)- (56)

E=

Since the function f(R4p) depends only on the difference Ry — Rg, the derivative of the
d

second summand can be changed from —2— to —=2—. Please note that the here derived

relations apply to the electronic degrees of freedom as well.
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5.1.3 Strain derivative of lattice vectors

Following the respective strain transformation given in Eq. (5.2), the strain derivative of
a lattice vector a,, is
Paan

- = 56“\55”&!;” = 5a,\alm. (57)
86/\” e=0 ;

5.1.4 Strain derivative of unit cell volume
The volume of the unit cell V can be calculated with the matrix of the lattice vectors A,
V =|detA]. (5.8)

With the help of Eq. (5.2), the strained volume is obtained:

D (1+€qq)

a

V(e) = |detA(e)| = |det(L+¢)|V(0) = V(0). (5.9)

In the last step, the determinant was expanded up to first order in the strain. Taking the
strain derivative of Eq. (5.9) leads to

Vv
(98/\’4

= Zémawv:%v. (5.10)
e=0 44

5.1.5 Strain derivative of reciprocal lattice vectors

In order to investigate how the unit vectors of the reciprocal lattice b,, behave under
strain, we use the matrix of these unit vectors B and Eqs. (3.11) and (5.2) to obtain

B(e) = 2n(]l+sT)_1(AT)_1 = (1-£")B(0), (5.11)

where we expanded the matrix inverse up to first order in the strain. The component-wise
notation of Eq. (5.11) is

ban(€) =) (5pa — pa)bpn(0) (5.12)
B
and hence, the strain derivative is
db,, 3 B
To| = ;%%bﬁn = ~Sauban- (5.13)

A general vector of the reciprocal lattice G is a linear combination of the three unit

reciprocal lattice vectors,
G251b1+52b2+53b3, (514)
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with sq, s;, s3 being integer numbers. Applying the result from Eq. (5.13) gives

3G,
86/\”

:—6aﬂ(51b/\1+52b/\2+53b/\3):—6a”G/\. (515)
e=0

Hence, for a quantity f(G) that depends on the G-vector, the strain derivative becomes

9f(G)

98/\14

_ _\9/(G)
"7 LG,

_9f(G)
JG,

S0uGy = G,. (5.16)

e=0

5.1.6 Strain derivative of integrals over the unit cell volume

Many quantities are calculated by integrals over the central unit cell, see Sec. 3.5. As a
consequence, the integral boundaries change under strain, which has to be accounted
for. Let us consider the integral of an arbitrary function f over the unit cell volume V,

(V)= Jvdrf(r). (5.17)

In order to take the strain derivative of this expression, we need to change the integration
variable to fractional coordinates' s, which are linked to the Cartesian coordinates r by

r=A-s. (5.18)

Using the transformation theorem for integrals and Eq. (5.8), the change of integration
variables yields

1
(V)= VJO ds f(s), (5.19)

and the integration limits symbolize that the three components of the fractional coor-
dinates lie in the range from 0 to 1. Taking the strain derivative of this transformed
integral, using Eq. (5.10), and transforming it back results in

(V)
af/\y

9f(r)
= 6/\”1(‘/) + Jvdr 88/\’1

The first term arises due to the finite integration limits, which change under strain, and
we will call it Jacobian term from here on.

(5.20)

e=0 e=0

1 Fractional coordinates mean that position vectors are expressed in the basis of the lattice vectors instead
of the usual standard Cartesian basis.
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5.2 Derivation of all stress tensor contributions

We will now determine the strain derivatives of all total energy contributions detailed in
Sec. 3.6. For this purpose, we will reduce the strain derivatives to derivatives with respect
to position vectors, which are known from the atomic force calculations [Blu09, Geh09].
The notation is simplified by leaving out the explicit notation that the derivative is
evaluated at the point ¢ = 0 for the remainder of this thesis.

5.2.1 Kohn-Sham orbitals

We start with the KS orbitals ®@;, which appear in most terms. Their strain derivative
can be calculated using the basis set expansion (Eq. (3.4)) and Eq. (5.6),

R dpi(r—Ry)
36/\# ZZ G ]aR]/\ (R],y_ry)- (5.21)

The strain derivative of the gradient of a KS orbital can be performed analogously,

9 oDi(r) N P2;(r - R,)(R )
1 By

= BT e 5.22
88/\‘“ aRK,v 5 ]l 8R; ,\BRKV ( )

which means that the Hessian of the basis functions is required for such strain deriva-
tives.

5.2.2 Normalization factor

The strain derivative of the normalization factor in Eq. (3.20) yields

P nomm _ %,Zfle@mw ZZfle(aq (5.23)

5/\

and the strain derivative of the occupation numbers f; is neglected since it turns out
that their contribution plays no role for all considered cases in this thesis (see Chap. 6).
The inner product of the two KS orbitals yields two terms according to Eqgs. (2.17) and
(5.20). Replacing €;(®;|®;) in the first term in Eq. (5.23) by (D;|€;|P;) and €;|P;) by the
generalized KS equation (2.44) yields

JF norm HF ADFA 2P,
7o =~y Ty + 20! * Y >)|q>i>]—lefiei<a|q>i> (5.24)

with the help of Egs. (2.18)/(3.26), (2.39), and (3.30).
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5.2.3 Kinetic energy of non-interacting electrons
Non-relativistic kinetic energy

It is important to consider the change of the Laplace operator A, in Eq. (3.22) under
a strain transformation. The change of a position vector r under such a transforma-
tion is given by Eq. (5.1) and the respective inverse relation (up to first order in the
strain) is r,(0) = Zﬁ(éaﬁ —&qp)7p(€). Accordingly, the derivative with respect to positions
transforms as

9 90 9 9 )‘Z ) (5.25)

Tra(€) L Frg(€) Irg(0) ~ Irg(0 “aB Jry(0)°

Thus, the Laplace operator becomes (up to first order in the strain)

p) 2
=3 zs) =) 2 Lesmm 529

Hence, the strain derivative of the Laplace operator is

0 0o 0
e, A, = _Za_ma_r#’ (5.27)

which requires the Hessian of the orbitals. Applying this result to the non-relativistic
kinetic energy (Eq. (3.22)), which is an inner product of KS orbitals, yields the strain
derivative
aTnon -rel
aeAﬂ

—ou - Yl - @i oo} 629

Scalar relativistic kinetic energy

The strain derivative of the scalar relativistic kinetic energy (Eq. (3.26)) including the
Jacobian term is

aTl’el nuc
—aq” =0, 5 + ;;ﬁcljczk[(agA |tatZORA|(Pk>+<a(Pk|3€A (atZORAl(P]>)] (5.29)
ij

The last derivative can be expressed in real space with the help of Eq. (5.6) as
J d
85,\M(tat ZORAP;(1 = R])) R, ———(fat.zora@j(r - R]))(R],y—rﬂ) (5.30)

since the derivative of the full expression f,; yor Alp;) with respect to atomic coordinates
is known.
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5.2.4 Electrostatics

Taking the strain derivative of the total electrostatic energy (Eq. (3.42)) results in many
different terms that cannot be further simplified,

JE
a‘es :é/\ﬂf dr|n
Edp 1
N,

In(r) 1 dnyp(r) 1 (R —Ry)
+Ldr[aw 3 der, ves(r)+—ZZI—ag/\y

s (1)
85,\#

1(6)= et + [ e S|
(5.31)

LJ=I
The terms can be regrouped using Eqs. (2.16) and (2.17),

OE.s
86/\14

= ) A Piltesl i) + (il T ) + 2( L0

i
1 1 Ives(r) | 9
—m@f drmap(atn) =3 [ dr[mipn % 250 0] (55
aves R] RI
Z o dey
1]¢1

The strain derivative of the multipole density nyp can be evaluated using the partitioning
into single atom contributions (Eq. (3.33)),

Nnuc 1 nuc
Inyp(r) _ 8”Mp("—RI) anMP(r R;) _
88/\’4 - Zt ag/\lu - Z aRI,/\ (RI,}A r},{)- (533)

The strain derivative of the on-site term Z Ivé(O) (the atom interacts with its own elec-
trons) that appears in Eq. (3.42) vanishes since the atom and its electron density trans-
form equally under a strain deformation. A rigorous mathematical proof can be found
in App. C.1.

The strain derivative of the total electrostatic potential v in Eq. (5.32) requires some
more work. We have to calculate the individual strain derivatives of Eq. (3.41) together
with Egs. (3.35) and (3.40). The terms vflree, vII\IU, and véR only depend on position vectors,
thus, their derivatives are simply

avfree(r _RI) B avfree(r—RI)

e R, (Ri—1,) (5.34)
avII\IU(r—RI) avll\IU(r—RI)
e~ oRi, (Reyu—1,) (5.35)

ang(r—R,) B 8véR(r—R1)
(Rije=7)

85/\” B QRM (536)
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The most complicated term is v{ ; (Eq. (3.38)) because it depends on volume V/, posi-
tions r, R, and G-vectors. Using Eq. (5.4) yields

av]{R(r—RI) ~ v{R(r—RI)r s QV{R(r—RI)
98,\’4 - 81’/\ H aRI’/\ Ly
~ vl (r—Ry) s vl (r—Ry)
oG, * ov. - M

Evaluating the individual derivatives results in the final expression

(5.37)
V.

ZGZ
lp(r-Ry)  4n—oxp(-5F)
ey VL —r — expliG: n[SHG)AL(G) - Gal1(G)]  (5.38)
with
2 x?
A/\}t(G):_éx\/A'i_(a-i'?)G/\G/A (539)
T1u(G) =) QuinGimexp(<iG-Ry)iPny,"(G) (5.40)
I,m
—}/’l/tm(G aG [ Alm G:U)Blm(Gz)Clm]. (541)

See App. C.2 for an explicit derivation of the individual derivatives of v{R. The strain
derivative of the average potential v,,, (Eq. (3.40)) only contains already calculated
derivatives (the ones of oves, Eq. (3.35), i.e., UII\IU, véR, and v{R), so that no new contribu-
tion have to be calculated,

Tt = f, e 542
Here, no Jacobian term appears due to the prefactor 1/V.
5.2.5 Exchange-correlation energy
LDA
jLDA

Using the chain rule and the definition of the exchange-correlation potential v
(Eq. (2.35)), the strain derivative of the exchange-correlation energy for the LDA func—
tional (Eq. (3.44)) becomes

IEA LDA In(r)| 1pa deg M (n)
91, =0 uExc +Jvdr " [exc (n)+n(r)T

LDA LDA (5.43)
= S\t + ZfoagA ;).
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There are again two terms due to the integration over the unit cell volume and the
integral was rewritten according to Egs. (2.16) and (2.17).

GGA

Since the exchange-correlation energy of GGA functionals (Eq. (3.45)) depends addi-
tionally on the density gradient V#, an additional term arises in the strain derivative,

GGA GGA
JEy; zéAMEXGCGAJFJ‘ 4y 2nir) escGAJrn(r)&'exc
e, v Ep an
5.44)
JVn | 9eLSA (
ZJ drn(r)|(Vn)- ) X
v deyy | 9|Vn|?

The term in parentheses in the last line is a scalar product of vectors. A local exchange-
correlation potential for GGA is defined, which includes only the partial derivative with
respect to the density n,

GGA GGA a“?GcGA
A _ X
xcloc = €xc t1 on (5.45)

and the last line can be expanded using Eq. (2.16) and the product rule for derivatives,

aEGGA X
XC — 6/\}4ES:GA +2 Zfl< ag/\ Sccigc |CD >

0D; IVD; _ 19e55A
+4Zf,J. drn(r)(Vn)- [qun 96,\#@]8|an2'

86/\
g (5.46)

Hybrid functionals

The strain derivative of the HF exchange energy in the locally restricted expansion
(Eq. (3.56)) is

N m
aEHF 1 nuc aV ac
Ap 1] i,jkleB(I]) o
m,neP(I])

In this case, no Jacobian terms arise since the integration domains of the Coulomb
integrals are the whole space. In the following, we will use the notation i(I) to indicate
that the basis function i is centered on atom I. The strain derivative of the Coulomb
matrix is given by

Wanitng) _ OVt p - OVitin)
85,\,4 aRI’/\ s 8R],,\ Jm (5 48)
Vi)

= TL/\((RLH ~ Ry,



5.3 Summary of terms - the stress tensor 57

a detailed proof of which is given in App. C.3. For the expansion coefficients, we obtain
an analogous result

m(M) m(M) m(M)
PCimyn _ 200, 2Ci0i0)
85,\” 8RI 1 Ly BR] 1 Lp
' : (5.49)
acmm
_ %Sy

- JR;, (RI"‘ —R],,,),

where N is either atom I or | and a detailed proof can be found in App. C.4. Using the
relations derived in this section, the strain derivative of the hybrid exchange-correlation
energy (Eq. (3.46)) is

aEiir'hyb(a,a)) JESGA a(?EXG GA’SR(a))

85/\;4 a‘s/\}l ae/\l‘
anlc
“EN Y DuDa(Rey Ry )| L) 5 Ty ()|
> kiR = Ry ) Cij =R, dR;, 'mn kI
I] i,k leB(I])
m,neP(I])

(5.50)

The strain derivative of the GGA exchange-correlation energy has been derived in the
previous section (see Eq. (5.46)).

Van der Waals correction

The strain derivative of the vdW correction (Eq. (3.57)) is

Nnuc
dery 2 LR, ~ R[S wE

IR ) IR — R;|?

Here, the change of the Cq coefficients and of the damping function fqamp (i-e., the
change of the included vdW radii) under strain is neglected since they seem to be
negligible in practice [Buc13].

5.3 Summary of terms — the stress tensor

We will now collect all contributions to the stress tensor derived in the previous sections.
The terms with the Kronecker delta in Eq. (5.24) are rearranged to their respective
energy category. Hence, the stress tensor is

norm kin es,nuc es,el es,MP

_ XC vdW
Opu =0y, +Oy, TOoy 0T Foy T Foy oy, (5.52)
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with
o= VZfKaq le;|D;) (5.53)
glinnonrel _ zfxaq AID;) + Zf,@ | 1) (5.54)
o = ViZszz]Czkkag ot zORAIPK) + (O x| 52 (atzomkP]))] (5.55)
K ijk
oy = 2V”Zﬂ aves;:jﬂ X0 (5.56)
op = VZﬁ[«Dl =10 + 2 s D) (5.57)

o 1 1 Ve
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v (5.58)
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The strain derivative of the total electrostatic potential has been calculated before,

NHUC
Ve (1) _ Wl (r—Ry) | vl (r-R;) | vli(r-R;) | vl (r-R))|  Ovay

- z de + de T 0 + de T ey, (5'63)
de Ap Ap Ap Ap Ap Ap
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and the individual derivatives can be looked up in Eqgs. (5.34), (5.35), (5.36), (5.38),
and (5.42). The strain derivatives of the KS orbitals @; and their gradients are given in
Egs. (5.21) and (5.22), respectively. Please note that Egs. (5.53), (5.54), (5.55), (5.57),

(5.59), (5.60), and (5.61) includes Pulay terms of the form (g%’;jl...kpk) that depend
H"
on the strain derivative of the orbitals analogously to the Pulay corrections of atomic

forces [Pul69].

5.4 Implementation details

It is advantageous to compute terms of the stress tensor with the same bra and ket
together in an actual computation to reduce the numerical effort. Furthermore, this
practice avoids taking differences of large numbers and thereby leads to a reduction of
numerical errors. In detail, this grouping means that the terms of the form (¢;j|...|¢py) of
Egs. (5.54)/(5.55), (5.57), and (5.59)/(5.60)/(5.61) are computed together as one integral.

The same is done for terms of the form (;ﬁI...l(pk) of Egs. (5.53), (5.54)/(5.55), (5.57),
H

€x
and (5.59)/(5.60)/(5.61).

The calculation of the stress tensor involves integrals of quantities f; and g; and their
derivatives that are centered on the same atom I, i.e., fdr %gl(r). The integrands
of these on-site terms are typically multiple orders of magnituade larger than those of
off-site terms (quantities centered at different atoms), especially for heavy elements.
Accordingly, even minute relative numerical inaccuracies, e.g., due to relatively sparse
integration grids used for light settings (see App. B.4) or in the derivatives of the
spherical harmonics, can result in notable absolute numerical inaccuracies for the stress
tensor — even for a single on-site term. In the next two subsections, we will point out the
problematic terms and how these issues can be circumvented.

5.4.1 Kinetic on-site correction

The term (®;|A|D;) of the non-relativistic kinetic energy (Eq. (3.22)) can be numerically
inaccurate for sparse integration grids. This inaccuracy stems from the on-site terms,
i.e., the inner products of basis functions j and j’ located on the same atom ], namely

Nnuc

) a 1
Tsnon rel,on-site _ _E Z ZﬁC1]51]’<§0]|A|(P]’> (5.64)
] Ly

Analytically, the strain derivative of this term and each of its summands (@;|A|¢p; )
should be zero since only quantities centered on one atom appear. However, this is not
always the case in a numerical calculation: Since both basis functions are located on
the same atom, they have a huge overlap, and small numerical inaccuracies in such a
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Figure 5.2: Absolute value of strain derivatives divided by unit cell volume V of kinetic (black
circles, Eq. (5.64)) and electrostatic on-site terms (red squares, Eq. (5.66)) at different lattice
parameters. These terms are analytically zero but might be non-vanishing in an actual numerical
calculation and therefore, they are omitted, see text. For light integration grids (filled symbols),
the strain derivatives of the on-site terms are clearly non-zero whereas they become significantly
smaller for tight grids (open symbols). A denser integration grid (going from light to tight)
captures more accurately the overlap of the wave functions centered at the same atom. See
App. B.4 for more details about the used integration grid. The calculations were performed for a
diamond unit cell of silicon (8 atoms) with the LDA functional.

large term can effectively prevent these terms from vanishing as explained above. See
Fig. 5.2 for a comparison between different integrations grids for the strain derivative of
this on-site term. To correct for this erroneous behavior, the on-site term (Eq. (5.64)) is
omitted from Eq. (5.28) and therefore,

aTnon—rel . Niue Nnuc 20, 5
55—1/4 =0, T3 - Z ZZﬂQ]‘Qk[(f/\“N@H ~(@jlg o o0 (5.65)
T K=l ijk

Here, ] and K specify the atoms the basis functions j and k are associated with, respec-
tively, and it is enforced that atom K is different from atom J.

5.4.2 Electrostatic on-site correction

A similar problem occurs for the electrostatics. In Eq. (3.42), special care has to be
taken of the strain derivative of the integral involving the term nyp(r)ves(r). One part of
the total electrostatic potential v, includes the sum of the potentials of the free atoms
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N vfree(r—RI) (Eq. (3.41)) and the multipole density nyp is built up from the sum of the
electron density of the free atoms ) ; nﬁree(r —Rj) and a residual part (Eq. (3.33)). Hence,
the total electrostatic energy in Eq. (3.42) involves a term that corresponds to the sum of
the Hartree energy of the isolated free atoms,

1
Ees,free = _5 ZJ drn%ree(r_Rl)vflree(r_RI)‘ (5‘66)
I V

Analytically, the strain derivative of this term is zero since it includes only contributions
of isolated free atoms. However, numerical inaccuracies can prevent this term from
vanishing, especially for sparse integration grids, as explained above. See Fig. 5.2 for a
comparison between different integrations grids for the strain derivatives of this on-site
term. To correct for this erroneous behavior, we explicitly leave out the strain derivative
of the on-site term (Eq. (5.66)), which is

aEes,free

=0,,E
96/\}4 Autes free

vl (r-R;) 8nlree(r—R) I
——ZJ dr Rlﬂ—r )[nfree(r R;) faRM ‘aRM Ve (= Ry |,

(5.67)

during the calculation of the electrostatic contributions. Together with the correction
for the kinetic energy in the previous section, this allows to reduce the numerical
inaccuracies by roughly one order of magnitude.

5.5 Finite differences stress tensor

In order to check the accuracy of the implemented analytical derivatives of the stress
tensor (see Chap. 6), we also calculate the stress tensor numerically via finite differences
of the total energies of distorted structures. This numerical procedure has been imple-
mented in FHI-aims by V. Atalla [Atal3a]. Without accounting for space group symme-
try, this requires the total energy calculation of twelve slightly distorted structures, i.e.,
two strain transformations ¢,, = Ah and ¢, = —Ah for each of the six independent com-
ponents of the stress tensor. The numerical derivative using the symmetric difference
quotient is

1 Etot(gz\/,t = Ah) - Etot('g/\y = —Ah)

D=y 2Ah

On the one hand, the displacement Ak must be small enough to ensure that the two-
point numerical derivative yields reasonable results. On the other hand, Ah must not
be too small at the same time. Otherwise, the differences become too small, which

+O(AR?). (5.68)
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Figure 5.3: Convergence of the finite differences stress tensor o with respect to distortion Ah
(Eq. (5.68)), which is used for reference purposes in this thesis in order to validate the analytical
derivatives of the stress tensor in Chap. 6. The ordinate shows the component o,,. Around

Ah =104, the stress tensor changes by values lower than 1 meV/A ™, which means that Al = 10~
is a safe choice and yields accurate results. Decreasing Ah too much leads to large numerical
rounding errors and a loss in accuracy. Calculations with Ah above 1072 become inaccurate, too,
since the displacement is becoming too big. The calculations were performed at fixed numerical
settings with the PBE functional.

leads to large numerical rounding errors. The convergence analysis with respect to the
displacement Ah, see Fig. 5.3, shows that the value Ak = 107* chosen for all calculations
presented in this thesis is reasonable. With this choice, we are in agreement with
literature suggestions [Gol13], which propose values Ah < 1072,

5.6 Unit cell optimization with external pressure

The stress tensor can be used to optimize the unit cell of a crystal structure. For this,
the forces acting on the lattice vectors a,, are required, which we define as the negative
derivative of the total energy E,,; with respect to the lattice vectors,

(5.69)
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Since the stress tensor depends only on the atomic positions and the lattice vectors,

Eq. (5.4) becomes
o IE ot aEtot
E R E .70
VU/\H aRI A I ’1 a&l/\ (5 )

where the strain derivatives have been evaluated accordmg to Egs. (5.5) and (5.7). The
derivatives of the total energy with respect to the atomic positions are the atomic forces,

dEot
IS

Fi,=- (5.71)
Here, F; ) is component A of the force acting on atom I. Solving Eq. (5.70) for the lattice
vector derivative yields the forces acting on the lattice vectors,

3 Nnuc

3
Fia==V)_on(a™), =) ) FuRiy(a?), (5.72)
p=1 pu=1 1T

with A the matrix of the lattice vectors. F}\a; is component A of the force acting on lattice
vector a,,.

Together with the atomic forces, the lattice vector forces can be used to optimize
the structure of the unit cell and the position of the atoms of a crystal. A generalized
coordinate vector is defined, X = {axl,ayl,...,aZ3,RLX,R1,y,...,RN,Z}, in order to treat
atoms and lattice vectors on equal footing. This vector contains the lattice vectors and
atomic positions. In addition, the corresponding generalized force vector is defined as
F = {F}j‘lt,le}af, Fi%t,Fl,x,FLy,...,FN,Z} containing the lattice vector forces and atomic
forces. The vectors X and F as well as the total energy E,,; can be used as an input for
an optimization scheme to obtain the local minimum of the crystal structure, e.g., the
Broyden-Fletcher-Goldfarb-Shanno algorithm or the trust region method [Noc06]. The
optimization algorithms in FHI-aims have been extended by V. Atalla to include lattice
degrees of freedom [Atal3a].

The above described method to optimize crystal structures can be extended to the case
where external pressure is acting on the crystal. When external hydrostatic pressure pey;
is applied to the crystal, the enthalpy H(S, p) has to be minimized instead of the total
(inner) energy Eiy(S, V) of the underlying system. The enthalpy is given by

H(S,p) = Etot(S, V) + pext V (5.73)

with V the volume of the system. It is immediately apparent that the atomic forces are
not affected by the external pressure, however, there is an additional contribution to
the stress tensor since the unit cell volume depends on the strain. Using Eq. (5.10) to
calculate the contribution of the external pressure yields the total stress of the system

O/t\(;lt =0t 6/\],tpextr (5.74)
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and 0, is given in Eq. (5.52). Finding the local minimum under pressure works exactly
as described above: 0, in Eq. (5.72) is just replaced by o*/t\c;lt from Eq. (5.74) and the
enthalpy H is used instead of the total energy E;.

Since the numerical optimization schemes obtain only local minima, it is unlikely that
one can directly observe phase transitions between different crystal structures under
pressure if there is an energy barrier between different structures as it is often the case.
Especially, transitions will be observed too late, i.e., at a much higher pressures compared
to the actual transition pressure. In order to overcome such barriers, molecular dynamics
simulations at temperatures greater than 0K are required. This means that systems under
pressure usually stay within their initial crystal structure during optimization unless
they are significantly distorted in the beginning.



Validation

In this chapter, the implementation of the stress tensor in FHI-aims is validated by
extensively comparing the stress obtained from analytical gradients (Sec. 5.3), in short
analytical stress, and the stress from finite differences (Sec. 5.5), in short numerical stress.
Since numerous aspects are considered, this validation is divided into three sections:
First, a large variety of crystal systems and chemical species is investigated. The main
focus lies on the diagonal elements of the stress tensor, but its off-diagonal elements are
considered, too. Furthermore, the consistency of the analytical stress with respect to the
chosen DFA, basis set size, and unit cell size is investigated as well as the performance
of the implementation. The second section addresses the usage of the analytical stress
tensor for the unit cell optimization described in Sec. 5.6. Therefore, the change from a
cubic to a fcc unit cell for aluminum is investigated. In the last section, the optimization
of crystals under pressures, briefly explained in Sec. 5.6, is discussed. This is exemplified
by the investigation of the transition pressure for the phase transition of silicon from the
diamond to the f-tin structure. The validation in Sec. 6.1 follows the results published
in [Knul5].

6.1 Stress tensor

Unless noted otherwise, all calculations of the analytical stress tensor in this section are
performed with the n/r-type partitioning function described in Sec. 3.4. The effect of
this and the “modified Stratmann” partitioning function on the stress tensor is discussed
in Sec. 6.1.4.

6.1.1 Different crystals

The analytical implementation of the stress tensor is tested with various different crystal
systems, chemical species and computational settings. At different lattice parameters
around the equilibrium geometry, the numerical and analytical stress are computed by
single point calculations. Figure 6.1 shows a plot of such calculations for silicon. If the
crystal system has more than one lattice parameter, each one is separately varied while
keeping the other ones fixed. The differences between the numerical and analytical stress

65
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Silicon — 8 atoms, PBE+vdW
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Figure 6.1: Comparison between numerical (black open squares) and analytical (red filled
circles) stress for a silicon crystal at different lattice parameters. The top figure shows the
resulting stress for both types and the bottom figure the difference between the two. The
calculations were performed for a diamond unit cell of silicon (8 atoms) with the PBE functional
and vdW corrections.

are then evaluated by calculating the mean of these differences as well as the maximum
of the absolute differences and the standard deviation. Additionally, we determine the
relative values of the maximum absolute difference.

In Tab. 6.1, the results for a broad range of crystals and computational settings (DFA,
relativistic and spin treatment) are listed. We find that our analytical implementation is
very accurate by comparing to the numerical stress for all tested crystal systems and
DFAs. The mean difference, maximum absolute difference, and standard deviation of
the difference between these two quantities are always in the range of a few meV/A’
or below, i.e., in the order of magnitude of the numerical error of the numerical stress
tensor (see Sec. 5.5). Also, the relative values of the maximum absolute difference are
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Ammonia - 16 atoms, HSE06+vdW
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Figure 6.2: Off-diagonal stress for a strained cubic unit cell with lattice vectors (a, 0,Aa), (0,4,0),
and (Aaq, 0,a). Black circles: Difference between the off-diagonal element xz of numerical (oy, )
and analytical (o0y,,) stress. Red squares: Difference between the off-diagonal elements of
lower (0, ,) and upper (0y;,) triangle of the analytical stress. The calculations were performed
for a unit cell of ammonia (16 atoms) with the HSE06 functional and vdW corrections at a lattice
parameter a = 5.1 A.

always 1% or below. Furthermore, no constant offset, systematic variation, or regular
pattern could be found in the respective deviations.

So far, we have only looked at the diagonal elements of the stress tensor. We next
address the off-diagonal elements at an exemplary system. In general, it suffices to
calculate the upper (lower) triangle of the stress tensor since it is symmetric by definition.
However, to test the numerical accuracy of our implementation, we calculate the full
stress tensor and compare the off-diagonal elements. Figure 6.2 demonstrates that the
difference between upper and lower triangle is vanishingly small. In addition, it shows
that the off-diagonal elements of the analytical stress are very accurate in comparison to
the numerical stress, too. In summary, not only the diagonal elements of the analytical
stress are accurate but also the off-diagonal ones and our implementation reproduces
nicely the symmetry of the stress tensor.

6.1.2 Different functionals

As a further test, calculations with all LDA, GGA and hybrid functionals available within
FHI-aims were performed. Table 6.2 lists the resulting difference between the numerical
and analytical stress for a silicon crystal and shows that our implementation is consistent
across all tested DFAs.
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Table 6.2: Difference between numerical and analytical stress in units of meV/A” for different
DFAs. The calculations were performed for a diamond unit cell of silicon (8 atoms) at a lattice
parameter of 5.2 A.

AMO5 B3LYP BLYP HF HSE06 PBE PBEO
Difference 1.4 1.9 1.8 1.8 1.8 1.8 1.8

PBEint PBEsol PBEsol0 PW-LDA PZ-LDA revPBE RPBE
Difference 1.4 1.8 1.8 1.5 1.4 1.7 1.7

Silicon — 8 atoms, HSE(«, 0)
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Fraction « of HF exchange

Figure 6.3: Difference between numerical (o, ) and analytical (o,,,,) stress for different frac-
tions a of HF exchange. The calculations were performed for a diamond unit cell of silicon
(8 atoms) with the HSE(a, 0) functional (Sec. 2.3.5) at a lattice parameter of 5.2 A.

Furthermore, the fraction a of the HF exchange for hybrid functionals (Sec. 2.3.5)
can be varied to check the accuracy of the analytical stress. For a silicon crystal, the
difference to the numerical stress stays almost constant, see Fig. 6.3, and scales only
weakly with a showing that we have a consistent implementation.

6.1.3 Basis set and unit cell size

Next, we demonstrate the consistency of the analytical stress with respect to the basis set
and unit cell size. The difference between numerical and analytical stress stays almost
constant when the basis set size is increased, see Fig. 6.4. Figure 6.5 shows that the
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Silicon — 8 atoms, PBE
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Figure 6.4: Difference between numerical (0, ) and analytical (oy, ,) stress for increasing basis
set size. The higher the tier in FHI-aims, the more basis functions are included, see App. B.1.
For more details about the used basis set, see App. B.2. The calculations were performed for a
diamond unit cell of silicon (8 atoms) with the PBE functional at a lattice parameter of 5.2 A.
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cell, which contains 1 atom. The calculations were performed for fcc unit cells of gold with the
PBE functional and relativistic treatment at a lattice parameter of 4.0A.
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Silicon — 8 atoms, LDA
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Figure 6.6: Change of the analytical stress for increasing integration grid densities relative to
the densest used grid. The behavior for the two different partitioning functions for integration
described in the text is shown. Increasing the radial multiplier increases the number of spherical
integration shells around every atom, and therefore, leads to a denser integration grid, see
Sec. 3.4. For more details about the used integration grid, see App. B.4. The calculations were
performed for a diamond unit cell of silicon (8 atoms) with the LDA functional at a lattice
parameter of 5.2A.

analytical stress stays constant within numerical limitations when the size of the unit
cell is increased.

6.1.4 Partitioning functions for integration

In general, the partitioning function in Eq. (3.9), which is used for the numerical
integration (Eq. (3.8)), changes under strain, and therefore, contributes to the stress
tensor. However, in the limit of an infinitively dense integration grid, this additional
contribution vanishes.

The n/r?>-type partitioning function uses g;(r) = n?ee(r)/lrl2 with n?ee(r) being the
electron density of the isolated free atom I (see Sec. 3.4). For such a partitioning function
the contribution to the stress tensor will be small because the partitioning functions
move equally with the atoms under a strain transformation and most integrands are
built up from atom-centered quantities. Figure 6.6 shows that the contribution of the

integration grid for a n/r2-type partitioning function is considerably below 1meV/A°
(thus, below the numerical accuracy) and the analytical stress converges rapidly by
increasing the grid density.

We expect to get bigger contributions to the stress tensor compared to the n/r>-type
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Figure 6.7: Difference between numerical (o, ) and analytical (oyy,) stress for two different
partitioning functions for integration, see text. The calculations were performed for a diamond
unit cell of silicon (8 atoms) with the LDA functional.

partitioning function, if the partitioning function depends on the position of the atoms
with respect to each other, which is the case for the “modified Stratmann” partitioning
function (see App. B.3). However, Fig. 6.6 shows that the contribution of the “modified
Stratmann” partitioning function is in the same order as for the n/r*-type partitioning
function. The only difference is that the analytical stress convergence is slower with
increasing integration grid density, but this is insignificant since the differences are
below the target numerical accuracy required for practical calculations.

In summary, the contribution of the integration grid to the stress tensor is very small
(considerably below 1meV/A3) and therefore, we neglect this contribution. Figure 6.7
shows that using the “modified Stratmann” partitioning function does not lead to larger
deviations in the difference between numerical and analytical stress compared to the
n/r*-type partitioning function.

6.1.5 Timings

In this section, the efficiency of our analytical stress implementation in the FHI-aims
code is investigated. In order to test the performance of the computation of the analytical
stress, we compare the computing time for total energy, forces, analytical stress, and
numerical stress. For this purpose, we measure how much additional time the compu-
tation takes relative to the time for a total-energy computation. For LDA and PBE, the
computation of the analytical stress including forces takes roughly double the time of
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Figure 6.8: Comparison between the computing time for forces, forces + analytical stress, and
forces + numerical stress for different DFAs. We take the difference between the time fiot energy
for a total-energy computation and time ¢ for a computation of one of the quantities listed before.
Then, the value relative to tiot.energy is plotted. The calculations were performed for a diamond

unit cell of silicon (8 atoms) at a lattice parameter of 5.2A.

a total-energy computation, see Fig. 6.8 (the additional time is one times the time of a
total-energy computation). The time in addition to a total-energy computation' is only
doubled compared to the computation of forces. This is a very good result if one consid-
ers that three derivatives have to be calculated for the forces, however, nine derivatives
(three for forces and six for stress tensor) are needed for the analytical stress including
forces. The additional cost for the computation of the analytical stress including forces is
significantly lower for hybrid functionals since several terms of the HF exchange energy
computation can be reused (compare Egs. (3.56) and (5.50)) and the evaluation of the
individual HF exchange terms dominates the overall computing time.

The additional time for the computation of the numerical stress including forces is
roughly five to six times the time for a total-energy computation for all tested DFAs, see
Fig. 6.8. While this might be still computationally feasible for LDA and GGA functionals,
it is definitely a heavy burden for unit cell optimizations with hybrid functionals.
For instance, the total-energy computation with the LDA functional in Fig. 6.8 takes
140 seconds on 12 CPUs. Using the PBEO functional, it takes about 4800 seconds on
24 CPUs.

1 Even for the total energy, we only consider computations converged to a degree of self-consistency that
yields accurate forces. In this case, the stress tensor is converged, too.
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Figure 6.9: Change of the unit cell geometry during the optimization procedure. The starting
point is a slightly distorted simple cubic unit cell with one aluminum atom. The top figure shows
the length of the three lattice vectors a, a,, a3 during optimization and the bottom figure the
three angles a, 8, ¥ between the lattice vectors. The angle of the fcc structure (60°) is shown as a
dotted line. The calculations were performed with the HSE06 functional.

6.2 Unit cell optimization

In order to verify that the unit cell optimization scheme (Sec. 5.6) based on the analytical
stress works, a simple cubic unit cell with one aluminum atoms is set up. We then expect
that the optimization will lead to the optimal equilibrium structure for aluminum
(fcc for all temperatures below the melting point [Tot03]). However, starting with a
perfect symmetric simple cubic unit cell does not work since the energy barrier to
break the symmetry is too large. Distorting the three lattice vectors by about 0.1 A in
an asymmetric way enables the optimization procedure to find the fcc structure as an
energy minimum, see Fig. 6.9. At the end of the optimization, all three lattice vectors
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Figure 6.10: Change of the total energy of aluminum for different unit volumes relative to the
minimal total energy. The solid, light red line is a fit of the data points with the Murnaghan
equation of state (Eq. (6.1)). The calculations were performed for a fcc unit cell of aluminum
(1 atom) with the HSE06 functional.

have the same length and the angles between them are 60°, which corresponds exactly
to the primitive unit cell of the fcc structure?. The lattice parameter of the obtained fcc
unit cell is 4.022 A.

In general, the optimal lattice parameter of cubic crystal structures can also be de-
termined by calculating the total energy E, for different unit cell volumes V and then
fitting the obtained data points to the Murnaghan equation of state [Mur44],

Ewot(V) =Ep +

By
BOV[(VO/V) +1] BV, (6.1)

By | B-1 CBy-1

with the following fitting parameters: E is the minimal energy at the optimal volume Vj,
By the bulk modulus at zero pressure, and By, its derivative with respect to pressure,
which is assumed to be constant under pressure. Doing such a fit for aluminum in the
fcc structure with the same computational settings as used in Fig. 6.9 yields an optimal

volume of 16.2A° for the primitive fcc unit cell, see Fig. 6.10. This corresponds to a
lattice parameter of 4.017 A, which is very close to the value obtained from the unit cell
optimization (4.022 A). The total energy of the aluminum crystal obtained from the unit
cell optimization is 0.6 meV lower than the total energy calculated at the optimal volume

2 The lattice vectors of the primitive fcc unit cell are (0,a/2,a/2), (a/2,0,a/2), and (a/2,4/2,0) with a the
lattice parameter.
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Figure 6.11: Cubic unit cell of silicon in the Figure 6.12: Tetragonal unit cell of silicon in

diamond structure with lattice parameter a =  the f-tin structure with lattice parameter a =
5.4A. The unit cell contains 8 non-equivalent 4.8 A and ratio ¢/a = 1.12. The unit cell con-
atoms. tains 8 non-equivalent atoms.

obtained from the fit with the Murnaghan equation of state (Eq. (6.1)). In summary;, it
has been demonstrated that a unit cell optimization with the analytical stress tensor
yields accurate results.

6.3 Optimization under external pressure

In the last section of this chapter, the unit cell optimization with external hydrostatic
pressure is validated. This is done by investigating the transition pressure between the
diamond and the f-tin structure of silicon. The study of the stability of different silicon
crystal structures has been one of the early successes of DFT [Yin82]. Figures 6.11 and
6.12 show the respective structures of silicon.

In order to calculate the transition pressure between the diamond and f-tin structure,
we do a unit cell optimization at different external hydrostatic pressures for each of
the two structures according to Sec. 5.6. From the resulting geometry, the enthalpy H
(Eq. (5.73)) is determined. Figure 6.13 shows that at low pressures the diamond structure
is preferred. At high pressure, the f-tin structure becomes favorable. The reason for this
behavior is that the diamond structure is a relatively open structure (there is a lot of
“empty” space between the silicon atoms) compared to the more compact f-tin structure.
Determining the intersection between the two enthalpy curves in Fig. 6.13 yields the
transition pressure p; = 10.14 GPa.

The transition pressure between diamond and f-tin structure can also be determined
by calculating the total energy of the two structures for different volumes. Figure 6.14
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Figure 6.13: Change of enthalpy H of diamond (blue circles) and S-tin structure (red squares)
of silicon under pressure relative to the enthalpy of the diamond structure at zero pressure. The
transition pressure p; between the two structures is determined by interpolating between the
data points. The calculations were performed for unit cells containing 8 silicon atoms with the
PBE functional.

shows the result of these calculations together with fits with the Murnaghan equation
of state (Eq. (6.1)). For the -tin structure, a ratio ¢/a = 1.12 was used for all volumes,
see Fig. 6.12. For our chosen computational settings, this ratio is the optimal one for
the equilibrium geometry and for the scope of this studyj, it is sufficient to keep the
ratio constant for all calculated volumes. The Maxwell construction [Rei98] allows to
determine the transition pressure between diamond and f-tin structure by calculating
the slope of the common tangent of the two corresponding energy-volume curves. This
yields a transition pressure of p; = 10.17 GPa in close agreement with the value obtained
from the unit cell optimization with external pressure (10.14GPa). These two values are
in the range of experimental and theoretical values reported in [Qiul2], too. Hence, we
have demonstrated that we can accurately describe materials under external pressure
with the analytical stress tensor.

6.4 Summary

In this chapter, we demonstrated the excellent accuracy of our implementation of the
stress tensor based on the analytical strain derivatives that have been derived in Chap. 5.
For all considered crystal systems and chemical species, the difference between analytical
and numerical stress tensor are in the order of the numerical error of the numerical
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Figure 6.14: Change of the total energy per atom Ey o of diamond (blue circles) and $-tin
structure (red squares) of silicon for different volumes per atom relative to the minimal total
energy of the diamond structure. For the §-tin structure, a ratio ¢/a = 1.12 was used for all
volumes. The solid, light-colored lines are fits of the data points with the Murnaghan equation
of state (Eq. (6.1)). The dashed black line is the common tangent between the two curves and its
negative slope is the transition pressure p; between the two structures. The calculations were
performed for unit cells containing 8 silicon atoms with the PBE functional.

stress tensor. The implementation is consistent with respect to the basis set and unit
cell size and allows to considerably speed up calculations with respect to the numerical
stress tensor especially for hybrid functionals. Finally, it was demonstrated that the
analytical stress tensor is well suited to optimize unit cells of crystal structures including
optimizations under external pressure.
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Anthracene

One class of organic semiconductors are molecular crystals, i.e., crystals that consist of
individual small organic molecules. Such a molecule is for example anthracene (C;4H;¢),
which is composed of three fused benzene rings forming a planar rod-like molecule
(see Fig. 7.1). As it is the case for benzene, all carbon atoms are sp? hybridized and the
remaining overlapping p orbitals of each carbon atom form delocalized 7 bonds that
span the whole molecule. Accordingly, anthracene possesses a delocalized m-electron
system.

The photoconductivity of crystalline anthracene was already discovered in 1906,
however, this discovery was forgotten until its rediscovery around 1960 [Kar89]. An-
thracene was then used in scintillation detectors for high energy particles and be-
came a prototype of an organic photoconductor. It is possible to produce anthracene
single crystals of high quality and purity [Kal58, Ono77, Kar0Ola] with high charge
carrier mobilities [KarO1b]. Charge carriers (electrons and holes) can be generated
inside the crystal by injecting them from the attached electrodes or by optical excita-
tion [Pop62, Nak64, Wil70, Wil72, Pro75].

Out investigation of crystalline anthracene under hydrostatic pressure is divided into
two parts: First, its equilibrium geometry is characterized and we discuss which DFAs
are suitable for the description of this system. Based on the optimized equilibrium
geometry, the electronic band structure is discussed. Second, the change of the geometry,
band structure, and macroscopic properties (intrinsic charge carrier concentration
and electrical band conductivity) under pressure is investigated in detail and it is
demonstrated how they depend on each other. We start by briefly summarizing which
numerical settings were used for the calculations of crystalline anthracene.

7.1 Numerical settings

The standard tight integration grid of FHI-aims is used. In order to ensure a convergence
of total energy differences within few meV per atom, the “tier 1+” basis set (App. D.1) is
used. The Brillouin zone is sampled by a very dense k-point grid of size 8x12x6 which

81
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Figure 7.1: Monoclinic unit cell of crystalline anthracene with the three lattice vectors a, b, c.
Carbon atoms are gray, hydrogen atoms white. The geometry from Exp. [Cha82] (Tab. 7.1) is

displayed.

Figure 7.2: View along lattice vector b for crys-
talline anthracene. The monoclinic cell angle g
(measured between a and c) is displayed. Car-
bon atoms are gray, hydrogen atoms white. The
unit cell is indicated by the box. This view
shows the layered structure of the crystal.

Figure 7.3: View along lattice vector c for crys-
talline anthracene. Carbon atoms are gray, hy-
drogen atoms white. The unit cell is indicated
by the box. This view shows the herringbone
structure of the molecules and the herring-
bone angle 6.
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allows for accurate band structures'. Overall, these settings deliver a good accuracy
within acceptable computational cost. More details about the basis set and k-point grid
convergence and can be found in Apps. D.2.1 and D.3.1. The LDA, PBE, and HSE06
functionals together with vdW corrections are used as DFAs for the study of anthracene.

7.2 Properties at zero pressure

We characterize the properties of crystalline anthracene at zero pressure, i.e., its ge-
ometry and its electronic band structure. For the geometry, we first summarize the
experimental available data and then discuss the optimized geometry obtained by
different DFAs.

7.2.1 Geometry
Experimental Geometry

The unit cell of crystalline anthracene is monoclinic and consists of two inequivalent
anthracene molecules, see Fig. 7.1. In total, there are 28 carbon and 20 hydrogen atoms.
Along lattice vector ¢ the molecules are arranged in layers, see Fig. 7.2. Within these lay-
ers, the molecules are rotated with respect to each other forming a so-called herringbone
structure, see Fig. 7.3. The herringbone angle 6 measures the angle between the normal
vectors of the molecular planes of two inequivalent molecules. The crystal structure
of anthracene has been investigated by Mason et al. with X-ray measurements at a tem-
perature of 95K [Mas64] and by Chaplot et al. with neutron diffraction measurement
at a temperature of 16K [Cha82]. The unit cell parameters and herringbone angles are
very similar in both experiments and the individual values can be found in Tab. 7.1.
In this table, the monoclinic angle is § = /(a, c). Another X-ray measurement has been
performed by Oehzelt et al. at ambient temperature [Oeh02] (see Tab. 7.1). Their unit
cell parameters are in good agreement with the other two experiments mentioned above,
but the unit cell volume is slightly larger due to thermal expansion. However, there is a
larger difference (16 °) for the herringbone angle.

Optimized geometry

We have optimized the geometry (atomic positions and unit cell) of crystalline an-
thracene for different DFAs and Tab. 7.1 shows the resulting unit cell parameters and
herringbone angle. The LDA functional underestimates the unit cell volume by 9% and

I As in the case of polyacetylene (see Chap. 8), dense k-point grids are needed to accurately describe strong
local band dispersion. Also, the dispersion locally increases under pressure (see Fig. 7.11), which has to
be captured accurately. Please note that a total energy convergence (considerably below 1 meV per atom)
could be achieved with a less dense k-point grid (see Fig. D.3).
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Table 7.1: Unit cell parameters and herringbone angle 6 of the optimized unit cell of crystalline
anthracene for different DFAs. The expression /(a, b) denotes the angle between lattice vector a
and b. For comparison, the experimentally measured parameters are listed. Exp. [Mas64] was
performed at a temperature of 95K, Exp. [Cha82] at a temperature of 16K and Exp. [Oeh02] at
ambient temperature.

3

DFA lal [A] bl [A] |el [A] s(a,b)[°] s(a,0)[°] «(be)[?] VI[AT] O]
LDA 8.09 585 10.87  90.3 126.5 89.5 4133 1318
PBE 9.66  6.33 11.54 907 119.8 922 611.3 112.7
PBE+vdW 8.27 595 11.08  90.0 124.7 90.0 4485 1313
HSE06 9.07 6.16 11.15  90.0 114.6 89.6 5659 1159
HSEO6+vdW  8.22 590 11.03  90.0 124.6 90.0  439.8 131.1
Exp. [Mas64] 844 6.00 11.12  90.0 125.6 90.0  457.9 140.1
Exp.[Cha82] 837 6.00 11.12  90.0 125.4 90.0  455.2 1404
Exp. [Oeh02] 855 6.02 11.17  90.0 124.6 90.0  473.2 1247

the PBE (HSE06) functional overestimates the unit cell volume by 34 % (24 %) compared
to experimental measurements at low temperatures [Mas64, Cha82]. Not too surpris-
ingly, the inclusion of vdW corrections on top of the PBE (HSE06) functional yields good
agreement with a deviation of only —2% (-4 %). These results clearly show that account-
ing for vdW interactions is essential for anthracene, as expected for a molecular crystal.
An inclusion of zero-point vibrations is expected to increase the unit cell volumes and
therefore, further improve the agreement between calculations with vdW corrections
and experiment.

The cell angles of the monoclinic structure are reproduced reasonably well by all
considered DFAs. The best agreement with experiment is achieved with the PBE+vdW
and HSE06+vdW functionals, which yield a deviation of less than 1° for the mono-
clinic angle and the other two cell angles are 90.0° in exact agreement with experiment.
Larger uncertainties are found for the herringbone angle in all cases. The PBE and
HSE functional predict a herringbone angle that is considerably smaller than all ex-
perimentally ones in Tab. 7.1 (difference in the range of 12° to 28°). Including vdW
corrections improves the herringbone angles. However, they still differ by about 10°
from experimental values. Please note that similar deviations in the herringbone angle
are also found when comparing different experiments (see Tab. 7.1).

It was shown that vdW corrections are essential for the correct description of the
geometry of crystalline anthracene. Since there is no qualitative difference between the
geometry obtained by the PBE+vdW and HSE06+vdW functional, all further geometry
optimizations for anthracene are performed with the PBE+vdW functional with two ex-
ceptions. We revisit the HSE06+vdW functional to discuss its influence on the electronic
structure and on the behavior of the band gap under pressure.
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Figure 7.4: Left: Electronic band structure of crystalline anthracene. The valence band maximum
(VBM) and conduction band minimum (CBM) are indicated. There is an indirect band gap
between point E and B. The energy zero was set to the valence band maximum and the coordinates
of the special k-points can be found in App. D.4. Right: Corresponding density of states (DOS)
in arbitrary units with a Gaussian broadening of 0.05eV. The calculations were performed for
the optimized crystal structure with the PBE functional and vdW corrections. For each band
segment between the special k-points, 50 values have been calculated.

7.2.2 Electronic band structure

As a next step, we investigate and characterize the electronic band structure of crystalline
anthracene, which is needed to understand the behavior of the electronic properties
under pressure. For this study, the optimized geometry obtained in Sec. 7.2.1 is used. The
calculated electronic band structure for crystalline anthracene is displayed in Fig. 7.4
and is consistent with previously calculated band structures [Humo03, Fed11]?. The
bands are very flat in the region of the VBM and CBM, which implies weak electronic
band transport at zero pressure. We find an indirect KS band gap of 1.94eV between
point E and B and the smallest direct KS gap of 2.04eV is at point B. The coordinates
of the special k-points are given in App. D.4. Photoemission and photoconductivity
measurements yield an electronic band gap of approximately 4.0eV without specifying
whether the gap is direct or indirect [Bds72, Bel74, Seb83]. Hence, the gap experimen-
tally determined by photoemission is twice as large as the calculated band gap with
the PBE+vdW functional. This result is not surprising because the KS band gap of

2 Some labels of the special k-points used in this thesis (see App. D.4) differ from the labels in the specified
references.



86 7 Anthracene

Anthracene — band splitting

1 1 I 1 ' 1 ' 1 1 H ! 1 ' 1 '
- (@) :—e— VBsplittingatpt. B [ (b) : 1
_ 08r :—m— CBsplittingatpt. T | [ :
> i : 1T
L 0.6 : B
> i X
50
s 04F B
=
5 X X
0.2 B
0 I 1 : I L 1 A 1 A
4 6 8 10 10 15 20
la+b|/2 [A] el [A]

Figure 7.5: Splitting of both valence (blue circles, VB) and conduction bands (red squares, CB)
for different lengths of the lattice vectors. (a): The lattice vectors a and b are both uniformly
scaled. One molecule is fixed at the cell boundary and the other one is kept in the middle of the
unit cell. Therefore, |a + b|/2 measures the distance between the centroids of two inequivalent
neighboring molecules, see Fig. 7.3. Please note that there is a crossing of the valence bands
at point B close to |a + b|/2 = 4.5A, which implies that the blue curve assumes the value zero.
(b): The lattice vector ¢ is uniformly scaled. Therefore, |c| measures the distance between the
centroids of two molecules in the direction of the long molecular axis, see Fig. 7.2. The black,
dotted line indicates the equilibrium length in both figures.

DFT calculations and the gap measured by photoemission (or photoabsorption) are
two different quantities [Per83, Mar04, Cap06] since the KS band gap is derived from
the eigenvalue spectrum of the non-interacting auxiliary system described in Sec. 2.2.
Higher-level methods such as GW? are required to achieve quantitatively correct band
gaps [Oni02, Rin05].

One distinctive feature of the electronic band structure of anthracene is a splitting
of both valence and conduction bands due to the interaction between the anthracene
molecules. The valence band is split at point B and the conduction band between point B
and I, see Fig. 7.4. Figure 7.5 illustrates that the band splitting is directly related to the
intermolecular interactions. Increasing the distance between the molecules inside the
crystal decreases the degree of splitting. Scaling the lattice vectors a and b uniformly
and keeping one molecule fixed at the cell boundary and the other one in the middle of
the unit cell changes the distance between the molecular planes. Therefore, increasing
a and b leads to a vanishing band splitting, see Fig. 7.5(a). The distance between the
molecules in the direction of their long molecular axis is changed by scaling lattice

3 GW is an approximation for the self-energy of the many-body system. G stands for the single particle
Green’s function and W for the screened Coulomb interaction.
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Figure 7.6: Electronic band structure and density of states (DOS) of crystalline anthracene as in
Fig. 7.4 with the difference that the calculations were performed with the HSE06 functional and
vdW corrections as well as the corresponding optimized crystal structure.

vector ¢ uniformly. Increasing this lattice vector decreases the band splitting, too, see
Fig. 7.5(b). However, the splitting stays non-zero even at large distances. The reason
for this is that the distance between the molecules in ab direction stays constant if c is
scaled, see Fig. 7.2. Hence, the intermolecular interactions between the 7 electrons of
the aromatic rings are still present causing the non-zero band splitting at large lengths
of c. Increasing a and b leads to the case that only molecular interactions in the direction
of the long molecular axis remain, see Fig. 7.3. In this case, only the few atoms at the top
and bottom of the molecules contribute, which is not enough to cause a non-vanishing
band splitting.

In the previous section, it was shown that the PBE+vdW functional yields qualita-
tively the same geometry as the HSE06+vdW functional. In order to underline that
the PBE+vdW functional is well suited for our needs, the band structure of crystalline
anthracene has been calculated with the HSE06+vdW functional in Fig. 7.6. It can be
seen that the shape of the individual bands does not change in comparison to Fig. 7.4.
The bands are only shifted with respect to each other. For this reason, the DOS of the
PBE+vdW and HSE06+vdW functional are very similar, too. Due to the shift of the bands,
the indirect KS band gap between point E and B increases from 1.94eV (PBE+vdW) to
2.70eV and the smallest direct KS gap at point B from 2.04eV (PBE+vdW) to 2.84eV. In
principle, the experimental gap of about 4eV could be obtained by increasing the value
of @ in the HSE(a,0.11bohr™!) functional (Sec. 2.3.5).
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Anthracene — lattice vectors under hydrostatic pressure
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Figure 7.7: Change of lattice vectors under hydrostatic pressure. (a): Absolute length change of
the three lattice vectors. (b): Relative length change of the three lattice vectors.

7.3 Behavior under hydrostatic pressure

We now investigate the behavior of crystalline anthracene under hydrostatic pressure.
First, we discuss the changes in the geometry and compare to experimental results. The
changes in the geometry affect the electronic band structure, which in turn influences
macroscopic properties (intrinsic charge carrier concentration and electrical band con-
ductivity). The changes of the electrical band conductivity under hydrostatic pressure
are analyzed in detail and it is shown that the behavior of the conductivity can be
attributed to specific changes in the band structure.

7.3.1 Geometry

Figures 7.7 and 7.8 show the behavior of the anthracene geometry under hydrostatic
pressure. Since the anthracene crystal is weakly bonded by vdW interactions in all three
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Anthracene — unit cell volume and herringbone angle under hydr. press.
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Figure 7.8: (a): Change of unit cell volume V relative to the volume at zero pressure V un-
der hydrostatic pressure. (b): Change of the herringbone angle 6 (see Fig. 7.3) under hydro-
static pressure. For both figures, the calculated (red circles) and experimental values (black
squares) [Oeh02] are shown.

spatial directions (see Sec. 7.2.1), a strong, non-linear compression of all three lattice
vectors occurs at small pressure, see Fig. 7.7. As the pressure increases, the contraction
becomes linear. On a relative scale, lattice vector a is compressed the most and lattice
vector c the least. The layer structure of the molecules is aligned along c, see Fig. 7.2, and
there is less empty space between the molecules in this direction than in the direction of
a and b, see Fig. 7.3.

The computed change of the unit cell volume under hydrostatic pressure is in
good qualitative agreement with experimental results from Oehzelt et al. [Oeh02], see
Fig. 7.8(a). Figure 7.8(b) shows that the herringbone angle increases under hydrostatic
pressure. The reason for this is that lattice vector a decreases stronger than lattice
vector b on a relative scale (see Fig. 7.7(b)), i.e., the molecules approach each other
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Anthracene — shortest intermolecular distance under hydr. press.
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Figure 7.9: Change of shortest intermolecular distance under hydrostatic pressure, i.e., shortest
distance between carbon and hydrogen atoms on different molecules.

faster in the direction of a than b. In order to achieve a larger distance between the
inequivalent molecules in the direction of a, the herring bone angle increases, see
Fig. 7.3. Qualitatively, this is also in agreement with the measurements from Oehzelt
et al. [Oeh02], even quantitatively for higher pressures. For low pressures (up to 2 GPa),
the measured (125° at 0GPa) and calculated angles (131° at 0GPa) differ. At zero pres-
sure, other experiments have found herringbone angles around 140° as discussed before
(see Tab. 7.1).

Since the unit cell is compressed under pressure, the shortest distance between carbon
and hydrogen atoms on different molecules decreases significantly, too, see Fig. 7.9.
Accordingly, the interaction between the molecules increases as well, which influences
the band splitting as shown before.

7.3.2 Electronic band structure

Figure 7.10 shows that the electronic band gap of anthracene decreases under hydrostatic
pressure. At the PBE level, it decreases by 0.60eV (30 %) from 1.94eV at 0GPa to 1.35eV
at 10.2 GPa. The band gap stays indirect between point E and B over the whole calculated
pressure range. As the molecules come closer to each other under pressure the interaction
between them increases as shown before. Therefore, the splitting of both valence and
conduction bands increases with increasing pressure, see Figs. 7.11 and 7.12, and in
addition, the valence bands start to split at point I'. Figure 7.11 also shows that the
curvature of the segment XT'K in the conduction band and of the segment CED in the
valence band significantly increases under pressure. This means that electronic band
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Anthracene — band gap under hydrostatic pressure
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Figure 7.10: Change of electronic band gap under hydrostatic pressure for the PBE+vdW (blue

circles) and HSE06+vdW functional (black squares). The band gap stays indirect between point E
and B and is shown for the PBE+vdW functional in Fig. 7.11.

Anthracene — band structure under hydrostatic pressure, PBE+vdW
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Figure 7.11: Sections from calculated electronic band structure near the valence band maximum
(black, dotted line) for different pressures for the PBE+vdW functional. For each band segment
between the special k-points, 50 values have been calculated.
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Anthracene — band splitting under hydrostatic pressure
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Figure 7.12: Splitting of valence (black circles, VB) and conduction bands (red squares, CB)
under hydrostatic pressure.

transport is enhanced under pressure, which will be investigated in the next section.

A comparison between the PBE+vdW and HSE06+vdW functional shows that both
functionals yield a similar behavior of the band gap under pressure, see Fig. 7.10. In
the case of the HSE06+vdW functional, the band gap decreases by 0.70eV (26 %) from
2.70eV at 0GPa to 2.00eV at 10.2 GPa. This means that the band offset between the two
functionals (see Sec. 7.2.2) stays almost constant and that the PBE+vdW functional is
also well-suited to predict trends in the band structure under pressure.

7.3.3 Macroscopic transport properties

In this section, we consider electrical band conductivities of anthracene for the intrin-
sic case as well as n- and p-doping with a charge carrier concentration of 10'°cm™2
at zero pressure. The temperature is chosen to be 300K unless noted otherwise. Ac-
cording to Sec. 4.2, the intrinsic charge carrier concentration n; has been determined,
see Fig. 7.13(a). It can be seen that the concentration increases exponentially under
hydrostatic pressure. This behavior is expected because the band gap E,,, decreases
nearly linearly under pressure (see Fig. 7.10) and the charge carrier concentration of
an intrinsic semiconductor (with Fermi level not close to the VBM or CBM) has the
following approximate proportionality [Ash76]:

E
" ocexp(_zkg;;). 7.1)
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Anthracene — Intrinsic charge carrier concentr. and Fermi level under hydr. press.
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Figure 7.13: (a): Change of the intrinsic charge carrier concentration n; under pressure.
(b): Change of the Fermi level under pressure. The VBM is set to zero and the CBM is in-
dicated by the black, dashed line. In the intrinsic case (brown circles), the Fermi level lies in
the middle of the band gap. A doping with a charge carrier concentration of 10! cm~2 at zero
pressure brings the Fermi level closer to the CBM in the n-doping case (red squares) and closer
to the VBM in the p-doping case (blue triangles).

Figure 7.13(b) shows the Fermi level for all three cases (intrinsic, n-, p-doping),
which has been determined according to Sec. 4.2. In the intrinsic case, the Fermi level
lies in the middle of the band gap. It gets closer to the CBM (VBM) for n-doping (p-
doping). Unfortunately, no experimentally measured charge carrier densities could
be found in the literature preventing a comparison of the calculated values. Under
hydrostatic pressure, the relative positions of the Fermi level are preserved for the
three different cases. This means the Fermi level stays in the middle of the band gap
for the intrinsic case and it keeps the same distance to the CBM (VBM) for n-doping

(p-doping).
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Anthracene - intrinsic conductivity under hydrostatic pressure, 400 K
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Figure 7.14: (a): Change of the quantity ¢;;/7 in the intrinsic case under hydrostatic pressure
for the directions along the three lattice vectors i = 4,b,c. The solid, light-colored lines are the
approximations with Eq. (7.2) and ¢;;(0) as starting point. The temperature was increased to
400K in order to avoid numerical difficulties due to low conductivity values. (b): Comparison
between the PBE+vdW and HSE06+vdW functional for the approximation of ¢,, with Eq. (7.2),
The curve of the PBE+vdW functional is the same one as displayed in (a).

Intrinsic band conductivity

Knowing the position of the Fermi level for different pressures, the quantity ¢/ can
be calculated with BoltzTraP, which allows to investigate trends in the electrical band
conductivity ¢ under the assumption of a constant relaxation time 7, see Sec. 4.1.
Figure 7.14(a) shows the change of ¢;;/t in the direction of the three lattice vectors
i =a,b,c under hydrostatic pressure for the intrinsic case. There is a strong increase by
four orders of magnitude between the pressures 0 GPa and 10.2GPa. This behavior is
expected since the intrinsic charge carrier concentration increases exponentially under
pressure (see Fig. 7.13(a)). It can also be seen that the electronic transport is highest
(by one order of magnitude) along the lattice vectors a and b, i.e., in the direction
of the herringbone-stacking. This is expected since this is the direction of the largest
intermolecular interactions as shown in Sec. 7.2.2.

For an intrinsic semiconductor (with Fermi level not close to the VBM or CBM)
the conductivity ¢ is determined in first order approximation by the charge carrier
concentration (see Eq. (7.1)). Thus, the following proportionality holds [Ash76]:
Egap(p)) (7.2)

IR
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Anthracene — extrinsic conductivity under hydrostatic pressure
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Figure 7.15: Change of the quantity ¢;;/7 in the doped case with a charge carrier concentration
of 10! cm~3 at zero pressure under hydrostatic pressure for the directions along the three lattice
vectors i =a,b,c.

with temperature T. We use the value of ¢;;/t at zero pressure as starting point and
Egap(p) from Fig. 7.10. Figure 7.14(a) shows that this approximation reproduces ¢;;/t
very well. This means that the change in intrinsic conductivity under pressure mainly
stems from the change of the band gap under pressure and that other effects (changes in
the form of the band structure) only play a minor role.

The band gaps of the PBE+vdW and HSE06+vdW functional follow the same trend;
they are only shifted against each other by an approximately constant factor (see
Fig. 7.10). Therefore, the approximation to the intrinsic conductivity (Eq. (7.2)) shows
the same trend for both functionals, see Fig. 7.14(b). However, ¢;;/7 is much lower for
the HSE06+vdW functional due to the larger band gap. This means that fewer free
charge carriers are present in the valence and conduction bands (see Eq. (7.1)).

Extrinsic band conductivity

However, this is different for the doped case. For doping with a charge carrier concentra-
tion of 10'°cm™3 at zero pressure, see Fig. 7.13(b), the Fermi level is close to the CBM
or VBM and remains in this region even under pressure. This means that a change in
the band gap does not have a big influence on the conductivity. Instead, changes of the
bands near the CBM or VBM affect the conductivity depending where the Fermi level
is closer to. Figure 7.15 shows the change of ¢;;/7 in the direction of the three lattice
vectors i = a,b, ¢ for n- and p-doping with a charge carrier concentration of 10!” cm™ at
zero pressure under hydrostatic pressure.

For n-doping, ¢,,/7 and ¢../7 increase under pressure, however, ¢;;/t increases only
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slightly in the beginning and stays roughly constant afterwards, see Fig. 7.15(a). This
behavior can be explained by looking at the change of the bands near the CBM (Fig. 7.11).
The segments XI'K and K BI in the band structure correspond mainly to the directions
along lattice vector a and c, respectively. In these two segments, the curvature, i.e., the
group velocity (Eq. (4.4)), of the bands increases significantly under pressure. A larger
group velocity translates into a larger conductivity since the latter is proportional to the
outer product of the group velocity, see Egs. (4.1) and (4.3). This explains the increase of
Caa/T and ¢/t under pressure near the CBM (Fig. 7.11). The segment TY in the band
structure corresponds to the directions along lattice vector b. There, the curvature of the
bands hardly changes under pressure, thus ¢;;/7 changes only slightly.

For p-doping, all three conductivities increase under pressure roughly uniformly, see
Fig. 7.15(b). Figure 7.11 shows that the curvature of the valence band in the segment
CED, which includes the VBM, increases under pressure. Since this segment includes
the directions of all three lattice vectors, the relative increase of ¢,,/7, ¢p,/T and ¢../T
under pressure is approximately the same.

Comparison to experiment

Pohl et al. [Poh62] measured an increasing electrical conductivity with increasing pres-
sure for a crystalline anthracene sample in agreement with our findings. However, many
experimental details are unknown so that further and more detailed comparisons are
not possible. Kajiwara et al. [Kaj67] measured an increasing electron mobility with in-
creasing pressure for anthracene crystals. Mobility y. and electrical conductivity ¢ are
related by [Ash76]

G =eNncle (7.3)

with 7. the charge carrier concentration of electrons and e the elementary charge. All
microscopic effects of the Boltzmann transport equation that affect the conductivity
are combined in the macroscopic mobility. Due to Eq. (7.3), the measured increase in
mobility translates to an increase in conductivity under pressure (7. increases under
pressure, too, since the volume of the unit cell decreases), which supports our findings.
Additionally, experiments [Pot69, Kar0O1b] report that the electron mobility is highest
along lattice vector a and the hole mobility is highest along lattice vector b. This is
consistent with our results, see Fig. 7.15. For n-doping (p-doping), the conductivity is
dominated by electrons (holes) and the highest conductivity is along lattice vector a (b).

7.4 Summary

The geometric and electronic properties of crystalline anthracene have been investigated
in detail at zero pressure and under hydrostatic pressure in this chapter. We find that
GGA functionals are sufficient to describe the geometric properties of anthracene and
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it is important to include vdW corrections to obtain reasonable unit cell volumes. The
interaction between the molecules in the crystal lead to a splitting of valence and
conduction bands. This interaction is enhanced under hydrostatic pressure because
the crystal gets compressed, and in turn, the band splitting increases. Due to the band
gap reduction under pressure, the charge carrier concentration and the electrical band
conductivity strongly increase in the intrinsic case. The intrinsic conductivity is one
order of magnitude larger along the lattice vectors a and b than in the direction of
lattice vector c. The changes in the band structure near the CBM and VBM determine the
behavior of conductivity in the doped case. The extrinsic conductivity is highest along
lattice vector a (b) for n-doping (p-doping), which is in agreement with experimental
measurements.






Polyacetylene

Organic crystals that consist of conjugated polymers form another class of organic semi-
conductors. The most fundamental and simplest polymer in this class is polyacetylene
(IUPAC name: polyethyne). This polymer is a formally infinite, linear chain of sp? hy-
bridized carbon atoms each having one bonded hydrogen atom. In a crystal, two of
these chains are periodically repeated. The chains can have cis or trans configuration;
in our studies, we exclusively investigate trans-polyacetylene (TPA). In 1977, it was
discovered that the electrical conductivity of polyacetylene can be increased by many
orders of magnitude to values comparable to metals through doping [Chi77, Shi77]. By
introducing molecules that accept or donate electrons, n- or p-type semiconducting poly-
acetylene can be produced [Chi78b, Chi78a, Kwa79, Gha86]: p-doping can be achieved
by adding electron accepting substances such as halides or arsenic pentafluoride. Conse-
quently, the carbon chain becomes partially oxidized, i.e., electrons are lost. Analogously,
n-doping is obtained by adding electron donating substances such as alkali metals.
In this case, the carbon chain becomes partially reduced, i.e., electrons are gained. It
is possible to produce highly crystalline polyacetylene film with highly oriented car-
bon chains [Lei84, Moo87, Cao91]. The crystalline structure of polyacetylene is robust
against moderate doping and no significant loss in crystallinity occurs [Moo87, Ca091].

Experiments [Fin82, Yan83, Kah87, Moo87, Zhu92] have shown that crystalline poly-
acetylene has a broken symmetry ground state: The bond lengths between the carbon
atoms in the polymer are not equal. Instead, there is an alternation between longer
(single) and shorter (double) bonds (Peierl’s distortion). The length difference between
the two different bonds is specified either by the bond length alternation (BLA) or
the dimerization (Az), see Fig. 8.1. These two quantities are approximately related by:
BLA ~ V3Az. Quite early, 1D model Hamiltonians such as the Su-Schrieffer-Heeger (SSH)
one [Su79], which account for electron-phonon interaction on a parametric basis, were
able to rationalize the dimerization. However, the SSH Hamiltonian does not include
electron-electron interaction so that several subsequent studies [Wu87, Bré89, Kon90]
have investigated the role of electron-electron interaction and electron correlation on
the dimerization.

Standard DFT calculations with LDA or GGA functionals have problems reproducing
the correct ground state of TPA. They give dimerizations that are too small or even
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Figure 8.1: Sketch showing how the alternation between single and double bonds is measured
for the carbon (C) chain of trans-polyacetylene (hydrogen atoms are omitted). The bond length
alternation (BLA) measures the difference between the length of a single and a double bond.
The dimerization Az measures the difference between the distance of single bonded and double
bonded carbon atoms along the chain direction.

zero [Ash89, Vog90, Suh95, Cho97, Hir98, Korl2] mainly due to the self-interaction
error (see Sec. 2.3.3). Hybrid functionals do better in predicting the right dimeriza-
tion [Suh95, Cho97, Hir98, Korl12]. However, they employ at least one parameter,
namely the amount « of added HF exchange. In general, « is system dependent [Mar11]
and in the case of polyacetylene, the dimerization depends strongly on a. There are
efforts to obtain « in an ab initio manner by using quasiparticle corrections obtained
by GW calculations [Atal3b, Ric13]. However, it is unclear if such a procedure is pos-
sible in the case of polyacetylene. For an isolated chain, Korzdorfer et al. [Kor12] have
demonstrated that no single value of « is able to yield the correct dimerization and
simultaneously a vanishing many-electron self-interaction error. They have investigated
finite conjugated carbon chains (polyenes) of increasing length and have calculated the
dimerizations for different chain lengths with the quantum chemistry method CCSD(T)!.
The so obtained length-dimerization curve is closely reproduced by the HSE(«, 0) func-
tional (Sec. 2.3.5) with a = 0.4573 (i.e. no screening and no vdW corrections). However,
they have demonstrated that this value of « yields an increasing many-electron self-
interaction error with increasing chain length. Since Korzdorfer et al. have only focused
on the isolated chain, it is unclear to which extent this statement holds in the bulk
material given that interchain interactions affect the electronic structure considerably
(see below). In spite of the fact that high-level calculations such as CCSD(T) are capable
of producing very accurate results, their excruciating computational cost limits their
applicability to non-periodic systems with the number of atoms in the order of ten.
A detailed comparison to experiments is also difficult because there are no accurately
measured dimerizations available for crystalline TPA.

Our investigation of crystalline TPA under hydrostatic pressure is divided into three
parts: First, its equilibrium geometry is characterized and we discuss which DFAs are
suitable for the description of this system. This includes a critical discussion of the

1 CCSD(T) stands for the coupled cluster method with a full treatment of single and double excitations
and a perturbative treatment of triple excitations.
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dimerization in dependence of the chosen DFA. Based on the optimized equilibrium
geometry, the electronic band structure is studied. Second, the behavior of dimerization
and electronic band structure properties is investigated under uniaxial strain along the
carbon chain and uniform biaxial strain in both orthogonal directions. This helps us to
understand which properties are influenced by which geometry changes and it allows
to investigate which features change between the two limiting cases: isolated chains
and bulk system. Third, the change of the geometry, band structure, and macroscopic
properties (intrinsic charge carrier concentration and electrical band conductivity) under
pressure is investigated in detail and it is demonstrated how they depend on each other.
We start by briefly summarizing which numerical settings were used for the calculation
of crystalline TPA.

8.1 Numerical settings

The standard tight integration grid of FHI-aims is used. In order to ensure a convergence
of total energy differences below 1 meV per atom, the “tier 1+” basis set (App. D.1) is
used. It is known in the literature [Min87, Ash89, Sun02] that the number of k-points
along the carbon chain is critical for the correct description of the dimerization. There-
fore, we ensure that the k-point grid is converged with respect to the dimerization
(convergence below 1073 A) and with respect to total energy differences (convergence
below 1 meV per atom). This level of convergence is achieved by sampling the Bril-
louin zone with a very dense k-point grid of size 8x4x24%. Overall, these settings
deliver a good accuracy within acceptable computational cost. More details about the
basis set convergence and the k-point grid can be found in Apps. D.2.2 and D.3.2.
The LDA and PBE functional as well as the HSE family of functionals (Sec. 2.3.5)
are used as DFAs for the study of TPA. Here, we use a fixed screening parameter
@ = 0.11bohr~! for the HSE family of functionals and the notation is abbreviated as
follows: HSE(a) = HSE(a, 0.11 bohr™1).

8.2 Properties at zero pressure

We characterize the properties of crystalline TPA at zero pressure, i.e., its geometry
and its electronic band structure. For the geometry, we first summarize the available
experimental data and then discuss the dimerization and optimized unit cell obtained
by different DFAs.

2 In addition to the convergence of the dimerization and of total energy differences, dense k-point grids
are needed to accurately describe the strong local band dispersion that is present in the band structure of
TPA, e.g., in the segment YD and BT in Fig. 8.8. Also, the dispersion locally increases under pressure (see
Fig. 8.19), which has to be captured accurately.
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Figure 8.2: Unit cell of crystalline trans-polyacetylene in the P2,/a structure with the three
lattice vectors a, b, ¢, and the monoclinic cell angle § (measured between a and c). In the
direction of ¢, two periodic images were added in order to highlight the two chains. Carbon
atoms are gray, hydrogen atoms white. The geometry from Exp. [Kah87] (Tab. 8.1) is displayed.

Figure 8.3: View along lattice vector a for
crystalline trans-polyacetylene. In the direc-
tion of ¢, two periodic images were added in or-
der to highlight the two chains. Carbon atoms
are gray, hydrogen atoms white. The unit cell
is indicated by the box.

Figure 8.4: View along lattice vector ¢ for crys-
talline trans-polyacetylene. Carbon atoms are
gray, hydrogen atoms white. The unit cell is in-
dicated by the box. This view shows the setting

angle ¢.
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Figure 8.5: Sketches showing P2;/a (left) and P2;/n (right) structure of trans-polyacetylene. The
view is along lattice vector a and carbon atoms are gray, hydrogen atoms white. The unit cells are
indicated by the boxes. For P2,/a, the alternation between single and double bonds is in-phase
between the two chains, whereas for P2;/#n, the alternation is in anti-phase.

8.2.1 Geometry
Experimental geometry

The unit cell of crystalline TPA is monoclinic of and consists of two inequivalent parallel
unsaturated carbon chains, see Figs. 8.2, 8.3, and 8.4. The chains are oriented along
lattice vector ¢ and there are four carbon and four hydrogen atoms per unit cell in
total. The chains are rotated with respect to each other around the lattice vector c. The
setting angle ¢» measures this rotation relative to the bc plane, see Fig. 8.4. Two different
crystalline domains, namely P2,/a and P2,/n have been suggested [Fin82, Kah87], see
Fig. 8.5. The two structures can be converted into each other by shifting one chain by
¢/2 with respect the other. For the P2,/a structure, the alternating pattern of single
and double bonds is in-phase between the two chains, whereas, it is in anti-phase for
the P2,/n structure. Consequently, the shortest distance between carbon and hydrogen
atoms on different chains is smaller for the P2;/a structure, which implies a stronger
interaction between the chains. This thesis focuses on the P2;/a structure since both
structures behave qualitatively similar under pressure in our studies.

X-ray studies of crystal structure of TPA have been performed by several experi-
ments [Fin82, Kah87, Zhu92]. The unit cell parameters and setting angle are very similar
in all experiments and the individual values can be found in Tab. 8.1. In this table, the
monoclinic angle is = /(a,c). For crystalline TPA, experiments [Fin82, Yan83, Kah87]
have measured a dimerization Az ~ 0.05A.

Dimerization for different DFAs

For the investigation of the dimerization, we start with the experimental unit cell of
Exp. [Kah87], see Tab. 8.1, and then calculate the total energy-dimerization curve for
different DFAs. Figure 8.6 shows that the LDA and PBE functional fail to predict the
right ground state of TPA as expected. A dimerization Az = 0 is obtained, which means
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Table 8.1: Unit cell parameters and setting angle ¢ of optimized unit cell of crystalline TPA
for different DFAs. The expression /(a, b) denotes the angle between lattice vector a and b. For
comparison, the experimentally measured parameters are listed. For all experiments, no specific
temperature was given.

° o o ° ° ° ° 3 °
DFA lal [A] [bI[A] |el[A] 4(a,b)[°] sac)[°] be)[°] VI[AT] ¢[°]
HSE(0.25) 477 823 247 755 100.3 90.8  92.6 47.3
HSE(0.25)+vdW 4.00 7.40 245  89.2 88.6 1042 702 48.2
HSE(0.50)+vdW 3.90 7.52  2.44 893 93.1  108.0  67.9 467
HSE(0.75)+vdW 3.82 7.44 242 888 94.8  107.8 654 456
HSE(1.00)+vdW 3.75 7.38 241 887 95.9  107.8  63.1 447
Exp. [Fin82] 424 732 246 900 91.5 90.0 763 55
Exp. [Kah87] 418 734 246  90.0 90.5 90.0 755 57
Exp. [Zhu92] 410 739 246 900 92 90.0 745 55

TPA - dimerization for different DFAs, experimental unit cell
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Figure 8.6: Predicted dimerization Az of crystalline TPA for different DFAs. The ordinate shows
the total energy relative to the value of Az = 0 for each curve. The energy-dimerization curve
is shown for the LDA and PBE functional as well as the HSE(«a) functional (Sec. 2.3.5) with
different a. The calculations were performed for the experimental unit cell of Exp. [Kah87], see
Tab. 8.1. The atomic positions are first optimized for each DFA, and the atoms are then positioned
according to the dimerization. For the resulting structures, the total energy is calculated.
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that all carbon-carbon bonds have the same length. Therefore, the system is metallic
since there is one free electron per carbon atom in this case. As mentioned previously,
the broken symmetry ground state is correctly obtained by using a hybrid functional
such as HSE. It can be seen in Fig. 8.6 that the dimerization depends on the amount of
added HF exchange a. The higher a, the higher is the dimerization.

Our calculations show that (at least) hybrid functionals are clearly needed to describe
the internal geometry of TPA correctly since LDA and GGA functionals are insufficient
for this task. Qualitatively, the results of Tab. 8.1 do not change upon including vdW
corrections. Next, we discuss how hybrid functionals perform for the description of the
unit cell of crystalline TPA.

Optimized unit cell: The full picture

We have optimized the geometry (atomic positions and unit cell) of crystalline TPA
for the HSE(«) functional (Sec. 2.3.5) with different a and Tab. 8.1 shows the resulting
unit cell parameters and setting angle. As was already shown in the case of crystalline
anthracene (see Sec. 7.2.1), vdW interactions are needed to obtain reasonable unit cell
volumes. Lattice vector c is barely sensitive to the chosen DFA since it this is the direction
of the carbon chains, i.e., the strong covalent bonds. In contrast, lattice vector a and b
are overestimated if no vdW corrections are included. This result shows clearly that the
bonding between the individual carbon chains of crystalline TPA is predominantly of
vdW nature. In addition, Tab. 8.1 shows that unit cell volume and setting angle decrease
for increasing a of the HSE(a)+vdW functional. As mentioned before, vdW interactions
have no direct influence on the dimerization but an indirect one due to the changes in
the lattice vectors.

In comparison to experimental values, the unit cell volume and lattice vector lengths
of the HSE(a)+vdW functional agree reasonably well. However, we obtain a triclinic
unit cell instead of a monoclinic one. The largest difference is for the angle between
lattice vector b and c. The experimental one is 90°, the calculated one is about 110°. As
in the case of crystalline anthracene for the herringbone angle (see Sec. 7.2.1), larger
differences are also found for the setting angle for all considered DFAs. They differ
by about 10° from experimental values. The orientation of the chains with respect to
each other and the unit cell parameters are interrelated because they determine the
interaction strength between the chains. Since our calculated unit cell parameters are
not in exact agreement with the experimental values, it is not surprising that the setting
angle differs, too.

It was shown that vdW corrections are essential for the adequate description of the
geometry of crystalline TPA, analogously to crystalline anthracene. The HSE(a)+vdW
functional is able to yield unit cells and setting angles with reasonable agreement to
experiments for all considered «a. As a last step, we combine the dimerization study with
the optimized unit cell.
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Figure 8.7: Left: Predicted dimerization Az of crystalline TPA for different values of « of the
HSE(a)+vdW functional (Sec. 2.3.5). The ordinate shows the total energy relative to the value
of Az = 0 for each curve. Right: Dependence of the band gap on Az and on the used a. The
calculations were performed by taking the unit cell of the fully optimized structure for each
value of o (Tab. 8.1) and positioning the atoms according to the dimerization. Afterwards the
positions of the hydrogen atoms are optimized (everything else is kept fixed) and total energy as
well as band gap of the resulting structure are calculated.

Table 8.2: Dimerization Az for different a of the HSE(a)+vdW functional (Sec. 2.3.5). The
dimerizations are obtained by a cubic spline interpolation of the total energy-dimerization
curves in Fig. 8.7.

a 0.25 0.5 0.75 1.0
Az [A] 0.028 0.040 0.050 0.058

For each value of a of the HSE(a)+vdW functional, the total energy-dimerization
curve is calculated for the corresponding unit cells given in Tab. 8.1. As already seen pre-
viously in Fig. 8.6, the dimerization increases with increasing «, see Fig. 8.7 and Tab. 8.2.
Extrapolating the dimerizations for finite and isolated conjugated carbon chains of in-
creasing length calculated with CCSD(T) by Korzdorfer et al. [Kor12] yields Az ~ 0.047 A.
The electronic band gap of crystalline TPA depends strongly on the dimerization, too,
see Fig. 8.7, besides the fact that it depends on a.

As explained in the beginning of this chapter, it is unclear whether there is a value of
a that yields a quantitatively correct description for all properties of crystalline TPA.
Comparison to Korzdorfer et al. shows that the properties of TPA sensitively depend on
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Figure 8.8: Left: Electronic band structure of crystalline TPA. The valence band maximum (VBM)
and conduction band minimum (CBM) are indicated. There is an indirect band gap between
point B and E. The energy zero was set to the valence band maximum and the coordinates of
the special k-points can be found in App. D.4. Right: Corresponding density of states (DOS) in
arbitrary units with a Gaussian broadening of 0.05eV. The calculations were performed for the
optimized crystal structure with the HSE(0.5) functional and vdW corrections. For each band
segment between the special k-points, 50 values have been calculated.

the value of @ and on the environment. For instance, the extrapolated CCSD(T) value of
Az ~ 0.047 A lies between our calculated dimerizations with the screened HSE(a)+vdW
functional for &« = 0.5 and 0.75 (see Tab. 8.2), while Korzdorfer et al. find @ = 0.4573 more
appropriate in their calculations with the unscreened HSE(«, 0) functional. Therefore,
we have chosen both a = 0.5 and 0.75, which yields reliable results for quantities we
are interested in. The predicted dimerization is large enough, Az ~ 0.04A and 0.05A4,
respectively (see Tab. 8.2), and the band gap is large enough so that the system becomes
semiconducting as soon as Az # 0, which is not the case for a = 0.25, see Fig. 8.7. By
choosing a certain value for a, we cannot expect to correctly reproduce absolute values
for TPA. However, we are confident that we can correctly describe trends since our
starting geometry has qualitatively the correct features (non-zero dimerization, large
enough band gap).

8.2.2 Electronic band structure

As a next step, we investigate and characterize the electronic band structure of crystalline
TPA, which is needed to understand the behavior of the electronic properties under
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Figure 8.9: Splitting of valence (blue circles, VB) and conduction bands (red squares, CB) for
different distances between the carbon chains. The black, dotted line indicates the equilibrium
distance. The distance between the chains is changed by scaling the lattice vectors a and b
uniformly and keeping one chain fixed at the cell boundary and the other one in the middle of
the unit cell, see Fig. 8.4.

pressure. For this study, the optimized geometry obtained in Sec. 8.2.1 is used. The
calculated electronic band structure for TPA is displayed in Fig. 8.8 and is consistent with
previously calculated band structures [Vog89, Pus02, Tia04]>. The bands are relatively
flat in the region of the VBM and CBM meaning that electronic band transport is rather
weak at zero pressure. We find an indirect KS band gap of 1.12eV between point B
and E and the smallest direct KS gap of 1.27eV is at point E. The coordinates of the
special k-points are given in App. D.4. An indirect optical absorption gap of 1.1eV and
a direct gap of 1.4eV is reported by Fincher et al. [Fin79]. In general, optical absorption
experiments report values of about 1.5eV [Tan80, Mos82, Bri86, Lei88]. We stress that
we do not equate the electronic band gap with the optical absorption gap, however,
it is reassuring that the two values are in the same order of magnitude since they are
correlated with each other to some extent.

As in the case of anthracene, there is a splitting of both valence and conduction bands
due to the interaction between the carbon chains. The valence band and the conduction
band are split at point E, see Fig. 8.8. Figure 8.9 illustrates that the band splitting
is directly related to the interchain interactions. Increasing the distance between the
carbon chains inside the crystal decreases the amount of the splitting. In the limit of

3 Some labels of the special k-points used in this thesis (see App. D.4) differ from the labels in the specified
references.
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Figure 8.10: Electronic band structure and density of states (DOS) of crystalline TPA as in
Fig. 8.8 with the difference that the calculations were performed with the HSE(0.75) functional
and vdW corrections as well as the corresponding optimized crystal structure.

isolated chains, the band splitting vanishes and valence as well as conduction band
become completely flat.

Qualitatively, the electronic band structure and DOS calculated with the HSE(a)+vdW
functional for @ = 0.5 and 0.75 show no qualitative difference (compare Fig. 8.8 and
Fig. 8.10). It can be seen that the shape of the individual bands does not change qualita-
tively. The bands are shifted with respect to each other so that the indirect KS band gap
between point B and E increases from 1.12eV (a = 0.5) to 2.07eV and the smallest direct
KS gap at point E from 1.27eV (a = 0.5) to 2.19eV. The splitting of the VBM increases
from 0.38eV (a = 0.5) to 0.46eV while the splitting of the CBM decreases from 0.30eV
(¢ =0.5)to 0.27eV.

8.3 Behavior under strain

In this section, the behavior of the dimerization and of electronic band structure prop-
erties under strain is investigated. As a zero strain reference, the optimized unit cell
from Sec. 8.2.1 is used. The unit cell is strained in the z direction (¢,,), i.e., along the
carbon chains, and uniformly in the x and y directions (e, = ¢,,), which changes the
interchain distance. The atomic positions are then optimized inside the distorted unit
cell. This allows to create two dimensional contour plots for the strain dependency of
the investigated quantities and to investigate which features change how between bulk
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Figure 8.11: (a): Contour plot for the dimerization Az of crystalline TPA under strain e. The
crystal is strained in the z direction along the carbon chains and uniformly in the x and y
directions. (b): Cut through the contour plot in (a) along the line ¢,, = 0. The ordinate shows the
dimerization Az relative to the zero strain reference.

(€xx = €yy = 0) and isolated chain limit (e, &,y — 00).

Figure 8.11(a) shows such a contour plot for the dimerization of the carbon chains.
It can be seen that the dimerization depends strongly on ¢,,, i.e., the length of lattice
vector c. In contrast, the dimerization depends only minimally on &,,/ Epys i.e., the
distance between the chains as long as the carbon atoms inside the chains are not
squeezed together significantly (negative ¢,,). Still, the change of the dimerization from
zero strain to more distant chains (&y, = €, = 0.3) is about 0.001 A (see Fig. 8.11(b)),
which corresponds to a change in « (the amount of added HF exchange) of roughly 0.03
(see Tab. 8.2).

For the splitting of the valence and conduction bands at point E, the dependence on
the strain direction is reversed in comparison to the dimerization, see Figs. 8.12 and 8.13.
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Figure 8.12: Contour plot for the splitting of the valence band at point E of crystalline TPA
under strain €. The crystal is strained in the z direction along the carbon chains and uniformly

in the x and p directions. The lower left corner is left open since the band gap in this region is
zero and the bands are crossing.
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Figure 8.13: Contour plot for the splitting of the conduction band at point E of crystalline TPA
under strain €. The crystal is strained in the z direction along the carbon chains and uniformly
in the x and y directions. The lower left corner is left open since the band gap in this region is

zero and the bands are crossing.
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Figure 8.14: Contour plot for the band gap Eg,, of crystalline TPA under strain ¢. The crystal is
strained in the z direction along the carbon chains and uniformly in the x and y directions.

The splitting depends strongly on ¢,,/¢,, but only slightly on ¢,,. As already seen in
Fig. 8.9, the band splitting increases with decreasing interchain distance, i.e., decreasing
€xx/€yy- The dependence of the splitting on ¢, shows no clear behavior. Upon changing
&5, 1.€., the lattice vector c, the carbon atoms move sideways within the chains and in
addition, the chains move with respect to each other in order to adjust the interchain
distance. This behavior modifies the interchain interactions in a non-linear way and
thereby the band splitting.

The behavior of the band gap under strain depends both on the dimerization and the
band splitting. Larger dimerizations mean a larger band gap, see Fig. 8.7, and larger
splittings of valence and conduction bands mean a smaller band gap, see Fig. 8.8. The
interplay of these two effects can be seen in Fig. 8.14. Increasing &,,/¢,, as well as €.,
increases the band gap. Thus, we expect that crystalline TPA behaves the other way
round under hydrostatic pressure since this compresses the unit cell, which corresponds
to decreasing ¢,,/€,, and ¢,,, and therefore leads to a decrease in the band gap.

All shown contour plots for the strained unit cell are qualitatively the same for
the HSE(0.75)+vdW functional and the dimerization changes by the same amount
(about 0.001 A) when going from the zero strain reference to more distant chains. Since
the dimerization and the band gap sensitively depend on the amount of added HF
exchange a (see Fig. 8.7), the actual numbers differ between the HSE(0.5)+vdW and
HSE(0.75)+vdW functional.

Our strain studies show that the dimerization of the carbon chain only slightly changes
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Figure 8.15: Change of lattice vectors under hydrostatic pressure. (a): Absolute length change of
the three lattice vectors. (b): Relative length change of the three lattice vectors.

with the distance between the chains. This means that the dimerizations of single (iso-
lated) TPA chains and crystalline TPA are comparable. Still, there is a slight difference
(about 0.001 A) between isolated and interacting chains, which in turn correspond to
changes in a. Hence, a direct comparison between the values of a for bulk systems and
isolated chains is not possible. In contrast to the dimerization, the electronic-structure
properties sensitively depend on the interactions between the chains so that these prop-
erties significantly differ for bulk system and isolated chain. This suggests that not every
result for the isolated chain can be directly transfered to the bulk system and vice versa.

8.4 Behavior under hydrostatic pressure

In the previous section, we have investigated the behavior of the dimerization and of
electronic band structure properties under strain. However, the strained unit cell has
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Figure 8.16: (a): Change of unit cell volume V relative to the volume at zero pressure V under
hydrostatic pressure. (b): Change of the setting angle ¢ (see Fig. 8.4) under hydrostatic pressure.
(c): Change of shortest interchain distance under hydrostatic pressure, i.e., the shortest distance
between carbon and hydrogen atoms on different chains.



8.4 Behavior under hydrostatic pressure 115

TPA - band gap under hydrostatic pressure

' 1 ' 1 ' 1 ' 1 ' 1 ' 1 '
1-4'l:+ —@— This work .
":':\_,_\ -+- Experiment (I)
1.2 F X\j— -x- Experiment (II) A

Band gap [eV]

0 1 2 3 4 5 6 7
Pressure [GPa]

Figure 8.17: Change of electronic band gap under hydrostatic pressure. The band gap is indirect
between point B and E up to 2.8 GPa. Afterwards, the band gap is direct at point E, see Figs. 8.18
and 8.19. Experiment (I) [Mos82] and experiment (II) [Bri86] show results of optical absorption
measurements under hydrostatic pressure.

been kept fixed. In order to get a more realistic picture and to allow for changes of the
other lattice vectors when one lattice vectors changes, we apply hydrostatic pressure
to crystalline TPA. First, we discuss the changes in the geometry and these changes
affect the electronic band structure, which in turn influences the electrical conductivity.
The changes of the electrical conductivity under hydrostatic pressure are analyzed in
detail and it is shown that the behavior of the conductivity can be attributed to specific
changes in the band structure.

8.4.1 Geometry

Figures 8.15 and 8.16 show how the geometry of the TPA crystal system behaves under
hydrostatic pressure. The lattice vector ¢, which is in direction of the carbon chains,
hardly changes under pressure due to the strong covalent bonds. In the other two
directions, a and b, the crystal is only weakly bonded by vdW interactions (see Sec. 8.2.1)
and thus, much softer so that a strong, non-linear compression occurs at small pressure.
As the pressure increases, the contraction becomes linear. On a relative scale, lattice
vector a is compressed the most and lattice vector c the least. Figure 8.16(b) shows that
the setting angle decreases under hydrostatic pressure. The reason for this is that lattice
vector a decreases stronger than lattice vector b on a relative scale (see Fig. 8.15(b)), i.e.,
the chains approach each other faster in the direction of a than b. In order to achieve
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Figure 8.18: Change of the energy gap between point B and E (blue squares) and of the energy
gap at point E (brown triangles) under hydrostatic pressure. The position of these gaps is
displayed in Fig. 8.19. For reference, the band gap (empty black circles) from Fig. 8.17 is shown,
too.
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Figure 8.19: Sections from calculated electronic band structure near the valence band maximum
(black, dotted line) for different pressures. The calculations were performed with the HSE(0.5)
functional and vdW corrections. For each band segment between the special k-points, 50 values
have been calculated.
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Figure 8.20: Splitting of valence band at point E under hydrostatic pressure.

a larger distance between the equivalent chains in the direction of a, the setting angle
decreases, see Fig. 8.4. The unit cell compression goes hand in hand with a decrease
in the shortest distance between carbon and hydrogen atoms on different chains, see
Fig. 8.16(c). In turn, this translates in an increased interaction between the chains, which
also affects the electronic structure.

8.4.2 Electronic band structure

Figure 8.17 shows that the electronic band gap of TPA decreases under hydrostatic
pressure as expected from Fig. 8.14. It decreases by 0.51eV (46 %) from 1.12eV at 0GPa
to 0.61eV at 6.4GPa. There is a transition from an indirect (between point B and E) to
a direct band gap (at point E) at about 2.8 GPa as shown in Fig. 8.18: As the carbons
chains come closer to each other under pressure, the increased interaction enhances the
splitting of the valence bands, see Figs. 8.19 and 8.20. At about 2.8 GPa, the splitting at
point E becomes so large that E becomes the VBM (instead of point B). Since the CBM is
lowered under pressure but stays at point E, the band gap becomes direct. This is the
reason for the kink in our data in Fig. 8.17. Figure 8.19 also shows that the curvature of
the segments BA and ED in the conduction band significantly increases under pressure.

Comparing our results to optical absorption experiments [Mos82, Bri86], see Fig. 8.17,
shows that we reproduce the trend of the band gap under pressure very well. However,
these experiments do not report the nature of the band gap (direct/indirect) so that we
cannot verify the transition from an indirect to a direct band gap.

For the HSE(0.75)+vdW functional, the electronic band gap shows similar, but quali-
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Figure 8.21: Sections from calculated electronic band structure near the valence band maximum
(black, dotted line) for different pressures. The calculations were performed with the HSE(0.75)
functional and vdW corrections. For each band segment between the special k-points, 50 values
have been calculated.

tatively and quantitatively different effects compared to the HSE(0.5)+vdW functional.
It decreases by 0.51eV (25%) from 2.07eV at 0GPa to 1.56eV at 6.4GPa. However, it
stays indirect: The splitting of the valence bands at point E increases (see Fig. 8.21), but
due to the fact that the valence band at point E lies initially lower, the splitting under
pressure is not large enough to make point E the VBM in the considered pressure region.
Instead, the VBM changes from point B to D at about 4.5GPa.

8.4.3 Macroscopic transport properties

In this section, we consider electrical conductivities of TPA for the intrinsic case as well
as n- and p-doping with a very high charge carrier concentration of 10>! cm~2 at zero
pressure. This concentration is among the highest values reported by experiments. The
temperature is set to 300K. According to Sec. 4.2, the intrinsic charge carrier concen-
tration n; has been determined, see Fig. 8.22(a). It can be seen that the concentration
increases roughly exponentially under hydrostatic pressure. As in the case of anthracene
(see Sec. 7.3.3), this behavior is expected: The band gap Eg,,, decreases approximately
linearly under pressure (see Fig. 8.17) and the intrinsic charge carrier concentration has
approximate proportionality shown in Eq. (7.1).

Figure 8.22(b) shows the Fermi level for all three cases (intrinsic, n-, p-doping), which
has been determined according to Sec. 4.2. In the intrinsic case, the Fermi level lies in
the middle of the band gap. It gets close to the CBM (VBM) for n-doping (p-doping)
and TPA becomes almost metallic. This is consistent with experimental findings, which
report metallic behavior of TPA for charge carrier densities around 10?2cm™ [Shi67,
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Figure 8.22: (a): Change of the intrinsic charge carrier concentration n; under pressure.
(b): Change of the Fermi level under pressure. The VBM is set to zero and the CBM is in-
dicated by the black, dashed line. In the intrinsic case (brown circles), the Fermi level lies in
the middle of the band gap. A doping with a charge carrier concentration of 102! cm~2 at zero
pressure brings the Fermi level close to the CBM in the n-doping case (red squares) and close to
the VBM in the p-doping case (blue triangles).

Wei79, Vdak93]. Under hydrostatic pressure, the relative positions of the Fermi level are
preserved for the three different cases. This means the Fermi level stays in the middle of
the band gap for the intrinsic case and it keeps the same distance to the CBM (VBM) for

n-doping (p-doping).

Intrinsic band conductivity

Knowing the position of the Fermi level for different pressures, the quantity ¢/7 can
be calculated with BoltzTraP, which allows to investigate trends in the electrical band
conductivity ¢ in the constant relaxation time approximation, see Sec. 4.1. Figure 8.23
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Figure 8.23: Change of the quantity ¢;;/7 in the intrinsic case under hydrostatic pressure for
the directions along the three lattice vectors i = a,b,c. The solid, light-colored lines are the
approximations with Eq. (7.2) and ¢;;(0) as starting point.

shows the change of ¢;;/7 in the direction of the three lattice vectors i = a,b,c under
hydrostatic pressure for the intrinsic case. There is a strong increase by four orders of
magnitude between the pressures 0 GPa and 6.4 GPa. This behavior is expected since the
intrinsic charge carrier concentration increases roughly exponentially under pressure
(see Fig. 8.22(a)). In comparison to anthracene, this increase is stronger. ¢/7 increases
by the same relative amount for anthracene but the pressure increase is 10.2GPa in
this case. It can also be seen that the electronic transport is highest (by two orders
of magnitude) along the lattice vector ¢, i.e., along the carbon chains. This is not too
surprising since this is the direction of the conjugated bonds.

Equation (7.2) can be used again for approximating the behavior of the conductivity
under pressure together with the value of ¢;;/t at zero pressure as starting point and
Egap(p) from Fig. 8.17. Figure 8.23 shows that this approximation reproduces ¢;;/t very
well as in the case of anthracene. This means that the change in intrinsic conductivity
under pressure mainly stems from the change of the band gap under pressure and that
other effects (changes in the form of the band structure) only play a minor role.

Extrinsic band conductivity

However, this is different in the case of doping as already explained for anthracene, see
Sec. 7.3.3. For a doping with a charge carrier concentration of 10?! cm™3 at zero pressure
(see Fig. 8.22(b)), the Fermi level gets very close to the CBM or VBM so that changes of
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Figure 8.24: Change of the quantity ¢../7 in the doped case with a charge carrier concentration
of 102! cm™3 at zero pressure under hydrostatic pressure. (a): Calculation with the HSE(0.5) func-
tional and vdW corrections. (b): Calculation with the HSE(0.75) functional and vdW corrections.

the band gap do not have a big influence on the conductivity. Instead, the effect of small
changes of the band curvature close to the CBM or VBM become visible. Figure 8.24(a)
shows the change of ¢ ./t for n- and p-doping with a charge carrier concentration of
102! cm~3 at zero pressure under hydrostatic pressure. Since the conductivity along the
carbon chains is two orders of magnitude larger than in the other two directions, similar
to the intrinsic case, we have focused on ¢, for the remainder of this chapter.

For n-doping, the ¢../7 increases under pressure but not nearly as much as in the
intrinsic case (Fig. 8.23) since the Fermi level is already close to the CBM. This increase
comes from the increasing band curvature around the CBM in the segments BA and
ED under pressure, see Fig. 8.19. As explained in Sec. 7.3.3, a larger curvature means a
higher conductivity.

For p-doping, we have the interesting case that ¢/t first decreases under pressure
and then starts to rise around 2 GPa, see Fig. 8.24(a). This can be understood by looking
at the behavior of the valence band under pressure in Fig. 8.19. For low pressures, the
VBM is at point B and there the band curvature decreases under pressure leading to a
decrease in conductivity. For pressures above 2GPa, point E comes close to the VBM,
which strongly increases the conductivity since now two channels for conduction exist.
Beyond 3 GPa, point E is the VBM and point B is getting out of reach, which flattens the
increase. Still, the ¢/t increases for higher pressures since the band curvature around
point E also increases under pressure.
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HSE(0.75)+vdW functional

For the HSE(0.75)+vdW functional, we find the same behavior of ¢;;/t (i = a,b,c) un-
der hydrostatic pressure for the intrinsic case. The change in electrical conductivity is
likewise dominated by the change of the electronic band gap and the dominant trans-
port direction is along the carbon chain. However, ¢;;/7 is smaller by eight orders of
magnitudes since the band gap is much larger than for the HSE(0.5)+vdW functional.
In the n-doped case (Fig. 8.24(b)), the conductivity behaves similarly since the bands
around the CBM behave similarly in comparison to the HSE(0.5)+vdW functional, see
Fig. 8.21. The p-doped case (Fig. 8.24(b)) displays a different behavior because the VBM
behaves differently compared to the HSE(0.5)+vdW functional, see Fig. 8.21. Still, there
is a decrease of the conductivity at low pressure because the band curvature around
point B decreases. The trend at higher pressures is determined by the behavior of the
valence bands near point D, B, and E.

Comparison to experiment

In a previous section, we have stated that in our calculation, the electrical conductivity
along the carbon chains is two orders of magnitude larger than in the other two directions
for the doped case. Similar levels of anisotropy in the conductivity have been found in
experiments with doped TPA [Tsu92].

In order to check the consistency of our calculated electrical conductivity data, we can
determine the relaxation time 7 by taking experimental data. Vakiparta et al. [Vdk93]
report for an oriented TPA film at a temperature of 300K an electrical conductivity of
about 10°(Qm)~! for a charge carrier concentration of about 5x 10%! cm~3. For such
an oriented film, the conductivity is dominated by the transport direction along the
carbon chains. From Fig. 8.24(a), the value ¢../tT ~ 5 x 10'8 (Qms)~! allows to estimate
the relaxation time 7 ~ 2 x 107!®s. This relaxation time is consistent with the time scale
of the carbon-carbon stretching vibration, which occurs on similar time scales (107!4s
to 107135 [Kuz80, Bri86]). For electronic transport along the carbon chains, we expect
that the vibrations of the carbon atoms are the main source for the scattering of charge
carriers. In conclusion, our estimation of the relaxation time nicely shows that our data
is consistent with experimental values.

8.5 Summary

The geometric and electronic properties of crystalline TPA have been investigated in
detail at zero pressure and under hydrostatic pressure in this chapter. We find that (at
least) hybrid functionals are mandatory to correctly describe the dimerization of the
carbon chains. It is also important to include vdW corrections in order to obtain unit
cell volumes that are not too big. The interaction between the chains in the crystal lead
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to a splitting of valence and conduction bands. Straining the unit cell along the carbon
chains influences the dimerization the most. Straining the unit cell in the other two
directions has the biggest effect on the band splitting. Combining these two effects leads
to a non-trivial behavior of the band gap. Furthermore, our strain study demonstrates
that a one-to-one comparison between properties of bulk TPA and isolated chains of TPA
is not always valid. Therefore, it is unclear for instance if statements about the value of
a (the amount of added HF exchange) can be directly transfered from one system to the
other. Under hydrostatic pressure, the crystal gets compressed along lattice vector a and
b and the band gap is reduced in good agreement with experimental measurements. The
compression leads to an increased interchain interaction, and in turn, the splitting of the
valence band increases. This causes a transition from an indirect to a direct band gap.
The reduction of the band gap strongly increases the charge carrier concentration and
the electrical band conductivity in the intrinsic case. The changes in the band structure
near the CBM and VBM determine the behavior of conductivity in the doped case. The
conductivity is two orders of magnitude larger along the carbon chains than in the
directions of the other two lattice vectors for the intrinsic and doped case. This is in
agreement with experiments, which find a similar directional dependence for the doped
case.

Our comparisons between the HSE(0.5)+vdW and HSE(0.75)+vdW functional show
that there is no qualitative difference in the description of TPA under hydrostatic pres-
sure. The corresponding geometries and electronic band structures are very similar and
display the same features. Therefore, the intrinsic and extrinsic electrical conductivities
show the same qualitative behavior under hydrostatic pressure for both functionals.
However, the exact shape depends on the details of the band structure, which differs
slightly between both functionals.






Summary and outlook

In this thesis, we have successfully used DFT with different approximations of the
exchange-correlation functional for the investigation of organic semiconductors under
hydrostatic pressure and we have explained the associated changes of their electronic-
structure properties. On the one hand, this required a systematic assessment of the
accuracy of the employed approximations since the interactions in such systems are
driven by exchange-correlation effects. On the other hand, this required the derivation
and implementation of the stress tensor in the numeric, atom-centered orbitals based
all-electron electronic-structure code FHI-aims. For the stress tensor, Jacobi terms have
been considered since the boundaries of integrals over the unit cell change under strain,
and the contributions of the atom-centered basis functions, which move under strain,
have been included as well. Naturally, all contributions that arise from the kinetic,
electrostatic, and exchange-correlation energy of DFT have been accounted for. The
electrostatic contributions required a full derivation of the strain derivatives of the
Ewald summation for multipole charges. Furthermore, the contributions of a pairwise
1/R® vdW correction scheme and of the HF exchange needed for hybrid functionals
have been included - two contributions that we have shown to be essential for organic
crystals.

We have investigated the accuracy of our stress tensor implementation by performing
extensive benchmark calculations for a wide range of inorganic and organic crystals
and it has been demonstrated that accurate numerical results can be achieved even for
sparse integration grids by explicitly leaving out terms that are analytically zero. The
comparison between the stress tensor calculated via our analytical derivatives and the
one calculated via finite differences has shown that the difference is always in the range

of a few meV/A> or below, which is comparable to the magnitude of the numerical error.
Furthermore, the same level of accuracy has been demonstrated for all DFAs available
within FHI-aims. Our implementation is consistent with respect to the basis set and unit
cell size, too. This means that the difference stays constant upon changing the size of
one of these quantities. In comparison to the finite difference method, the calculation
of the analytical stress tensor allows a speedup of at least a factor of three to five for
hybrid functionals. This speedup is especially valuable since DFT calculations with
hybrid functionals are much more time consuming than calculations with LDA or GGA
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functionals. Finally, it has been demonstrated that our implemented stress tensor is well
suited to optimize unit cells of crystal structures under pressure.

We have applied this implementation to the prototypical organic crystals anthracene
and TPA in order to study their behavior under hydrostatic pressure. For both crystals,
vdW corrections are needed to correctly describe the interactions between the molecules
or chains inside the crystal. For anthracene, there is no qualitative difference in the
geometry and the electronic band structure between GGA and hybrid functionals. How-
ever, hybrid functionals (or higher-level methods such as GW) are required to achieve
quantitatively correct band gaps. In contrast, it is crucial to use hybrid functionals for
TPA in order to obtain the correct symmetry breaking ground state, i.e., an alternation
of shorter (double) and longer (single) bonds between the carbon atoms of the polymer
chain (Peierl’s distortion). As a matter of fact, LDA and GGA functionals give geometries
for TPA in which all bonds have the same length, which in turn results in an erroneous
metallic ground state. In part, hybrid functionals are able to cure this deficiency of
(semi-)local DFAs. However, the amount a of added HF exchange included in such
hybrid functionals is a parameter and both the dimerization and the band gap sensi-
tively depend on it. For isolated TPA chains, comparisons with higher-level CCSD(T)
calculations have shown that no value of «a is able to yield the correct dimerization
of the carbon chains and simultaneously a vanishing many-electron self-interaction
error [Kor12]. It is however unclear if such a statement also holds for crystalline TPA,
(a) since no high-level CCSD(T) calculations for this system are available (or even pos-
sible with reasonable numerical effort) and (b) since the electronic structure of TPA
significantly differs in the bulk and isolated chain limit. For these reasons, we have
systematically discussed how the actual value of a € [0, 1] affects the properties in TPA
and to which extent this changes in bulk systems. Generally, a value of a between 0.5
and 0.75 yields qualitatively correct trends with respect to experiments.

The electronic band structures of crystalline anthracene and TPA display a splitting
of both valence and conduction bands due to the interactions between the molecules or
chains. Hydrostatic pressure leads to a strong compression of the crystal structures along
the weakly bonded crystal directions, thereby giving rise to stronger intermolecular or
interchain interactions. Consequently, the splitting of the bands is increased. Accord-
ingly, the electronic band gap decreases under hydrostatic pressure for both organic
crystals, and in the case of TPA, the increased splitting of the valence band causes the
transition from an indirect to a direct band gap.

Furthermore, we have used the Boltzmann transport equation in the constant relax-
ation time approximation in order to investigate how these microscopic properties affect
macroscopic equilibrium (charge carrier concentration) and non-equilibrium properties
(electrical band conductivity). Again, both organic semiconductors display a similar
behavior. In the intrinsic case, applying pressure leads to a strong increase in conduc-
tivity due to the increase in charge carrier concentration associated with the band gap
reduction. The behavior of the conductivity in the n- and p-doped case can be attributed
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to the changes of the band structure near the CBM and VBM, respectively. In general, the
band curvatures get stronger under pressure, thereby increasing the conductivity. Our
calculated pressure-dependent band gap and electrical conductivity data is consistent
with experimental measurements. This shows that our theoretical approach is able to
yield reliable results and predictions. We can conclude that in the case of anthracene
and TPA, electronic transport properties are enhanced by increasing the interactions
between the constituents. In practice, this can be achieved by applying external pressure
as demonstrated in our calculations.

This thesis has focused on electronic band transport as described parametrically by
the Boltzmann transport equation in the constant relaxation time approximation. This
allowed qualitative insights into how pressure induced changes in the electronic struc-
ture affect macroscopic transport on a relative scale; reliable and accurate quantitative
predictions are however not possible in this formalism: On the one hand, the relaxation
time does depend on temperature and pressure, which linearly affects the electrical
conductivity. On the other hand, an even larger influence on the conductivity can arise
from the band gap renormalization due to lattice vibrations [Car05] since the intrinsic
conductivity depends exponentially on the electronic band gap as shown in Chaps. 7
and 8. For quantitative calculations, a more rigorous treatment of electronic band trans-
port that accounts for such effects is required, e.g., using lifetimes derived from first
principles [Xul4] or using the Kubo-Greenwood theory [Hol11, Fre14], which requires
the calculation of the current-current correlation functions via molecular dynamics
simulations. Research along these lines obviously constitutes a promising extension of
this thesis.

Still, band transport is not the only mechanism determining the electrical conductiv-
ity in these organic semiconductors as already discussed in the introduction (Chap. 1).
Achieving a unified assessment of electronic transport that also accounts for the con-
tributions arising from electronic hopping, coupled electron-phonon transport (e.g.
polarons), and ionic effects is obviously the final - scientifically extremely challenging —
goal in this field of research. For accurate device simulations, this data, i.e., the full de-
pendence of electronic material properties and scattering mechanisms on temperature,
pressure, and charge carrier densities, is desirable. Still, the band structures and their
pressure-induced changes presented in this thesis lay the founding for mesoscopic to
macroscopic device simulations (e.g. via k - p perturbation theory [Yan14]).






Appendices






Atomic units

In the system of atomic units the following physical constants are set to unity:
*» electron charge e
= electron mass m1,
= reduced Planck constant %
= electrostatic constant 1/(4meg)

Therefore, charges and masses are measured in multiples of e and m,, respectively.
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Details of FHI-aims

B.1 Radial part of basis functions

The radial part u,;(r) of the atom-centered basis functions in Eq. (3.2) is determined by
the numerical solution of a Schrodinger-like radial equation

22 D 7)) ) = €t (), (B.1)

The potential vgp,pe determines the main shape of the radial function and the confining
potential v, ensures a smooth decay to zero of the radial functions beyond a certain
distance r > r ;. The analytical form of the confining potential is chosen as

0 for 7 < 7opget
— s w
vcut(r) Y (r=rey)? exp( r_rmset) for Tonset <1 < Tcut (B.Z)
00 for r > reyy

with a global scaling parameter s, the onset s Of the confining potential and its
width w. For the distances, the relation r.y; = rynset + w holds. Typical values of these
parameters are s = 200Ha, 7., = 6A, and w = 2A. The radial functions u,(r) are
generated for each atom species in two steps:

1. Vghape in Eq. (B.1) is set to the self-consistent radial potential (vey + vy + vyc) in
Eq. (2.27) for the isolated free atom. The solution for the free-atom electrons forms
the so-called “minimal” basis set, which depends on the used DFA.

2. In order to increase the flexibility of the basis set, additional basis functions are
constructed iteratively in the following way (DFA independent):

a) A pool of candidate radial functions is generated by solving Eq. (B.1) for
various choices of Vghape- It is either the potential of doubly positive charged
free ions or a hydrogen-like z/r potential with z a real number.
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b) Starting from the “minimal” basis set, each candidate radial function is
added to the current basis in turn. The radial function that gives the best
improvement of the LDA total energy for dimers of the given species is then
added permanently to the current basis.

c) Step b) is repeated until no further significant improvement of the total
energy is found.

d) The selected additional radial functions of step b) are grouped together in
so-called tiers, namely “tier 1”, “tier 2”, and so on. The successive basis sets
are hierarchical. For example, a “tier 2” basis set adds further radial functions
while including the radial functions of the “minimal” and “tier 1” basis set as
well.

B.2 Silicon basis functions

Table B.1 shows the shorthand notation for the parameters used to obtain the radial
functions of silicon for those basis sets that were used for the study of the analytical
stress for different basis set sizes in Sec. 6.1.3.

B.3 “Modified Stratmann” partitioning function

Here, the partitioning function for integrals proposed by Stratmann et al. [Str96] is
briefly reviewed and the modified implementation in FHI-aims is presented.

The goal is to find an expression for the function g;(r) in Eq. (3.9) that is strongly
peaked around atom I. For this purpose, confocal elliptical coordinates p;(r) between
pairs of atoms are defined,

_r—=Ry|-|r—Ryl

pry(r) = R—R| (B.3)

where R; and R; are the positions of atom I and atom ], respectively. The range of the
coordinates is limited to —1 < pyj(r) < 1. Next a piecewise function £ is defined,

h(pry,a) = Sk(ppp,a), —a<pp(r)<a (B.4)
-1, iy =4,

with the threshold a. In practice, an empirically determined value of a = 0.64 is used.
The function k is required to be continuously differentiable at y;; = +a. The proposed
form of Stratmann et al. for k is

k(17 a) = — [35(@)—35(%)3+21(%)5—5(ﬂ)7]. (B.5)

~ 16 a a
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Table B.1: Shorthand notation for the parameters used to obtain the radial functions for silicon
according to Eq. (B.1). For the confinement potential vy, Tonset = 4A and wey = 2A was used
(see Eq. (B.2)). The minimal basis consist of the radial functions of the occupied orbitals of
spherically symmetric free atoms with noble gas configuration and quantum numbers of the
additional valence functions. H(nl, z) denotes a hydrogen-like radial function for the Coulomb
potential z/r with radial and angular quantum numbers 1 and , respectively. X2*(nl) denotes
a n, | function for the doubly positive charged ion of element X. Each tier includes the basis
functions of the lower tiers.

Si

minimal [Ne]+3s3p
tier 1 H(3d, 4.2)
H(2p, 1.4)
H(4f, 6.2)

Si%*(3s)
tier 2 H(3d, 9.2)
H(5g, 9.4)
)

tier 3

With the function h from Eq. (B.4), the so-called cell function s is defined,

s(pry,a) = %[1 - h(ﬂl],ﬂ)]- (B.6)
The values of s are in the range between 0 and 1. The function g;(r) is given by

Nnuc

g = Jstuyr), 0. (B.7)
J=I

Due to the definition of & and the threshold a in Eq. (B.4), the distance from which
an atom can contribute to the partitioning function is restricted. For atoms ] that
have a large distance to the integration point r and atom I, p;(r) approaches -1 (see
Eq. (B.3)) and consequently, the cell s function becomes 1 (see Eq. (B.6)). Nevertheless,
the distance up to which an atom contributes can be very large. This poses a problem for
periodic systems because it would lead to large integration volumes. In order to solve
this problem, the partitioning function by Stratmann et al. as described above has been
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Table B.2: Integration grids of silicon. The specification of the light and tight integration grid
are shown here. N; specifies the number of spherical integration shells around each atom, 7gye;
the extend of the grid, nyy); the radial multiplier, Ny,g the number of angular integration points,

and Nt atom the total number of grid points per atom. See also Sec. 3.4.

light grid tight grid

N, 42 42
Touter 5A 7A
Nmult 1 2
min(Nyng) 50 50
max(Nyng) 302 434
Niot,atom 5604 17918

implemented in FHI-aims with a small modification: Only atoms ] that are closer to
the integration point r than the cut-off radius rgut of their confining potential vgut (see
Eq. (B.2)) are allowed to contribute. To avoid discontinuities, the following interpolation

scheme is employed for the cell function s in Eq. (B.6):

Smod (p17 (1), @) = (1 =14y (r)) + uy (r)s(py (1), @) (B.8)
with
1,  d<brl,
w(r)=3vy(r), bri<dy<rly (B.9)
0, d] 2 rgut
and ;
_ 1 1 d]/rcut -b
'l/](f) = E + ECOS[T(l—_b . (BlO)

Here, d; = |[r — Rj| is the distance between integration point r and atom J. The transition
threshold b has been chosen as b = 0.8. In summary, this modification allows to use the
Stratmann partitioning function together with a restricted atom list without introducing
any discontinuities.

B.4 Silicon integration grid

In Tab. B.2, the specifications of the light and tight integration grid for silicon are shown,
which were used for the study of the numerical correction terms in Secs. 5.4.1 and 5.4.2.
The distribution of the angular grid points and integration shells for both integrations
grids is shown in Figs. B.1 and B.2, respectively.
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Figure B.1: Number of angular integration points for silicon in dependence of the radial distance
from the nucleus. For the tight integration grid (red, dashed), the number of points increases
faster with increasing distance and is overall larger in the most distant region in comparison to
the light integration grid (black, solid). The number of integration points stays constant beyond
2A.

Integration shells for silicon — N, = 42

tight grid: nmuy = 2, fouter = 7A

light grid: fpye = 1, fouter = 5A
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Figure B.2: Spherical integration shells for silicon. The position of these shells around a silicon
atom is shown and they are determined by Eq. (3.10). The light integration grid (black, bottom)
uses a radial multiplier 7, = 1 and an extension of the shells 7oy = 5A. For the tight
integration grid (red, top) the values are ny,,;; = 2 and oty = 7A.






Details of stress tensor derivation

C.1 Strain derivative of on-site Hartree term

We want to show that the strain derivative of the Hartree potential vé(r — R;) vanishes
for r = R;. Starting with the definition from Eq. (3.29) and using Eqgs. (5.6) and (5.20),
yields

81/11{(1‘ - RI)
88/\”

i o onj(F—R;) 1
:myvg(r—RI)Jrj d# (7, — Ry, _ —
v oFy |r — 7| (C.1)

o _ 0o 1
+ .[Vdr(r;, —T’V)I’II(T—RI)a—f/‘m.

Next, we use integration by parts on the third term and the boundary term vanishes on
the surface of the unit cell. Together with the product rule of derivatives, we obtain

o . J 1 _ I
jvdr(i’y—fy)ﬂl(r—RI)a—f/\m = —6/\M”VH(1‘—R1)

e al’ll(f—RI)l
R

(C.2)

The two Kronecker delta terms in Egs. (C.1) and (C.2) cancel each other. In the case
r = Ry, the two integrals cancel each other, too, and the strain derivative vanishes.

C.2 Derivatives of Ewald long-range term

Here, the individual derivatives of the Ewald long-range term (Egs. (3.38) and (5.37))
are shown. The derivatives with respect to the position vectors are

_k2G?
Rl =Ry) Ay —EXP( ! )s (G)exp(iG 1) (C.3)
87’/\ 1’” = v - 1 /\ry G2 I expl1 r), .
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2G2
1 _ exp|—
vir(r—Rp) 4w, ( '
TR,y TV L iGiR y——57—51(G)exp(iG - 1), (C.4)
and the volume derivative is
dv! (r—Ry)
LRT(S,\MV = —v{R(r—R;)5,,V. (C.5)

For the G-vector, the following derivatives are needed

dS;(G) .
aG‘u = r[,y(G) _IRI,MSI(G) (C6)
and
22 22
o i T ) [
G, | & |7 @ (@Jr?)G”' (€7)

The definitions of S;(G) and If,,(G) are given in Eqgs. (3.39) and (5.40), respectively. With
this, the derivative of the Ewald long-range term with respect to the G-vector is

2G2
vl (r-R 4 eXP( )
MG = _n exp(lG . r)G/\

A _— —_—
IGy, v G G2 (C.8)
2«2 . .
X G/ASI(G) a+7 —FI’P(G)—IT”#SI(G)-FIRI’MS[(G) .

Since for the strain derivative of v g(r) the negative of the G-vector derivative is needed
(Eq. (5.37)), the terms of the position vectors derivative (Egs. (C.3) and (C.4)) cancel
completely with the third and fourth term in Eq. (C.8). Together with Eq. (C.5), the final
expression for the strain derivative of v g(r) is obtained and presented in Eq. (5.38).

C.3 Position derivative of Coulomb matrix

We want to show that the derivative of the Coulomb matrix Vi, (Eq. (3.52)) can be
changed from aR to — 8R . We will use the notation m(I) to indicate that the auxiliary

basis function m is centered on atom I. In addition, we will employ integration by
parts (IP) and the boundary terms vanish for the Coulomb integral since the basis
functions are zero at infinity:

J Vin(Dn(1) _ dPyu(r-R;
TI’/\ = JJ‘deTW (|r r|) (T R])
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=~ JP,(r—
J‘drdrp‘“(g;R v(|r — 7|) Py (F - Ry)

[P}

:PJ drdme(r—RI)avg:;ﬂ)Pn(f—R])
e
J-drdme(r—R )2 P (7 - Ry) (C.9)
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ar, T

C.4 Position derivative of locally restricted expansion
coefficients

We want to show that the derivative of the expansion coefficients Ci“; (Eq. (3.53)) can

be changed from alf to — aR . We will use the notation i(I) to indicate that the basis

function i is centered on atom I. In addition, we will employ integration by parts (IP)
and the boundary terms vanish for the Coulomb integrals since the basis functions are
zero at infinity.

First, we will separately show that the derivative for each of the two factors (ij|n) and
L in Eq. (3.53) can be changed and we begin with the Coulomb integral for the case
that n is centered on atom I:

a(i r—
L Th ﬂd 4 PR Ry ol — PRy~ R)

3P r RI)

([ardreitr—Ro)p(r— Ry pu(lr - ) 242

JJ

= — ([arar2edri g - R yuile - FR(F-R)

JJ
r ~ d
— | |drd7@i(r - R;)@j(r — Ry)v(|r — 7)) ParmRI)
JJ
£ jjdrdf(pi(r—RI)&p]f;;r;mv(V—f|)Pn(f_R1) (C.10)

+ [[ardreitr- Ry~ R) 24D p - R
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+ [[ardreitr- Ry~ R) 24D R - R

—derdﬁpi(r—RI)a(PZ;(R;/A (Ir — 7)) P (7 = Ry)

d(i(I)j())In(I))
IR ) '

We have used that v a': ) _ avg;;ﬂ)_ From this result, we can derive the same relation

if n is centered on atom ] by swapping i(I) with j(J) in the Coulomb integral, which
changes nothing per definition (Eq. (3.49)) and then substituting the variable name I
with J and J with I, respectively, and the same for the variables i and j. Hence, we obtain

Ai(1)j(Nin(])) _ 2GI)j(N)In(]))
Ry T oR, (C.11)

Next, we consider the inverse Coulomb matrix L. The derivative aix of an inverse

matrix A~! is given by ag‘ =-A"1 aAA . Additionally, we will need that the derivatives
an n
JdR;
Eq. (C.9). However, this is not true for the inverse Coulomb matrix and it does not matter
for the following derivation on which atom the auxiliary basis functions m and n are
centered. With this said, the derivative of the inverse Coulomb matrix becomes

of the on-site terms of the Coulomb matrix vanish, i.e., = 0, which follows from

9L111]m Z J Vil [
— L Is J

aR l'l[‘ R 5111
LA 1,5€P(I])

Z Lk Z L
reP(I reP(J
sep(]) JeP( ) (C.12)

I 9V I
= ) lLuge S{H
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I
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where we have used Eq. (C.9).

Now, we have all the necessary relations and we can tend to the expansion coefficients
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using Eqgs. (C.10), (C.11), and (C.12),

oG _ Y[ +(Z.].|n)aL£{n]
- nm
IR} A P ) A dR; )
d(ijln oLl
-y [a(zlzjl )Lﬁ{nwﬂn)aRHm] (C.13)
nepnt “A J:A
8Ci‘}‘
T OR;,

For the inverse Coulomb matrix LIIl]m, the change of the derivative does not depend
on which atom the auxiliary basis functions m and n are centered. For the Coulomb
integral (ij|n), there are only two possibilities, either i is centered on atom I or J. Both
cases are covered by Eqgs. (C.10) and (C.11) and we can change the derivative.






Organic crystals

D.1 Hydrogen and carbon basis functions

Table D.1 shows the shorthand notation for the parameters used to obtain the radial
functions of hydrogen and carbon for the different tiers. In addition, we used the basis
set “tier 1+”. For hydrogen (carbon), this basis set includes “tier 1” plus the 1s (4f) radial
function from “tier 2” as well as the 3d radial function from “tier 2” for the construction
of the auxiliary basis set (Eq. (3.50)) in the case of hybrid functionals.

Table D.1: Shorthand notation for the parameters used to obtain the radial functions for hy-
drogen and carbon according to Eq. (B.1). For the confinement potential vy, fonset = 4A and
Wyt = 2A was used (see Eq. (B.2)). The minimal basis consist of the radial functions of the
occupied orbitals of spherically symmetric free atoms with noble gas configuration and quantum
numbers of the additional valence functions. H(nl, z) denotes a hydrogen-like radial function for
the Coulomb potential z/r with radial and angular quantum numbers n and /, respectively. Each
tier includes the basis functions of the lower tiers.

H C
minimal 1s [He]+2s3p
tier 1 H(2s, 2.1) H(2p, 1.7)
H(2p, 3.5) H(3d, 6.0)
H(2s, 4.9)
tier 2 H(1s, 0.85) H(4f, 9.8)
H(2p, 3.7) H(3p, 5.2)
H(2s, 1.2) H(3s, 4.3)
H(3d, 7.0) H(5g, 14.4)
H(3d, 6.2)
tier 3 H(4f, 11.2) H(2p, 5.6)
H(3p, 4.8) H(2s, 1.4)
H(4d, 9.0) H(3d, 4.9)
H(3s, 3.2) H(4f, 11.2)
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Anthracene — basis set convergence, PBE+vdW

64

62

60

58

AEy; per atom [meV]

56

1 1 1 1
tier 1 tier 1+ tier 2 tier 3

Basis set

Figure D.1: Total energy difference convergence with respect to the basis set size for crystalline
anthracene. AE, is defined as the difference between two times the total energy of an isolated
anthracene molecule and crystalline anthracene, AE;,; = 2Et‘§fl - Efgs, and the ordinate shows
AE,y per atom. The definition of the basis sets is given in App. D.1. The calculations were
performed for the experimental structure of Exp. [Cha82], see Tab. 7.1, with the PBE functional,
vdW corrections and a k-point grid of size 8x12x6.

D.2 Basis set convergence

D.2.1 Anthracene

Figure D.1 shows the total energy difference convergence with respect to the basis
set size for crystalline anthracene. It can be seen that the “tier 2” basis set is already
well converged. The “tier 1+” basis set is converged within a few meV per atom which
provides already a good accuracy within acceptable computational cost and is well-
suited for our purposes. Therefore, we choose the “tier 1+” basis set for the anthracene
calculations.

D.2.2 Polyacetylene

Figure D.2 shows the total energy difference convergence with respect to the basis set
size for crystalline TPA. For the PBE+vdW and HSE(0.5,0.11 bohr™! )+vdW functional,
the total energy difference is already well converged below 1meV per atom for all
considered basis sets. We choose the “tier 1+” basis set for the TPA calculations, which
provides a good accuracy within acceptable computational cost and is well-suited for
our purposes.
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Figure D.2: Total energy difference convergence with respect to the basis set size for crystalline

TPA. AE, is defined as the difference between the P2;/a and the P2;/n structure, AE;,; =

Etlz)ztl/a - Etlz)ztl/n, and the ordinate shows AE,y per atom. The definition of the basis sets is given

in App. D.1. The calculations were performed for the experimental structure of Exp. [Kah87],
see Tab. 8.1 with the PBE (black squares) as well as the HSE(0.5,0.11 bohr~!) functional (red
circles, Sec. 2.3.5), vdW corrections and a k-point grid of size 8x4x24. For calculations with the
HSE(0.5,0.11bohr™!) functional, the “tier 2” basis is the largest possible basis set.

D.3 k-point convergence

D.3.1 Anthracene

The notation N,xN,xN, specifies the number of k-points along the first, second and
third axis of the Brillouin zone. N,, Ny, and N, are chosen to be different because
the lattice vectors a, b, and ¢ have different lengths, see Sec. 7.2.1. In order to obtain
a uniform sampling of the Brillouin zone, the values of N,, Ny, and N, correspond
roughly reciprocally to the lengths of a, b, and c. Figure D.3 shows the total energy
convergence with respect to the size of the k-point grid for crystalline anthracene. It
can be seen that the total energy is already well converged below 1 meV per atom for a
k-point grid of size 2x3x1 and extremely well converged for denser k-point grids since
crystalline anthracene is a semiconductor which requires only a sparse k-point grid
in general [Koh06]. In order to ensure that we obtain accurate band structures under
pressure, we choose a safe k-point grid of size 8x12x6.
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%‘ Anthracene — k-point grid convergence, PBE+vdW
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Figure D.3: Total energy convergence with respect to the size of k-point grid for crystalline
anthracene. The ordinate shows the total energy per atom relative to the value of 16x24x12. The
calculations were performed with the PBE functional, vdW corrections and the “tier 2” basis set
(App. D.1).

D.3.2 Polyacetylene

The notation N,xN,xN, specifies the number of k-points along the first, second and
third axis of the Brillouin zone. N,, N, and N, are chosen to be different because the
lattice vectors a, b, and c have different lengths, see Sec. 8.2.1. In order to obtain a
uniform sampling of the Brillouin zone, the values of N,, Ny, and N, correspond roughly
reciprocally to the lengths of a, b, and c. Figure D.4 shows the total energy convergence
with respect to the size of the k-point grid for crystalline TPA. It can be seen that the
total energy is already well reasonably converged to a value of about 1 meV per atom
for a k-point grid of size 6x3x12. For denser k-point grids, the total energy is well
converged below 1 meV per atom. However, the dimerization Az depends critically on
the number of k-points N, along the carbon chain, i.e., along lattice vector ¢ [Min87,
Ash89, Sun02]. Figure D.5 shows that a value of N, = 24 yields well converged results
for the dimerization. Therefore, we choose a safe k-point grid of size 8x4x24, which
yields a convergence of the dimerization below 1073 A and of the total energy below
1meV per atom. In addition, this k-point grid allows for accurate band structures under
pressure.
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Figure D.4: Total energy convergence with respect to the size of k-point grid for crystalline
TPA. The ordinate shows the total energy per atom relative to the value of 16x8x32. The
calculations were performed for the experimental structure of Exp. [Kah87], see Tab. 8.1, with
the HSE(0.5,0.11 bohr~!) functional, vdW corrections and the “tier 2” basis set (App. D.1).

TPA — N, convergence, HSE(0.5,0.11 bohr~!)+vdW
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Figure D.5: Convergence of dimerization Az of carbon chain with respect to the number of
k-points N, along the carbon chain for crystalline TPA. The crystal structures have been fully
optimized for each N, value and the calculations were performed with the HSE(0.5,0.11bohr 1)
functional, vdW corrections and the “tier 1+” basis set (App. D.1). In the other two directions,
the number of k-points has been fixed to N, = 8 and Ny, = 4.
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Table D.2: Fractional coordinates of special k-points. This means k = s,b, + s,b}, + s.b, with
the reciprocal lattice vectors b,, by, and b, corresponding to the lattice vectors a, b, and ¢,
respectively.

Name S, Sp Sc
r 0.0 0.0 0.0
A 0.5 0.0 0.5
B 0.0 0.0 0.5
C 0.5 0.5 0.0
D 0.0 0.5 0.5
E 0.5 0.5 0.5
K 0.4 0.0 0.2
X 0.5 0.0 0.0
Y 0.0 0.5 0.0

D.4 Coordinates of special k-points

Table D.2 lists the coordinates of all special k-points inside the Brillouin zone that were
used for the calculations of the band structures in this thesis.



I Publications

» E Knuth, C. Carbogno, V. Atalla, V. Blum, and M. Scheffler. All-electron formalism
for total energy strain derivatives and stress tensor components for numeric atom-
centered orbitals. Computer Physics Communications 190, 33 (2015).

I Curriculum Vitae

For reasons of data protection, the curriculum vitae is not included in the online version.

151


http://dx.doi.org/10.1016/j.cpc.2015.01.003
http://dx.doi.org/10.1016/j.cpc.2015.01.003
http://dx.doi.org/10.1016/j.cpc.2015.01.003




| Selbstandigkeitserklarung

Hiermit versichere ich, alle Hilfsmittel und Hilfen angegeben zu haben und auf dieser
Grundlage die Arbeit selbststandig verfasst zu haben. Die Arbeit wurde nicht schon
einmal in einem friheren Promotionsverfahren angenommen oder als ungentigend
beurteilt.

Berlin, den

Franz Knuth

153






I Acknowledgments

First of all, I would like to thank Matthias Scheffler for giving me the opportunity to
carry out my Ph.D. studies at the theory department of the Fritz Haber Institute. It is
a great place to learn from many excellent scientists. I further want to thank my two
supervisors Christian Carbogno and Volker Blum. Thank you for your kind and constant
support as well as for teaching me computational and material science and the details
of FHI-aims.

A special thanks goes to my long standing office mate Lydia Nemec. Thank you for
sharing your knowledge about condensed matter physics as well as about running big
calculations and for creating an enjoyable atmosphere. I thank (in alphabetical order)
Viktor Atalla, Bjorn Bieniek, Oliver Hofmann, Arvid Ihrig, and Sergey Levchenko for
fruitful scientific discussions. A big thanks goes to all former and present members
of the theory department for their great help and for having fun with them during
conferences, workshops, and summer/end-of-the-year parties.

I would like to thank the careful eyes of all my proof readers: Christian Carbogno,
Volker Blum, and Judith Specht.

Finally, I like to thank my parents for their constant support. My special gratitude
goes to Judith for her patience, support and love. You always encouraged me and you
were always there for me.

155






I Bibliography

[Ah177]

[AIm85]

[Amb14]

[And96]

[ArmO05]

[Ash76]

[Ash89]

[Atal3a]

[Atal3b]

[Bak94]

[Bas72]

[Bec88a]

R. Ahlrichs, R. Penco, and G. Scoles. Intermolecular forces in simple systems.
Chemical Physics 19, 119 (1977).

C.-O. Almbladh and U. von Barth. Exact results for the charge and spin densities,
exchange-correlation potentials, and density-functional eigenvalues. Physical
Review B 31, 3231 (1985).

A. Ambrosetti, A. M. Reilly, R. A. DiStasio, and A. Tkatchenko. Long-range
correlation energy calculated from coupled atomic response functions. The Journal
of Chemical Physics 140, 18A508 (2014).

Y. Andersson, D. C. Langreth, and B. I. Lundqvist. van der Waals Interactions
in Density-Functional Theory. Physical Review Letters 76, 102 (1996).

R. Armiento and A. E. Mattsson. Functional designed to include surface effects in
self-consistent density functional theory. Physical Review B 72, 085108 (2005).

N. W. Ashcroft and N. D. Mermin. Solid State Physics. Holt, Rinehart and
Winston (1976).

J. Ashkenazi, W. Pickett, H. Krakauer, C. Wang, B. Klein, and S. Chubb. Ground
state of trans-polyacetylene and the Peierls mechanism. Physical Review Letters
62,2016 (1989).

V. Atalla. Density-functional theory and beyond for organic electronic materials.
Ph.D. thesis, Technischen Universitat Berlin (2013).

V. Atalla, M. Yoon, E. Caruso, P. Rinke, and M. Scheffler. Hybrid density
functional theory meets quasiparticle calculations: A consistent electronic structure
approach. Physical Review B 88, 165122 (2013).

J. Baker, J. Andzelm, A. Scheiner, and B. Delley. The effect of grid quality and
weight derivatives in density functional calculations. The Journal of Chemical
Physics 101, 8894 (1994).

H. Bassler and H. Killesreiter. Hot Carrier Injection into Molecular Crystals and
Its Relevance to the Field Dependence of Photocurrents. physica status solidi (b)
53,183 (1972).

A. D. Becke. Correlation energy of an inhomogeneous electron gas: A coordinate-
space model. The Journal of Chemical Physics 88, 1053 (1988).

157


http://dx.doi.org/10.1016/0301-0104(77)85124-0
http://dx.doi.org/10.1103/PhysRevB.31.3231
http://dx.doi.org/10.1103/PhysRevB.31.3231
http://dx.doi.org/10.1063/1.4865104
http://dx.doi.org/10.1063/1.4865104
http://dx.doi.org/10.1103/PhysRevLett.76.102
http://dx.doi.org/10.1103/PhysRevLett.76.102
http://dx.doi.org/10.1103/PhysRevB.72.085108
http://dx.doi.org/10.1103/PhysRevB.72.085108
http://www.worldcat.org/search?q=isbn:978-0-03-083993-1
http://dx.doi.org/10.1103/PhysRevLett.62.2016
http://dx.doi.org/10.1103/PhysRevLett.62.2016
http://nbn-resolving.de/urn:nbn:de:kobv:83-opus4-43541
http://dx.doi.org/10.1103/PhysRevB.88.165122
http://dx.doi.org/10.1103/PhysRevB.88.165122
http://dx.doi.org/10.1103/PhysRevB.88.165122
http://dx.doi.org/10.1063/1.468081
http://dx.doi.org/10.1063/1.468081
http://dx.doi.org/10.1002/pssb.2220530119
http://dx.doi.org/10.1002/pssb.2220530119
http://dx.doi.org/10.1063/1.454274
http://dx.doi.org/10.1063/1.454274

158

Bibliography

[Bec88Db]

[Bec93a]

[Bec93Db]

[Bel74]

[Blu09]

[Boh53]

[Bré89]

[Bri86]

[Buc13]

[Bur90]

[Cao91]

[Cap06]

[Car05]

[Cep80]

A. D. Becke and R. M. Dickson. Numerical solution of Poisson’s equation in
polyatomic molecules. The Journal of Chemical Physics 89, 2993 (1988).

A. D. Becke. A new mixing of Hartree—Fock and local density-functional theories.
The Journal of Chemical Physics 98, 1372 (1993).

A. D. Becke. Density-functional thermochemistry. II1. The role of exact exchange.
The Journal of Chemical Physics 98, 5648 (1993).

A. 1. Belkind and V. V. Grechov. Energy Levels of Polyacene Crystals. physica
status solidi (a) 26, 377 (1974).

V. Blum, R. Gehrke, F. Hanke, P. Havu, V. Havu, X. Ren, K. Reuter, and
M. Scheffler. Ab initio molecular simulations with numeric atom-centered orbitals.
Computer Physics Communications 180, 2175 (2009).

D. Bohm and D. Pines. A Collective Description of Electron Interactions: I11.
Coulomb Interactions in a Degenerate Electron Gas. Physical Review 92, 609
(1953).

J. L. Brédas and A. J. Heeger. Comment on “Electron Correlation and Bond
Alternation in Polymers” (1989).

A. Brillante, M. Hanfland, K. Syassen, and J. Hocker. Optical studies of poly-
acetylene under pressure. Physica B+C 139-140, 533 (1986).

T. Bucko, S. Lebegue, J. Hafner, and J. G. Angyén. Tkatchenko-Scheffler van
der Waals correction method with and without self-consistent screening applied to
solids. Physical Review B 87, 064110 (2013).

J. H. Burroughes, D. D. C. Bradley, A. R. Brown, R. N. Marks, K. Mackay, R. H.
Friend, P. L. Burns, and A. B. Holmes. Light-emitting diodes based on conjugated
polymers. Nature 347, 539 (1990).

Y. Cao, P. Smith, and A. J. Heeger. Mechanical and electrical properties of
polyacetylene films oriented by tensile drawing. Polymer 32, 1210 (1991).

K. Capelle. A Bird’s-Eye View of Density-Functional Theory. arXiv:cond-
mat/0211443v5 [cond-mat.mtrl-sci] (2006).

M. Cardona and M. L. W. Thewalt. Isotope effects on the optical spectra of
semiconductors. Reviews of Modern Physics 77, 1173 (2005).

D. M. Ceperley and B. J. Alder. Ground State of the Electron Gas by a Stochastic
Method. Physical Review Letters 45, 566 (1980).


http://dx.doi.org/10.1063/1.455005
http://dx.doi.org/10.1063/1.455005
http://dx.doi.org/10.1063/1.464304
http://dx.doi.org/10.1063/1.464913
http://dx.doi.org/10.1002/pssa.2210260139
http://dx.doi.org/10.1016/j.cpc.2009.06.022
http://dx.doi.org/10.1103/PhysRev.92.609
http://dx.doi.org/10.1103/PhysRev.92.609
http://dx.doi.org/10.1103/PhysRevLett.63.2534
http://dx.doi.org/10.1103/PhysRevLett.63.2534
http://dx.doi.org/10.1016/0378-4363(86)90641-8
http://dx.doi.org/10.1016/0378-4363(86)90641-8
http://dx.doi.org/10.1103/PhysRevB.87.064110
http://dx.doi.org/10.1103/PhysRevB.87.064110
http://dx.doi.org/10.1103/PhysRevB.87.064110
http://dx.doi.org/10.1038/347539a0
http://dx.doi.org/10.1038/347539a0
http://dx.doi.org/10.1016/0032-3861(91)90223-6
http://dx.doi.org/10.1016/0032-3861(91)90223-6
http://arxiv.org/abs/cond-mat/0211443v5
http://arxiv.org/abs/cond-mat/0211443v5
http://dx.doi.org/10.1103/RevModPhys.77.1173
http://dx.doi.org/10.1103/RevModPhys.77.1173
http://dx.doi.org/10.1103/PhysRevLett.45.566
http://dx.doi.org/10.1103/PhysRevLett.45.566

Bibliography 159

[Cha73]

[Cha82]

[Chi77]

[Chi78a]

[Chi78b]

[Cho97]

[Chu04]

[Coh12]

[DCD]

[Del90]

[Del96a]

[Del96b]

[Dio04]

D.J. Chadi and M. L. Cohen. Special Points in the Brillouin Zone. Physical
Review B 8, 5747 (1973).

S. L. Chaplot, N. Lehner, and G. S. Pawley. The Structure of Anthracene-d
at 16 K using Neutron Diffraction. Acta Crystallographica Section B 38, 483
(1982).

C. K. Chiang, C. R. Fincher, Y. W. Park, A. J. Heeger, H. Shirakawa, E. J.
Louis, S. C. Gau, and A. G. MacDiarmid. Electrical Conductivity in Doped
Polyacetylene. Physical Review Letters 39, 1098 (1977).

C.K. Chiang, M. A. Druy, S. C. Gau, A. J. Heeger, E. J. Louis, A. G. MacDiarmid,
Y. W. Park, and H. Shirakawa. Synthesis of highly conducting films of derivatives
of polyacetylene, (CH),. Journal of the American Chemical Society 100, 1013
(1978).

C. K. Chiang, S. C. Gau, C. R. Fincher, Y. W. Park, a. G. MacDiarmid, and
a. ]. Heeger. Polyacetylene, (CH),: n-type and p-type doping and compensation.
Applied Physics Letters 33, 18 (1978).

C. H. Choi, M. Kertesz, and A. Karpfen. The effects of electron correlation on the
degree of bond alternation and electronic structure of oligomers of polyacetylene.
The Journal of Chemical Physics 107, 6712 (1997).

X. Chu and A. Dalgarno. Linear response time-dependent density functional
theory for van der Waals coefficients. The Journal of Chemical Physics 121, 4083
(2004).

A.J. Cohen, P. Mori-Sanchez, and W. Yang. Challenges for Density Functional
Theory. Chemical Reviews 112, 289 (2012).

Comparing Solid State DFT Codes, Basis Sets and Potentials. http://molmod.
ugent.be/deltacodesdft, accessed on 21 August 2015.

B. Delley. An all-electron numerical method for solving the local density functional
for polyatomic molecules. The Journal of Chemical Physics 92, 508 (1990).

B. Delley. Fast Calculation of Electrostatics in Crystals and Large Molecules. The
Journal of Physical Chemistry 100, 6107 (1996).

B. Delley. High order integration schemes on the unit sphere. Journal of Compu-
tational Chemistry 17, 1152 (1996).

M. Dion, H. Rydberg, E. Schréder, D. C. Langreth, and B. I. Lundqvist. Van
der Waals Density Functional for General Geometries. Physical Review Letters
92, 246401 (2004).


http://dx.doi.org/10.1103/PhysRevB.8.5747
http://dx.doi.org/10.1107/S0567740882003239
http://dx.doi.org/10.1107/S0567740882003239
http://dx.doi.org/10.1103/PhysRevLett.39.1098
http://dx.doi.org/10.1103/PhysRevLett.39.1098
http://dx.doi.org/10.1021/ja00471a081
http://dx.doi.org/10.1021/ja00471a081
http://dx.doi.org/10.1063/1.90166
http://dx.doi.org/10.1063/1.474914
http://dx.doi.org/10.1063/1.474914
http://dx.doi.org/10.1063/1.1779576
http://dx.doi.org/10.1063/1.1779576
http://dx.doi.org/10.1021/cr200107z
http://dx.doi.org/10.1021/cr200107z
http://molmod.ugent.be/deltacodesdft
http://molmod.ugent.be/deltacodesdft
http://dx.doi.org/10.1063/1.458452
http://dx.doi.org/10.1063/1.458452
http://dx.doi.org/10.1021/jp952713n
http://dx.doi.org/10.1002/(SICI)1096-987X(19960715)17:9<1152::AID-JCC7>3.0.CO;2-R
http://dx.doi.org/10.1103/PhysRevLett.92.246401
http://dx.doi.org/10.1103/PhysRevLett.92.246401

160

Bibliography

[Dir30]

[Dol04]

[Dol10]

[Dun79]

[Fab10]

[Fed11]

[Fin79]

[Fin82]

[Foc95]

[For04]

[Frel4]

[Geh09]

[Gha86]

P. A. M. Dirac. Note on Exchange Phenomena in the Thomas Atom. Mathematical
Proceedings of the Cambridge Philosophical Society 26, 376 (1930).

K. Doll, R. Dovesi, and R. Orlando. Analytical Hartree-Fock gradients with
respect to the cell parameter for systems periodic in three dimensions. Theoretical
Chemistry Accounts 112, 394 (2004).

K. Doll. Analytical stress tensor and pressure calculations with the CRYSTAL
code. Molecular Physics 108, 223 (2010).

B. I. Dunlap, J. W. D. Connolly, and J. R. Sabin. On some approximations in
applications of Xa theory. The Journal of Chemical Physics 71, 3396 (1979).

E. Fabiano, L. A. Constantin, and F. Della Sala. Generalized gradient approxima-
tion bridging the rapidly and slowly varying density regimes: A PBE-like functional
for hybrid interfaces. Physical Review B 82, 113104 (2010).

I. A. Fedorov, Y. N. Zhuravlev, and V. P. Berveno. Electronic structure and
chemical bond in naphthalene and anthracene. Physical Chemistry Chemical
Physics 13, 5679 (2011).

C. R. Fincher, M. Ozaki, M. Tanaka, D. Peebles, L. Lauchlan, A. ]J. Heeger, and
A. G. MacDiarmid. Electronic structure of polyacetylene: Optical and infrared
studies of undoped semiconducting (CH), and heavily doped metallic (CH),.
Physical Review B 20, 1589 (1979).

C. R. Fincher, C.-E. Chen, A.J. Heeger, A. G. MacDiarmid, and J. B. Hastings.
Structural Determination of the Symmetry-Breaking Parameter in trans-(CH),.
Physical Review Letters 48, 100 (1982).

P. Focher and G. L. Chiarotti. Ab-Initio Molecular Dynamics Simulation of
Structural Phase Transitions, in Progress in Computational Physics of Matter
(edited by L. Reatto and F. Manghi), chap. 1, pp. 1-42. World Scientific (1995).

S. R. Forrest. The path to ubiquitous and low-cost organic electronic appliances
on plastic. Nature 428, 911 (2004).

M. French and T. R. Mattsson. Thermoelectric transport properties of molybde-
num from abinitio simulations. Physical Review B 90, 165113 (2014).

R. Gehrke. First-Principles Basin-Hopping for the Structure Determination of
Atomic Clusters. Ph.D. thesis, Freie Universitat Berlin (2009).

J. Ghanbaja, J. F. Maréché, E. Mc Rae, and D. Billaud. Conductivity of heavy
alkali metal doped polyacetylene. Solid State Communications 60, 87 (1986).


http://dx.doi.org/10.1017/S0305004100016108
http://dx.doi.org/10.1007/s00214-004-0595-y
http://dx.doi.org/10.1007/s00214-004-0595-y
http://dx.doi.org/10.1080/00268970903193028
http://dx.doi.org/10.1080/00268970903193028
http://dx.doi.org/10.1063/1.438728
http://dx.doi.org/10.1063/1.438728
http://dx.doi.org/10.1103/PhysRevB.82.113104
http://dx.doi.org/10.1103/PhysRevB.82.113104
http://dx.doi.org/10.1103/PhysRevB.82.113104
http://dx.doi.org/10.1039/c0cp02200d
http://dx.doi.org/10.1039/c0cp02200d
http://dx.doi.org/10.1103/PhysRevB.20.1589
http://dx.doi.org/10.1103/PhysRevB.20.1589
http://dx.doi.org/10.1103/PhysRevLett.48.100
http://dx.doi.org/10.1142/9789814261319_0001
http://dx.doi.org/10.1142/9789814261319_0001
http://www.worldcat.org/search?q=isbn:978-981-02-2404-2
http://dx.doi.org/10.1038/nature02498
http://dx.doi.org/10.1038/nature02498
http://dx.doi.org/10.1103/PhysRevB.90.165113
http://dx.doi.org/10.1103/PhysRevB.90.165113
http://www.diss.fu-berlin.de/diss/receive/FUDISS_thesis_000000009342?lang=en
http://www.diss.fu-berlin.de/diss/receive/FUDISS_thesis_000000009342?lang=en
http://dx.doi.org/10.1016/0038-1098(86)90535-1
http://dx.doi.org/10.1016/0038-1098(86)90535-1

Bibliography 161

[Girl1]

[Gol13]

[Gri04]

[Ham99]

[Har84]

[HeeO1]

[Heill]

[Hey03]

[Hey06]

[Hir77]

[Hir98]

[Hoh64]

[Hol11]

G. Giri, E. Verploegen, S. C. B. Mannsfeld, S. Atahan-Evrenk, D. H. Kim, S. Y.
Lee, H. A. Becerril, A. Aspuru-Guzik, M. E. Toney, and Z. Bao. Tuning charge
transport in solution-sheared organic semiconductors using lattice strain. Nature
480, 504 (2011).

R. Golesorkhtabar, P. Pavone, J. Spitaler, P. Puschnig, and C. Draxl. ElaStic: A
tool for calculating second-order elastic constants from first principles. Computer
Physics Communications 184, 1861 (2013).

S. Grimme. Accurate Description of van der Waals Complexes by Density Func-
tional Theory Including Empirical Corrections. Journal of Computational Chem-
istry 25, 1463 (2004).

B. Hammer, L. B. Hansen, and J. K. Nerskov. Improved adsorption energetics
within density-functional theory using revised Perdew-Burke-Ernzerhof function-
als. Physical Review B 59, 7413 (1999).

J. Harris. Adiabatic-connection approach to Kohn-Sham theory. Physical Review
A 29, 1648 (1984).

A.]J. Heeger. Nobel Lecture: Semiconducting and metallic polymers: The fourth
generation of polymeric materials. Reviews of Modern Physics 73, 681 (2001).

G. Heimel, I. Salzmann, S. Duhm, and N. Koch. Design of Organic Semiconduc-
tors from Molecular Electrostatics. Chemistry of Materials 23, 359 (2011).

J. Heyd, G. E. Scuseria, and M. Ernzerhof. Hybrid functionals based on a screened
Coulomb potential. The Journal of Chemical Physics 118, 8207 (2003).

J. Heyd, G. E. Scuseria, and M. Ernzerhof. Erratum: “Hybrid functionals based
on a screened Coulomb potential” [J. Chem. Phys. 118, 8207 (2003)]. The Journal
of Chemical Physics 124, 219906 (2006).

F. L. Hirshfeld. Bonded-atom fragments for describing molecular charge densities.
Theoretica Chimica Acta 44, 129 (1977).

S. Hirata, H. Torii, and M. Tasumi. Density-functional crystal orbital study on
the structures and energetics of polyacetylene isomers. Physical Review B 57,
11994 (1998).

P. Hohenberg and W. Kohn. Inhomogeneous Electron Gas. Physical Review 136,
B864 (1964).

B. Holst, M. French, and R. Redmer. Electronic transport coefficients from ab
initio simulations and application to dense liquid hydrogen. Physical Review B
83,235120 (2011).


http://dx.doi.org/10.1038/nature10683
http://dx.doi.org/10.1038/nature10683
http://dx.doi.org/10.1016/j.cpc.2013.03.010
http://dx.doi.org/10.1016/j.cpc.2013.03.010
http://dx.doi.org/10.1002/jcc.20078
http://dx.doi.org/10.1002/jcc.20078
http://dx.doi.org/10.1103/PhysRevB.59.7413
http://dx.doi.org/10.1103/PhysRevB.59.7413
http://dx.doi.org/10.1103/PhysRevB.59.7413
http://dx.doi.org/10.1103/PhysRevA.29.1648
http://dx.doi.org/10.1103/RevModPhys.73.681
http://dx.doi.org/10.1103/RevModPhys.73.681
http://dx.doi.org/10.1021/cm1021257
http://dx.doi.org/10.1021/cm1021257
http://dx.doi.org/10.1063/1.1564060
http://dx.doi.org/10.1063/1.1564060
http://dx.doi.org/10.1063/1.2204597
http://dx.doi.org/10.1063/1.2204597
http://dx.doi.org/10.1007/BF00549096
http://dx.doi.org/10.1103/PhysRevB.57.11994
http://dx.doi.org/10.1103/PhysRevB.57.11994
http://dx.doi.org/10.1103/PhysRev.136.B864
http://dx.doi.org/10.1103/PhysRevB.83.235120
http://dx.doi.org/10.1103/PhysRevB.83.235120

162

Bibliography

[HumO3] K. Hummer, P. Puschnig, and C. Ambrosch-Draxl. Ab initio study of anthracene

[Thr15]

[Joh05]

[Jur06]

[Kah87]

[Kaj67]

[Kal58]

[Kar89]

[Kar0Ola]

[Kar01b]

[Kar03]

[Kim07]

under high pressure. Physical Review B 67, 184105 (2003).

A. C. IThrig, J. Wieferink, I. Y. Zhang, M. Ropo, X. Ren, P. Rinke, M. Scheffler,
and V. Blum. Accurate localized resolution of identity approach for linear-scaling
hybrid density functionals and for many-body perturbation theory. New Journal
of Physics 17, 093020 (2015).

E. R. Johnson and A. D. Becke. A post-Hartree-Fock model of intermolecular
interactions. The Journal of Chemical Physics 123, 24101 (2005).

P. Jurecka, J. Sponer, J. Cerny, and P. Hobza. Benchmark database of accurate
(MP2 and CCSD(T) complete basis set limit) interaction energies of small model
complexes, DNA base pairs, and amino acid pairs. Physical Chemistry Chemical
Physics 8, 1985 (2006).

H. Kahlert, O. Leitner, and G. Leising. Structural properties of trans- and
cis-(CH),. Synthetic Metals 17, 467 (1987).

T. Kajiwara, H. Inokuchi, and S. Minomura. Charge Mobility of Organic Semi-
conductors under High Pressure. Anthracene. Bulletin of the Chemical Society
of Japan 40, 1055 (1967).

H. Kallmann and M. Pope. Preparation of Thin Anthracene Single Crystals.
Review of Scientific Instruments 29, 993 (1958).

N. Karl. Studies of Organic Semiconductors for 40 Years—III. Molecular Crystals
and Liquid Crystals Incorporating Nonlinear Optics 171, 31 (1989).

N. Karl. Introduction, in Organic Electronic Materials: Conjugated Polymers and
Low Molecular Weight Organic Solids (edited by R. Farchioni and G. Grosso),
Springer Series in Materials Science, chap. 6, pp. 215—-239. Springer (2001).

N. Karl and J. Marktanner. Electron and Hole Mobilities in High Purity An-
thracene Single Crystals. Molecular Crystals and Liquid Crystals Science
and Technology. Section A. Molecular Crystals and Liquid Crystals 355, 149
(2001).

N. Karl. Charge carrier transport in organic semiconductors. in Synthetic Metals,
vol. 133-134, pp. 649-657 (2003).

J. H. Kim, S.-m. Seo, and H. H. Lee. Nanovoid nature and compression effects in
organic light emitting diode. Applied Physics Letters 90, 143521 (2007).


http://dx.doi.org/10.1103/PhysRevB.67.184105
http://dx.doi.org/10.1103/PhysRevB.67.184105
http://dx.doi.org/10.1088/1367-2630/17/9/093020
http://dx.doi.org/10.1088/1367-2630/17/9/093020
http://dx.doi.org/10.1063/1.1949201
http://dx.doi.org/10.1063/1.1949201
http://dx.doi.org/10.1039/b600027d
http://dx.doi.org/10.1039/b600027d
http://dx.doi.org/10.1039/b600027d
http://dx.doi.org/10.1016/0379-6779(87)90783-1
http://dx.doi.org/10.1016/0379-6779(87)90783-1
http://dx.doi.org/10.1246/bcsj.40.1055
http://dx.doi.org/10.1246/bcsj.40.1055
http://dx.doi.org/10.1063/1.1716077
http://dx.doi.org/10.1080/00268948908065785
http://www.worldcat.org/search?q=isbn:978-3-642-63085-9
http://www.worldcat.org/search?q=isbn:978-3-642-63085-9
http://dx.doi.org/10.1080/10587250108023659
http://dx.doi.org/10.1080/10587250108023659
http://dx.doi.org/10.1016/S0379-6779(02)00398-3
http://dx.doi.org/10.1063/1.2720268
http://dx.doi.org/10.1063/1.2720268

Bibliography 163

[Knul5]

[Koh65]

[Koh96]

[Koh99]

[Koh06]

[Kén90]

[Kor12]

[Kre99]

[Kru06]

[Kud00]

[Kuz80]

[Kwa79]

[Lee88]

E. Knuth, C. Carbogno, V. Atalla, V. Blum, and M. Scheffler. All-electron
formalism for total energy strain derivatives and stress tensor components for

numeric atom-centered orbitals. Computer Physics Communications 190, 33
(2015).

W. Kohn and L. J. Sham. Self-Consistent Equations Including Exchange and
Correlation Effects. Physical Review 140, A1133 (1965).

W. Kohn, A. D. Becke, and R. G. Parr. Density Functional Theory of Electronic
Structure. The Journal of Physical Chemistry 100, 12974 (1996).

W. Kohn. Nobel Lecture: Electronic structure of matter—wave functions and density
functionals. Reviews of Modern Physics 71, 1253 (1999).

J. Kohanoff. Electronic Structure Calculations for Solids and Molecules: Theory
and Computational Methods. Cambridge University Press (2006).

G. Konig and G. Stollhoff. Why Polyacetylene Dimerizes: Results of Ab Initio
Computations. Physical Review Letters 65, 1239 (1990).

T. Korzdorfer, R. M. Parrish, J. S. Sears, C. D. Sherrill, and J.-L. Brédas. On the
relationship between bond-length alternation and many-electron self-interaction
error. The Journal of Chemical Physics 137, 124305 (2012).

G. Kresse and D. Joubert. From ultrasoft pseudopotentials to the projector
augmented-wave method. Physical Review B 59, 1758 (1999).

A. V. Krukau, O. A. Vydrov, A. F. Izmaylov, and G. E. Scuseria. Influence of the
exchange screening parameter on the performance of screened hybrid functionals.
The Journal of Chemical Physics 125, 224106 (2006).

K. N. Kudin and G. E. Scuseria. Linear-scaling density-functional theory with
Gaussian orbitals and periodic boundary conditions: Efficient evaluation of energy
and forces via the fast multipole method. Physical Review B 61, 16440 (2000).

H. Kuzmany. Resonance Raman Scattering from Neutral and Doped Polyacetylene.
physica status solidi (b) 97, 521 (1980).

J. F. Kwak, T. C. Clarke, R. L. Greene, and G. B. Street. Transport properties of
heavily AsF5 doped polyacetylene. Solid State Communications 31, 355 (1979).

C. Lee, W. Yang, and R. G. Parr. Development of the Colle-Salvetti correlation-
energy formula into a functional of the electron density. Physical Review B 37,
785 (1988).


http://dx.doi.org/10.1016/j.cpc.2015.01.003
http://dx.doi.org/10.1016/j.cpc.2015.01.003
http://dx.doi.org/10.1016/j.cpc.2015.01.003
http://dx.doi.org/10.1103/PhysRev.140.A1133
http://dx.doi.org/10.1103/PhysRev.140.A1133
http://dx.doi.org/10.1021/jp960669l
http://dx.doi.org/10.1021/jp960669l
http://dx.doi.org/10.1103/RevModPhys.71.1253
http://dx.doi.org/10.1103/RevModPhys.71.1253
http://www.worldcat.org/search?q=isbn:978-0-521-81591-8
http://www.worldcat.org/search?q=isbn:978-0-521-81591-8
http://dx.doi.org/10.1103/PhysRevLett.65.1239
http://dx.doi.org/10.1103/PhysRevLett.65.1239
http://dx.doi.org/10.1063/1.4752431
http://dx.doi.org/10.1063/1.4752431
http://dx.doi.org/10.1063/1.4752431
http://dx.doi.org/10.1103/PhysRevB.59.1758
http://dx.doi.org/10.1103/PhysRevB.59.1758
http://dx.doi.org/10.1063/1.2404663
http://dx.doi.org/10.1063/1.2404663
http://dx.doi.org/10.1103/PhysRevB.61.16440
http://dx.doi.org/10.1103/PhysRevB.61.16440
http://dx.doi.org/10.1103/PhysRevB.61.16440
http://dx.doi.org/10.1002/pssb.2220970217
http://dx.doi.org/10.1016/0038-1098(79)90555-6
http://dx.doi.org/10.1016/0038-1098(79)90555-6
http://dx.doi.org/10.1103/PhysRevB.37.785
http://dx.doi.org/10.1103/PhysRevB.37.785

164

Bibliography

[Leel0]

[Lei84]

[Lei88]

[Mac01]

[Mad06]

[Mah96]

[Mar04]

[Mar11]

[Mas64]

[Min87]

[Mon76]

[Moo087]

[Mos82]

[Mur44]

K. Lee, E. D. Murray, L. Kong, B. I. Lundqvist, and D. C. Langreth. Higher-
accuracy van der Waals density functional. Physical Review B 82, 081101 (2010).

G. Leising. Fully Oriented Non-Fibrous Crystalline Polyacetylene. Polymer
Bulletin 11, 401 (1984).

G. Leising. Anisotropy of the optical constants of pure and metallic polyacetylene.
Physical Review B 38, 10313 (1988).

A. G. MacDiarmid. Nobel Lecture: “Synthetic metals”: A novel role for organic
polymers. Reviews of Modern Physics 73, 701 (2001).

G. K. H. Madsen and D. J. Singh. BoltzTraP. A code for calculating band-structure
dependent quantities. Computer Physics Communications 175, 67 (2006).

G. D.Mahan and J. O. Sofo. The best thermoelectric. Proceedings of the National
Academy of Sciences of the United States of America 93, 7436 (1996).

R. M. Martin. Electronic Structure: Basic Theory and Practical Methods. Cam-
bridge University Press (2004).

M. A. L. Marques, J. Vidal, M. ]J. T. Oliveira, L. Reining, and S. Botti. Density-
based mixing parameter for hybrid functionals. Physical Review B 83, 035119
(2011).

R. Mason. The Crystallography of Anthracene at 95°K and 290°K. Acta Crystal-
lographica 17, 547 (1964).

J. Mintmire and C. White. Local-density-functional results for the dimerization
of trans-polyacetylene: Relationship to the band-gap problem. Physical Review B
35, 4180 (1987).

H. J. Monkhorst and J. D. Pack. Special points for Brillouin zone integrations.
Physical Review B 13, 5188 (1976).

Y. B. Moon, M. Winokur, A.]. Heeger, ]. Barker, and D. C. Bott. X-ray scattering
from oriented Durham polyacetylene: structural changes after electrochemical
doping. Macromolecules 20, 2457 (1987).

D. Moses, A. Feldblum, E. Ehrenfreund, A. J. Heeger, T.-C. Chung, and A. G.
MacDiarmid. Pressure dependence of the photoabsorption of polyacetylene. Physi-
cal Review B 26, 3361 (1982).

E. D. Murnaghan. The Compressibility of Media under Extreme Pressures. Pro-
ceedings of the National Academy of Sciences of the United States of America
30, 244 (1944).


http://dx.doi.org/10.1103/PhysRevB.82.081101
http://dx.doi.org/10.1103/PhysRevB.82.081101
http://dx.doi.org/10.1007/BF00265478
http://dx.doi.org/10.1103/PhysRevB.38.10313
http://dx.doi.org/10.1103/RevModPhys.73.701
http://dx.doi.org/10.1103/RevModPhys.73.701
http://dx.doi.org/10.1016/j.cpc.2006.03.007
http://dx.doi.org/10.1016/j.cpc.2006.03.007
http://dx.doi.org/10.1073/pnas.93.15.7436
http://www.worldcat.org/search?q=isbn:978-0-521-78285-2
http://dx.doi.org/10.1103/PhysRevB.83.035119
http://dx.doi.org/10.1103/PhysRevB.83.035119
http://dx.doi.org/10.1107/S0365110X64001281
http://dx.doi.org/10.1103/PhysRevB.35.4180
http://dx.doi.org/10.1103/PhysRevB.35.4180
http://dx.doi.org/10.1103/PhysRevB.13.5188
http://dx.doi.org/10.1021/ma00176a022
http://dx.doi.org/10.1021/ma00176a022
http://dx.doi.org/10.1021/ma00176a022
http://dx.doi.org/10.1103/PhysRevB.26.3361
http://dx.doi.org/10.1073/pnas.30.9.244

Bibliography 165

[Nagll1]

[Naké64]

[Nie83]

[Nie85]

[Nob9s]

[Nob00]

[Noc06]

[Nye85]

[Oeh02]

[Oni02]

[Ono77]

[Par89]

[Per81]

[Per83]

N. Nagasako and T. Oguchi. Stress Formulation in the All-Electron Full-Potential
Linearized Augmented Plane Wave Method. Journal of the Physical Society of
Japan 80, 024701 (2011).

I. Nakada and Y. Ishihara. The Effects of Temperature and Electric Field for the
Photo-Generation of Free Carriers in Anthracene. Journal of the Physical Society
of Japan 19, 695 (1964).

O. H. Nielsen and R. M. Martin. First-Principles Calculation of Stress. Physical
Review Letters 50, 697 (1983).

O. H. Nielsen and R. M. Martin. Stresses in semiconductors: Ab initio calculations
on Si, Ge, and GaAs. Physical Review B 32, 3792 (1985).

The Nobel Prize in Chemistry 1998. http://www.nobelprize.org/nobel_prizes/
chemistry/laureates/1998/.

The Nobel Prize in Chemistry 2000. http://www.nobelprize.org/nobel_prizes/
chemistry/laureates/2000/.

J. Nocedal and S. Wright. Numerical Optimization. Springer, edn. 2 (2006).

J. E. Nye. Physical Properties of Crystals: Their Representation by Tensors and
Matrices. Oxford University Press (1985).

M. Oehzelt, R. Resel, and A. Nakayama. High-pressure structural properties of
anthracene up to 10 GPa. Physical Review B 66, 174104 (2002).

G. Onida, L. Reining, and A. Rubio. Electronic excitations: density-functional
versus many-body Green’s-function approaches. Reviews of Modern Physics 74,
601 (2002).

T. Ono, M. Kimura, and T. Miyamoto. Selective epitaxial growth of single-crystal
anthracene. Journal of Applied Physics 48, 2102 (1977).

R. G. Parr and W. Yang. Density-Functional Theory of Atoms and Molecules.
International Series of Monographs on Chemistry. Oxford University Press
(1989).

J. P. Perdew and A. Zunger. Self-interaction correction to density-functional
approximations for many-electron systems. Physical Review B 23, 5048 (1981).

J. P. Perdew and M. Levy. Physical Content of the Exact Kohn-Sham Orbital
Energies: Band Gaps and Derivative Discontinuities. Physical Review Letters 51,
1884 (1983).


http://dx.doi.org/10.1143/JPSJ.80.024701
http://dx.doi.org/10.1143/JPSJ.80.024701
http://dx.doi.org/10.1143/JPSJ.19.695
http://dx.doi.org/10.1143/JPSJ.19.695
http://dx.doi.org/10.1103/PhysRevLett.50.697
http://dx.doi.org/10.1103/PhysRevB.32.3792
http://dx.doi.org/10.1103/PhysRevB.32.3792
http://www.nobelprize.org/nobel_prizes/chemistry/laureates/1998/
http://www.nobelprize.org/nobel_prizes/chemistry/laureates/1998/
http://www.nobelprize.org/nobel_prizes/chemistry/laureates/2000/
http://www.nobelprize.org/nobel_prizes/chemistry/laureates/2000/
http://www.worldcat.org/search?q=isbn:978-0-387-30303-1
http://www.worldcat.org/search?q=isbn:978-0-19-851165-6
http://www.worldcat.org/search?q=isbn:978-0-19-851165-6
http://dx.doi.org/10.1103/PhysRevB.66.174104
http://dx.doi.org/10.1103/PhysRevB.66.174104
http://dx.doi.org/10.1103/RevModPhys.74.601
http://dx.doi.org/10.1103/RevModPhys.74.601
http://dx.doi.org/10.1063/1.323891
http://dx.doi.org/10.1063/1.323891
http://www.worldcat.org/search?q=isbn:978-0-19-504279-5
http://dx.doi.org/10.1103/PhysRevB.23.5048
http://dx.doi.org/10.1103/PhysRevB.23.5048
http://dx.doi.org/10.1103/PhysRevLett.51.1884
http://dx.doi.org/10.1103/PhysRevLett.51.1884

166

Bibliography

[Per92]

[Pér95]

[Per96a]

[Per96b]

[Per99]

[Per03]

[Per08]

[Pod13]

[Poh62]

[Pop62]

[Pop99]

[Pot69]

J. P. Perdew and Y. Wang. Accurate and simple analytic representation of the
electron-gas correlation energy. Physical Review B 45, 13244 (1992).

J. M. Pérez-Jorda and A. D. Becke. A density-functional study of van der Waals
forces: rare gas diatomics. Chemical Physics Letters 233, 134 (1995).

J. P. Perdew, K. Burke, and M. Ernzerhof. Generalized Gradient Approximation
Made Simple. Physical Review Letters 77, 3865 (1996).

J. P. Perdew, M. Ernzerhof, and K. Burke. Rationale for mixing exact exchange
with density functional approximations. The Journal of Chemical Physics 105,
9982 (1996).

J. P. Perdew, S. Kurth, A. Zupan, and P. Blaha. Accurate Density Functional with
Correct Formal Properties: A Step Beyond the Generalized Gradient Approximation.
Physical Review Letters 82, 5179 (1999).

J. P. Perdew and S. Kurth. Density Functionals for Non-relativistic Coulomb
Systems in the New Century, in A Primer in Density Functional Theory (edited
by C. Fiolhais, F. Nogueira, and M. A. L. Marques), vol. 620 of Lecture Notes in
Physics, chap. 1, pp. 1-55. Springer (2003).

J. P. Perdew, A. Ruzsinszky, G. I. Csonka, O. A. Vydrov, G. E. Scuseria, L. A.
Constantin, X. Zhou, and K. Burke. Restoring the Density-Gradient Expansion
for Exchange in Solids and Surfaces. Physical Review Letters 100, 136406
(2008).

V. Podzorov. Organic single crystals: Addressing the fundamentals of organic
electronics. MRS Bulletin 38, 15 (2013).

H. A. Pohl, A. Rembaum, and A. Henry. Effects of High Pressure on Some
Organic Semiconducting Polymers. Journal of the American Chemical Society
84, 2699 (1962).

M. Pope, H. P. Kallmann, A. Chen, and P. Gordon. Charge Injection into Organic
Crystals: Influence of Electrodes on Dark- and Photoconductivity. The Journal of
Chemical Physics 36, 2486 (1962).

J. A. Pople. Nobel Lecture: Quantum chemical models. Reviews of Modern
Physics 71, 1267 (1999).

G. T. Pott and D. F. Williams. Low-Temperature Electron Injection and Space-
Charge-Limited Transients in Anthracene Crystals. The Journal of Chemical
Physics 51, 1901 (1969).


http://dx.doi.org/10.1103/PhysRevB.45.13244
http://dx.doi.org/10.1103/PhysRevB.45.13244
http://dx.doi.org/10.1016/0009-2614(94)01402-H
http://dx.doi.org/10.1016/0009-2614(94)01402-H
http://dx.doi.org/10.1103/PhysRevLett.77.3865
http://dx.doi.org/10.1103/PhysRevLett.77.3865
http://dx.doi.org/10.1063/1.472933
http://dx.doi.org/10.1063/1.472933
http://dx.doi.org/10.1103/PhysRevLett.82.5179
http://dx.doi.org/10.1103/PhysRevLett.82.5179
http://dx.doi.org/10.1007/3-540-37072-2
http://dx.doi.org/10.1007/3-540-37072-2
http://www.worldcat.org/search?q=isbn:978-3-540-03083-6
http://dx.doi.org/10.1103/PhysRevLett.100.136406
http://dx.doi.org/10.1103/PhysRevLett.100.136406
http://dx.doi.org/10.1557/mrs.2012.306
http://dx.doi.org/10.1557/mrs.2012.306
http://dx.doi.org/10.1021/ja00873a011
http://dx.doi.org/10.1021/ja00873a011
http://dx.doi.org/10.1063/1.1732912
http://dx.doi.org/10.1063/1.1732912
http://dx.doi.org/10.1103/RevModPhys.71.1267
http://dx.doi.org/10.1063/1.1672275
http://dx.doi.org/10.1063/1.1672275

Bibliography 167

[Pro75]

[Pul69]

[Pul80]

[Pus02]

[Qiul2]

[Rei98]

[Renl12a]

[Ren12b]

[Ric13]

[Rin05]

[Sch78]

[Seb83]

[Sei96]

K. H. Probst and N. Karl. Energy Levels of Electron and Hole Traps in the Band
Gap of Doped Anthracene Crystals. physica status solidi (a) 27, 499 (1975).

P. Pulay. Ab initio calculation of force constants and equilibrium geometries in
polyatomic molecules. Molecular Physics 17, 197 (1969).

P. Pulay. Convergence acceleration of iterative sequences. the case of scf iteration.
Chemical Physics Letters 73, 393 (1980).

P. Puschnig and C. Ambrosch-Draxl. Suppression of Electron-Hole Correlations
in 3D Polymer Materials. Physical Review Letters 89, 056405 (2002).

S. L. Qiu and P. M. Marcus. Equilibrium lines and barriers to phase transitions:
the cubic diamond to beta-tin transition in Si from first principles. Journal of
Physics: Condensed Matter 24, 225501 (2012).

L. E. Reichl. A Modern Course in Statistical Physics. Wiley-VCH, edn. 2 (1998).

X.Ren, P. Rinke, V. Blum, J. Wieferink, A. Tkatchenko, A. Sanfilippo, K. Reuter,
and M. Scheffler. Resolution-of-identity approach to Hartree—Fock, hybrid den-
sity functionals, RPA, MP2 and GW with numeric atom-centered orbital basis
functions. New Journal of Physics 14, 053020 (2012).

X. Ren, P. Rinke, C. Joas, and M. Scheffler. Random-phase approximation and
its applications in computational chemistry and materials science. Journal of
Materials Science 47, 7447 (2012).

N. A. Richter, S. Sicolo, S. V. Levchenko, J. Sauer, and M. Scheffler. Concen-
tration of Vacancies at Metal-Oxide Surfaces: Case Study of MgO(100). Physical
Review Letters 111, 045502 (2013).

P. Rinke, A. Qteish, J. Neugebauer, C. Freysoldt, and M. Scheffler. Combining
GW calculations with exact-exchange density-functional theory: an analysis of
valence-band photoemission for compound semiconductors. New Journal of
Physics 7, 126 (2005).

L. B. Schein, C. B. Duke, and A. R. McGhie. Observation of the Band-Hopping
Transition for Electrons in Naphthalene. Physical Review Letters 40, 197 (1978).

L. Sebastian, G. Weiser, G. Peter, and H. Bassler. Charge-transfer transitions in
crystalline anthracene and their role in photoconductivity. Chemical Physics 75,
103 (1983).

A. Seidl, A. Gorling, P. Vogl, ]J. A. Majewski, and M. Levy. Generalized Kohn-
Sham schemes and the band-gap problem. Physical Review B 53, 3764 (1996).


http://dx.doi.org/10.1002/pssa.2210270219
http://dx.doi.org/10.1002/pssa.2210270219
http://dx.doi.org/10.1080/00268976900100941
http://dx.doi.org/10.1080/00268976900100941
http://dx.doi.org/10.1016/0009-2614(80)80396-4
http://dx.doi.org/10.1103/PhysRevLett.89.056405
http://dx.doi.org/10.1103/PhysRevLett.89.056405
http://dx.doi.org/10.1088/0953-8984/24/22/225501
http://dx.doi.org/10.1088/0953-8984/24/22/225501
http://www.worldcat.org/search?q=isbn:978-0-471-59520-5
http://dx.doi.org/10.1088/1367-2630/14/5/053020
http://dx.doi.org/10.1088/1367-2630/14/5/053020
http://dx.doi.org/10.1088/1367-2630/14/5/053020
http://dx.doi.org/10.1007/s10853-012-6570-4
http://dx.doi.org/10.1007/s10853-012-6570-4
http://dx.doi.org/10.1103/PhysRevLett.111.045502
http://dx.doi.org/10.1103/PhysRevLett.111.045502
http://dx.doi.org/10.1088/1367-2630/7/1/126
http://dx.doi.org/10.1088/1367-2630/7/1/126
http://dx.doi.org/10.1088/1367-2630/7/1/126
http://dx.doi.org/10.1103/PhysRevLett.40.197
http://dx.doi.org/10.1103/PhysRevLett.40.197
http://dx.doi.org/10.1016/0301-0104(83)85012-5
http://dx.doi.org/10.1016/0301-0104(83)85012-5
http://dx.doi.org/10.1103/PhysRevB.53.3764
http://dx.doi.org/10.1103/PhysRevB.53.3764

168

Bibliography

[Shi67]

[Shi77]

[Shi01]

[Sol02]

[Ste94]

[Ste10]

[Str96]

[Su79]

[Suh95]

[Sun02]

[Sun15]

K. Shimamura, M. Hatano, S. Kanbara, and I. Nakada. Electrical Conduction of
Poly-Acetylene under High Pressure. Journal of the Physical Society of Japan 23,
578 (1967).

H. Shirakawa, E. J. Louis, A. G. MacDiarmid, C. K. Chiang, and A. J. Heeger.
Synthesis of Electrically Conducting Organic Polymers: Halogen Derivatives of
Polyacetylene, (CH),. Journal of the Chemical Society, Chemical Communica-
tions p. 578 (1977).

H. Shirakawa. Nobel Lecture: The discovery of polyacetylene film-the dawning of
an era of conducting polymers. Reviews of Modern Physics 73, 713 (2001).

J. M. Soler, E. Artacho, J. D. Gale, A. Garcia, J. Junquera, P. Ordejon, and
D. Sanchez-Portal. The SIESTA method for ab initio order-N materials simulation.
Journal of Physics: Condensed Matter 14, 2745 (2002).

P. J. Stephens, F. ]J. Devlin, C. F. Chabalowski, and M. J. Frisch. Ab Initio
Calculation of Vibrational Absorption and Circular Dichroism Spectra Using
Density Functional Force Fields. The Journal of Physical Chemistry 98, 11623
(1994).

T. Stein, H. Eisenberg, L. Kronik, and R. Baer. Fundamental Gaps in Finite
Systems from Eigenvalues of a Generalized Kohn-Sham Method. Physical Review
Letters 105, 266802 (2010).

R. E. Stratmann, G. E. Scuseria, and M. ]. Frisch. Achieving linear scaling in
exchange-correlation density functional quadratures. Chemical Physics Letters
257,213 (1996).

W. P. Su, J. R. Schrieffer, and A. J. Heeger. Solitons in polyacetylene. Physical
Review Letters 42, 1698 (1979).

S. Suhai. Electron correlation and dimerization in trans-polyacetylene: Many-body
perturbation theory versus density-functional methods. Physical Review B 51,
16553 (1995).

G. Sun, J. Kurti, M. Kertesz, and R. H. Baughman. Dimensional changes as a
function of charge injection for trans-polyacetylene: A density functional theory
study. The Journal of Chemical Physics 117, 7691 (2002).

J. Sun, A. Ruzsinszky, and J. P. Perdew. Strongly Constrained and Appropriately
Normed Semilocal Density Functional. Physical Review Letters 115, 036402
(2015).


http://dx.doi.org/10.1143/JPSJ.23.578
http://dx.doi.org/10.1143/JPSJ.23.578
http://dx.doi.org/10.1039/c39770000578
http://dx.doi.org/10.1039/c39770000578
http://dx.doi.org/10.1103/RevModPhys.73.713
http://dx.doi.org/10.1103/RevModPhys.73.713
http://dx.doi.org/10.1088/0953-8984/14/11/302
http://dx.doi.org/10.1021/j100096a001
http://dx.doi.org/10.1021/j100096a001
http://dx.doi.org/10.1021/j100096a001
http://dx.doi.org/10.1103/PhysRevLett.105.266802
http://dx.doi.org/10.1103/PhysRevLett.105.266802
http://dx.doi.org/10.1016/0009-2614(96)00600-8
http://dx.doi.org/10.1016/0009-2614(96)00600-8
http://dx.doi.org/10.1103/PhysRevLett.42.1698
http://dx.doi.org/10.1103/PhysRevB.51.16553
http://dx.doi.org/10.1103/PhysRevB.51.16553
http://dx.doi.org/10.1063/1.1509052
http://dx.doi.org/10.1063/1.1509052
http://dx.doi.org/10.1063/1.1509052
http://dx.doi.org/10.1103/PhysRevLett.115.036402
http://dx.doi.org/10.1103/PhysRevLett.115.036402

Bibliography 169

[Tan80]

[Tan87]

[Tho02]

[Tia04]

[Tip08]

[Tka09]

[Tkal2]

[Tor08]

[Tot03]

[Tsu92]

[Vah93]

[Vik93]

[VAISS]

T. Tani, P. M. Grant, W. D. Gill, G. B. Street, and T. C. Clarke. Phototransport
effects in polyacetylene, (CH),. Solid State Communications 33, 499 (1980).

C. W. Tang and S. A. VanSlyke. Organic electroluminescent diodes. Applied
Physics Letters 51, 913 (1987).

T. Thonhauser, C. Ambrosch-Draxl, and D. J. Singh. Stress and pressure within
the linearized-augmented plane-wave method. Solid State Communications 124,
275 (2002).

M. Tiago, M. Rohlfing, and S. Louie. Bound excitons and optical properties of
bulk trans-polyacetylene. Physical Review B 70, 193204 (2004).

P. A. Tipler and G. Mosca. Physics for Scientists and Engineers. W. H. Freeman,
edn. 6 (2008).

A. Tkatchenko and M. Scheffler. Accurate Molecular Van Der Waals Interactions
from Ground-State Electron Density and Free-Atom Reference Data. Physical
Review Letters 102, 073005 (2009).

A. Tkatchenko, R. A. DiStasio, R. Car, and M. Scheffler. Accurate and Efficient
Method for Many-Body van der Waals Interactions. Physical Review Letters 108,
236402 (2012).

M. Torrent, F. Jollet, F. Bottin, G. Zérah, and X. Gonze. Implementation of the
projector augmented-wave method in the ABINIT code: Application to the study of
iron under pressure. Computational Materials Science 42, 337 (2008).

G. E. Totten and D. S. MacKenzie. Handbook of Aluminum: Volume 1: Physical
Metallurgy and Processes. Marcel Dekker (2003).

J. Tsukamoto. Recent advances in highly conductive polyacetylene. Advances in
Physics 41, 509 (1992).

O. Vahtras, J. Almlof, and M. W. Feyereisen. Integral approximations for LCAO-
SCF calculations. Chemical Physics Letters 213, 514 (1993).

K. Vikiparta, M. Reghu, M. R. Andersson, Y. Cao, D. Moses, and A. ]J. Heeger.
Temperature dependence of the electrical conductivity of potassium-doped poly-

acetylene as a function of pressure and magnetic field. Physical Review B 47,
9977 (1993).

C. Van Alsenoy. Ab initio calculations on large molecules: The multiplicative
integral approximation. Journal of Computational Chemistry 9, 620 (1988).


http://dx.doi.org/10.1016/0038-1098(80)90845-5
http://dx.doi.org/10.1016/0038-1098(80)90845-5
http://dx.doi.org/10.1063/1.98799
http://dx.doi.org/10.1016/S0038-1098(02)00181-3
http://dx.doi.org/10.1016/S0038-1098(02)00181-3
http://dx.doi.org/10.1103/PhysRevB.70.193204
http://dx.doi.org/10.1103/PhysRevB.70.193204
http://www.worldcat.org/search?q=isbn:978-1-4292-0124-7
http://dx.doi.org/10.1103/PhysRevLett.102.073005
http://dx.doi.org/10.1103/PhysRevLett.102.073005
http://dx.doi.org/10.1103/PhysRevLett.108.236402
http://dx.doi.org/10.1103/PhysRevLett.108.236402
http://dx.doi.org/10.1016/j.commatsci.2007.07.020
http://dx.doi.org/10.1016/j.commatsci.2007.07.020
http://dx.doi.org/10.1016/j.commatsci.2007.07.020
http://www.worldcat.org/search?q=isbn:978-0-8247-0494-0
http://www.worldcat.org/search?q=isbn:978-0-8247-0494-0
http://dx.doi.org/10.1080/00018739200101543
http://dx.doi.org/10.1016/0009-2614(93)89151-7
http://dx.doi.org/10.1016/0009-2614(93)89151-7
http://dx.doi.org/10.1103/PhysRevB.47.9977
http://dx.doi.org/10.1103/PhysRevB.47.9977
http://dx.doi.org/10.1002/jcc.540090607
http://dx.doi.org/10.1002/jcc.540090607

170

Bibliography

[vLe94]

[Vog89]

[Vog90]

[Vos80]

[Vydo8]

[War85]

[Wei79]

[Wil70]

[Wil72]

[Wu87]

[Wu02]

[Xul4]

[Yan83]

E. van Lenthe, E. J. Baerends, and ]. G. Snijders. Relativistic total energy using
regular approximations. The Journal of Chemical Physics 101, 9783 (1994).

P. Vogl and D. K. Campbell. Three-dimensional structure and intrinsic defects in
trans-polyacetylene. Physical Review Letters 62, 2012 (1989).

P. Vogl and D. K. Campbell. First-principles calculations of the three-dimensional
structure and intrinsic defects in trans-polyacetylene. Physical Review B 41,
12797 (1990).

S. H. Vosko, L. Wilk, and M. Nusair. Accurate spin-dependent electron liquid
correlation energies for local spin density calculations: a critical analysis. Canadian
Journal of Physics 58, 1200 (1980).

O. A. Vydrov, Q. Wu, and T. Van Voorhis. Self-consistent implementation of a
nonlocal van der Waals density functional with a Gaussian basis set. The Journal
of Chemical Physics 129, 014106 (2008).

W. Warta and N. Karl. Hot holes in naphthalene: High, electric-field-dependent
mobilities. Physical Review B 32, 1172 (1985).

B. R. Weinberger, J. Kaufer, A. ]J. Heeger, A. Pron, and A. G. MacDiarmid.
Magnetic susceptibility of doped polyacetylene. Physical Review B 20, 223 (1979).

D. F. Williams. dc and Pulsed Electroluminescence in Anthracene and Doped
Anthracene Crystals. The Journal of Chemical Physics 53, 3480 (1970).

W. G. Williams, P. L. Spong, and D. J. Gibbons. Double injection electrolumi-
nescence in anthracene and carrier injection properties of carbon fibres. Journal of
Physics and Chemistry of Solids 33, 1879 (1972).

C.-q. Wu, X. Sun, and K. Nasu. Electron Correlation and Bond Alternation in
Polymers. Physical Review Letters 59, 831 (1987).

Q. Wu and W. Yang. Empirical correction to density functional theory for van der
Waals interactions. The Journal of Chemical Physics 116, 515 (2002).

B. Xu and M. J. Verstraete. First Principles Explanation of the Positive Seebeck
Coefficient of Lithium. Physical Review Letters 112, 196603 (2014).

C. S. Yannoni and T. C. Clarke. Molecular Geometry of cis- and trans-
Polyacetylene by Nutation NMR Spectroscopy. Physical Review Letters 51,
1191 (1983).


http://dx.doi.org/10.1063/1.467943
http://dx.doi.org/10.1063/1.467943
http://dx.doi.org/10.1103/PhysRevLett.62.2012
http://dx.doi.org/10.1103/PhysRevLett.62.2012
http://dx.doi.org/10.1103/PhysRevB.41.12797
http://dx.doi.org/10.1103/PhysRevB.41.12797
http://dx.doi.org/10.1139/p80-159
http://dx.doi.org/10.1139/p80-159
http://dx.doi.org/10.1063/1.2948400
http://dx.doi.org/10.1063/1.2948400
http://dx.doi.org/10.1103/PhysRevB.32.1172
http://dx.doi.org/10.1103/PhysRevB.32.1172
http://dx.doi.org/10.1103/PhysRevB.20.223
http://dx.doi.org/10.1063/1.1674521
http://dx.doi.org/10.1063/1.1674521
http://dx.doi.org/10.1016/S0022-3697(72)80485-2
http://dx.doi.org/10.1016/S0022-3697(72)80485-2
http://dx.doi.org/10.1103/PhysRevLett.59.831
http://dx.doi.org/10.1103/PhysRevLett.59.831
http://dx.doi.org/10.1063/1.1424928
http://dx.doi.org/10.1063/1.1424928
http://dx.doi.org/10.1103/PhysRevLett.112.196603
http://dx.doi.org/10.1103/PhysRevLett.112.196603
http://dx.doi.org/10.1103/PhysRevLett.51.1191
http://dx.doi.org/10.1103/PhysRevLett.51.1191

Bibliography 171

[Yan14] Q. Yan, P. Rinke, A. Janotti, M. Scheffler, and C. G. Van de Walle. Effects of
strain on the band structure of group-III nitrides. Physical Review B 90, 125118
(2014).

[Yin82] M. T.Yin and M. L. Cohen. Theory of static structural properties, crystal stability,
and phase transformations: Application to Si and Ge. Physical Review B 26, 5668
(1982).

[Zha98] Y. Zhang and W. Yang. Comment on “Generalized Gradient Approximation Made
Simple”. Physical Review Letters 80, 890 (1998).

[Zhu92] Q. Zhu, J. E. Fischer, R. Zusok, and S. Roth. Crystal structure of polyacetylene
revisited: An x-ray study. Solid State Communications 83, 179 (1992).


http://dx.doi.org/10.1103/PhysRevB.90.125118
http://dx.doi.org/10.1103/PhysRevB.90.125118
http://dx.doi.org/10.1103/PhysRevB.26.5668
http://dx.doi.org/10.1103/PhysRevB.26.5668
http://dx.doi.org/10.1103/PhysRevLett.80.890
http://dx.doi.org/10.1103/PhysRevLett.80.890
http://dx.doi.org/10.1016/0038-1098(92)90832-T
http://dx.doi.org/10.1016/0038-1098(92)90832-T

	Abstract
	Kurzfassung
	Contents
	Acronyms
	Notation
	1 Introduction
	Part I: Theoretical background
	2 The many-electron problem and approximations to it
	2.1 Density-functional theory and Hohenberg-Kohn theorems
	2.2 Kohn-Sham equations
	2.3 Approximations to exchange and correlation energy
	2.3.1 Local-density approximation
	2.3.2 Generalized gradient approximation
	2.3.3 Hybrid functionals
	2.3.4 Screened hybrid functionals
	2.3.5 Functional families
	2.3.6 Van der Waals corrections


	3 Solving the Kohn-Sham equations with FHI-aims
	3.1 Self-consistent field method
	3.2 Numeric atom-centered basis functions
	3.3 Generalized eigenvalue problem
	3.4 Numerical integration
	3.5 Periodic systems
	3.6 Total energy in FHI-aims
	3.6.1 Kinetic energy of non-interacting electrons
	3.6.2 Electrostatics
	3.6.3 Exchange-correlation energy


	4 Calculating electrical band conductivities with BoltzTraP
	4.1 Band conductivity from Boltzmann transport equation
	4.2 Determining the Fermi level and charge carrier concentrations


	Part II: Derivation and implementation of stress tensor
	5 Stress in crystals
	5.1 Fundamental formulae for strain derivatives
	5.1.1 Properties of strain derivatives
	5.1.2 Strain derivative of position vectors
	5.1.3 Strain derivative of lattice vectors
	5.1.4 Strain derivative of unit cell volume
	5.1.5 Strain derivative of reciprocal lattice vectors
	5.1.6 Strain derivative of integrals over the unit cell volume

	5.2 Derivation of all stress tensor contributions
	5.2.1 Kohn-Sham orbitals
	5.2.2 Normalization factor
	5.2.3 Kinetic energy of non-interacting electrons
	5.2.4 Electrostatics
	5.2.5 Exchange-correlation energy

	5.3 Summary of terms – the stress tensor
	5.4 Implementation details
	5.4.1 Kinetic on-site correction
	5.4.2 Electrostatic on-site correction

	5.5 Finite differences stress tensor
	5.6 Unit cell optimization with external pressure

	6 Validation
	6.1 Stress tensor
	6.1.1 Different crystals
	6.1.2 Different functionals
	6.1.3 Basis set and unit cell size
	6.1.4 Partitioning functions for integration
	6.1.5 Timings

	6.2 Unit cell optimization
	6.3 Optimization under external pressure
	6.4 Summary


	Part III: Application to organic crystals
	7 Anthracene
	7.1 Numerical settings
	7.2 Properties at zero pressure
	7.2.1 Geometry
	7.2.2 Electronic band structure

	7.3 Behavior under hydrostatic pressure
	7.3.1 Geometry
	7.3.2 Electronic band structure
	7.3.3 Macroscopic transport properties

	7.4 Summary

	8 Polyacetylene
	8.1 Numerical settings
	8.2 Properties at zero pressure
	8.2.1 Geometry
	8.2.2 Electronic band structure

	8.3 Behavior under strain
	8.4 Behavior under hydrostatic pressure
	8.4.1 Geometry
	8.4.2 Electronic band structure
	8.4.3 Macroscopic transport properties

	8.5 Summary


	9 Summary and outlook
	Appendices
	A Atomic units
	B Details of FHI-aims
	B.1 Radial part of basis functions
	B.2 Silicon basis functions
	B.3 "Modified Stratmann" partitioning function
	B.4 Silicon integration grid

	C Details of stress tensor derivation
	C.1 Strain derivative of on-site Hartree term
	C.2 Derivatives of Ewald long-range term
	C.3 Position derivative of Coulomb matrix
	C.4 Position derivative of locally restricted expansion coefficients

	D Organic crystals
	D.1 Hydrogen and carbon basis functions
	D.2 Basis set convergence
	D.2.1 Anthracene
	D.2.2 Polyacetylene

	D.3 k-point convergence
	D.3.1 Anthracene
	D.3.2 Polyacetylene

	D.4 Coordinates of special k-points

	Publications
	Curriculum Vitae
	Selbständigkeitserklärung
	Acknowledgments
	Bibliography


