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Abstract

We analyze a simple extension of the Standard Model where the
dark matter particle is a Dirac fermion that is mixture of a singlet and
an SU(2) doublet. The model contains only four free parameters: the
singlet and the doublet masses and two new Yukawa couplings. Direct
detection bounds in this model are very strong and require the dark
matter particle to be singlet-like. As a result, its relic density has to be
obtained via coannihilations with the doublet. We find that the dark
matter mass should be below 750 GeV, that the singlet-doublet mass
difference cannot exceed 9%, and that direct detection experiments
offer the best chance to probe this scenario. Finally, we also show
that this model can effectively arise in well-motivated extensions of
the Standard Model.
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1 Introduction

The existence of dark matter provides clear evidence for physics beyond the
Standard Model (SM) but does not tell us what this new physics should be.
A direct approach to this problem is to construct minimal or simplified dark
matter models. That is, to modify or extend the SM in simple ways that allow
to explain the dark matter. Such models typically contain a small number
of new fields and a reduced parameter space, making them predictive and
amenable to detailed analyses. Additionally, such minimal models can often
be seen as limited cases of more complicated and better motivated theories.

One of these simplified scenarios is the Singlet-Doublet fermion model
[1, 2, 3, 4], in which the dark matter candidate is a mixture of a singlet and
an SU(2) doublet. In this model, the dark matter particle is a Majorana
fermion. Consequently, its spin-independent scattering through the Z boson
vanishes, and only the Higgs-mediated diagram contributes. To achieve the
observed dark matter density via thermal freeze-out, an appropriate degree of
mixing between the singlet and the doublet is required. In certain regions of
the parameter space, this model describes bino-Higgsino dark matter in the
MSSM and singlino-Higgsino dark matter in the NMSSM. The phenomenol-
ogy of the Singlet-Doublet fermion model has been extensively studied in the
recent literature [5, 6, 7, 8].

We want to analyze instead a related model where the dark matter par-
ticle is also a mixture of a singlet and an SU(2) doublet but it is a Dirac
fermion. We have dubbed this model the Singlet-Doublet Dirac Dark Mat-
ter model, or SD3M model for short. In this model, the particle content of
the SM is extended with two Dirac fields, a singlet and a doublet, and the
resulting Lagrangian contains only 4 new parameters. To our knowledge,
this simple scenario has not been investigated before. Its phenomenology is
quite interesting and very different from that of the Singlet-Doublet fermion
model. Direct detection bounds, for instance, play a more prominent role
because the dark matter, being a Dirac particle, may now elastically scatter
on nuclei via Z mediated processes. As we will show, direct detection con-
straints [9, 10] force the dark matter particle to be essentially a singlet, with
a very small doublet component. In consequence, the relic density constraint
can only be satisfied thanks to coannihilations [11] with the doublet, leading
to a degenerate spectrum. We will determine the viable parameter space of
the SD3M model and analyze its detection prospects. In addition, we will
show that this model can easily be embedded into well-motivated extensions
of the Standard Model.

The rest of the paper is organized as follows. In the next section we de-
scribe the model and introduce our notation. The dark matter phenomenol-
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ogy is qualitatively discussed in section 3. Section 4 presents our main results.
We use a scan over the parameter of this model to determine the viable re-
gions and to analyze the detection prospects. In section 5 we show that the
SD3M model can effectively arise in well-motivated extensions of the Stan-
dard Model. Finally, we summarize our results and draw our conclusions in
section 6.

2 The model

The model we consider extends the SM particle content with two Dirac
fermions: an SU(2) doublet with Y = −1/2, ψL,R, and a singlet, SL,R,
that interact among themselves and with the SM fields via the following
Lagrangian:

LSD3M =iψ̄ /Dψ + iS̄ /∂S −MDψ̄LψR −MSS̄LSR − y1ψ̄LH̃SR − y2ψ̄RH̃SL + h.c.
(1)

where MD,S are mass parameters, y1,2 are new Yukawa couplings, H is the
SM Higgs doublet, and H̃ = iσ2H. The vector-like character of the new
fermion doublet ensures that this model is free of gauge anomalies.

The above Lagrangian possesses a Z2 symmetry under which the SM par-
ticles are even while the new fermions are odd, guaranteeing the stability of
the lightest new fermion –the would-be dark matter particle. Such a sym-
metry, however, also allows Majorana masses for SL,R, which would give rise
to a dark matter particle of Majorana type and, therefore, to the previously
studied Singlet-Doublet fermion model [5, 6, 7, 8]. In this paper we want to
focus instead on Dirac Dark Matter, so we need to find a way of preventing
such Majorana mass terms in the Lagrangian. One possibility to do so is by
postulating a global U(1) symmetry under which the new fields have all the
same charge while the SM fields are neutral. A potential drawback of this ap-
proach is that such global symmetry is expected to be broken by gravitational
effects at the Planck scale, inducing dark matter decay and threatening the
viability of the model. According to [12], current bounds require the effective
coupling of the Planck-suppressed non-renormalizable operator that induces
the decay of the dark matter particle to be smaller than about 10−8. A more
interesting alternative is to promote that U(1) to a gauge symmetry under
which the singlets are charged. Such theory will not be exactly described
by our Lagrangian but there will be a region of the parameter space where
both will effectively coincide. A well-motivated example of this type will be
discussed in section 5. For the following two sections, we will simply take
equation (1) as the Lagrangian of our model.
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Thus, even before imposing any constraint, the model contains only 4
free parameters. This small and manageable parameter space is one of the
main advantages of this scenario. Our aim is to determine the viable regions
within that parameter space and to analyze the detection prospects of this
model.

After electroweak symmetry breaking, the Yukawa interactions induce
mixing between the singlet and the neutral component of the doublet. In the
basis (S, ψ) the resulting neutral fermion mass matrix is given by

M =

(
MS

y2v√
2

y1v√
2

MD

)
, (2)

where v = 246 GeV. This matrix can be diagonalized by a bi-unitary trans-
formation such that

Md =

(
Mχ1 0

0 Mχ2

)
= U †LMUR, (3)

with

UL,R =

(
cos θL,R sin θL,R
− sin θL,R cos θL,R

)
. (4)

The lightest of the two neutral fermions (χ1, χ2) is the dark matter candidate.
As we will see in the next section, the dark matter particle should be mostly
singlet and therefore corresponds to χ1.

The mixing angles, θL,R, can be written in terms of the original parameters
of the model as

tan 2θL =

√
2v (MS y1 +MD y2)

M2
D −M2

S + v2

2
(y21 − y22)

(5)

tan 2θR =

√
2v (MS y2 +MD y1)

M2
D −M2

S + v2

2
(y22 − y21)

, (6)

while the masses of the neutral fermions are given by

M2
χ1

=
cos2 θL(M2

S + y2v
2/2)− sin2 θL(M2

D + y21v
2/2)

cos2 θL − sin2 θL
(7)

M2
χ2

=
sin2 θL(M2

S + y2v
2/2)− cos2 θL(M2

D + y21v
2/2)

sin2 θL − cos2 θL
. (8)

The physical free parameters of the SD3M model are then Mχ1 , Mχ2 , θL, and
θR.

In addition to χ1 and χ2, the spectrum also contains a new charged
fermion, χ+, with mass Mχ+ = MD + 341 MeV. LEPII bounds constrain
this mass to be larger than about 100 GeV [13].
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Figure 1: The Feynman diagram contributing to quark-dark matter scattering in
this model. To be consistent with current direct detection bounds, the dark matter
particle must be singlet-like so that its coupling to the Z is mixing-suppressed.

3 Dark Matter

The novel feature of the SD3M model is that the dark matter particle, a mix-
ture of the singlet and the doublet states, is a Dirac fermion. In consequence,
it has a non-zero vector coupling with the Z that induces a spin-independent
scattering with nuclei –see figure 1. If the dark matter particle had a sizable
doublet component, the resulting cross section would be orders of magnitude
above present bounds. Thus, direct detection experiments require the dark
matter particle to be mostly singlet: θL, θR � 1 and Mχ1 < Mχ2 . In that
case, the spin-independent direct detection cross section with a nucleus can
be written as

σA,ZSI =
G2
Fµ

2

8π
(sin2 θL + sin2 θR)2

[
(1− 4 sin2 θW )Z − (A− Z)

]2
, (9)

where θW is the weak-mixing angle. Notice that σA,ZSI does not depend on
the dark matter mass and is free of the uncertainties associated with the
scalar matrix elements. Since 1− 4 sin2 θW is small, the dark matter particle
hardly interacts with protons and σA,ZSI is essentially proportional to the dark
matter-neutron cross section. The relevant quantity to compare with the
experimental bounds, however, is not σA,ZSI but the scattering cross section
per nucleon [14], σNSI , which is given by

σNSI =
m2
N

µ2A2
σA,ZSI , (10)

where mN is the mass of the nucleon. Compatibility with current direct
detection limits requires sin θL,R . 0.1− 0.01. Consequently, Mχ1 = MS and
Mχ2 = MD to a very good approximation.

Since the dark matter particle, χ1, is mostly singlet, it does not annihilate
efficiently in the early Universe, with the result that its present abundance
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Figure 2: The viable models projected onto the planes (MD, MS) and (Mχ1,
Mχ2/Mχ1). Since the relic density is determined by coannihilations, the mass
splitting is always quite small: MD ∼MS and Mχ2/Mχ1 . 1.1.

would normally exceed the observed value. Within the standard cosmological
model, the only way of avoiding this outcome and obtaining a relic density
compatible with current data is via coannihilations with the doublet. Indeed,
the doublet is known to have a large annihilation rate, yielding a thermal
relic abundance for masses of order 1.1 TeV. For Mχ1 below that value, coan-
nihilations between the singlet and the doublet may bring the dark matter
density within the observed range. In fact, the largest possible value of Mχ1

consistent with this description can be easily estimated analytically. Since
the doublet annihilation cross section is much larger than the singlet one,
when χ1 and χ2 are quasi-degenerate we get that (see e.g. [15])

Ωχ1h
2 = Ωχ2h

2

(
gψ + gS
gψ

)2

, (11)

being gS = 4 and gψ = 8 respectively the number of degrees of freedom for
the singlet and the doublet (including its charged component). Given that

Ωχ2h
2 ≈ 0.11

(
Mχ2

1.1 TeV

)2
, and Mχ1 ∼Mχ2 , we find that Mχ1 . 733 GeV.

To summarize, in this model the dark matter particle is a Dirac fermion
that is essentially singlet under the SM gauge group, obtains its relic den-
sity thanks to coannihilations with the doublet, and interacts with nuclei
via mixing angle-suppressed weak interactions. In the next section, we will
numerically study the parameter space of this model, analyze the resulting
phenomenology and determine the dark matter detection prospects.
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4 Numerical Results

We have scanned the parameter space of this model (MD,MS < 2 TeV,
y1, y2 > 10−6) and obtained a large sample of viable models. All these vi-
able models give a relic density in agreement with current observations [16]
and a spin-independent direct detection cross section consistent with the
LUX bounds [10]. For the calculation of the relic density we have used mi-
crOMEGAs [17](and LanHEP [18]), which automatically takes into account
all coannihilation processes. In this section we analyze that sample of viable
models in some detail.

First of all, we found that the viable models satisfy Mχ1/MS ≈ 1 and
Mχ2/MD ≈ 1 to a precision better than 10−4. Thus, in the following figures
one can always replace Mχ1 (Mχ2) for MS (MD). We show the viable models
projected onto the plane (MD, MS) in the left panel of figure 2. All viable
points turn out to lie very close to the line MD = MS. Far from that
region the points would have either a relic density not compatible with the
observed dark matter density or a direct detection cross section much larger
than allowed by current data. From the figure we see that the upper bound
on MD,MS is of order 750 GeV, consistent with our estimate in the previous
section. This upper bound is smaller than that found in the Singlet-Doublet
fermion model, where it reaches approximately 1.1 TeV. The right panel
shows instead the ratio Mχ2/Mχ1 –relevant for coannihilations– versus the
dark matter mass. This ratio always lies below 9% and, as expected, it
decreases with the dark matter mass. For Mχ1 = 200, 500, 600 GeV the ratio
Mχ2/Mχ1 is respectively of order 6%, 2%, 1%. Close to Mχ1 ∼ 750 GeV, the
mass difference between χ1 and χ2 becomes negligible.

The mass spectrum consistent with the observed relic density and direct
detection limits is, therefore, essentially degenerate, and consists of a dark
matter particle with mass Mχ1 = MS and two slightly heavier fermions,
χ+, χ2, with almost the same mass MD (MD = MS + ∆m). Such degenerate
spectrum is very challenging for collider searches at the LHC. The most
sensitive searches are monojet signatures (pp → χaχbj), which have a large
background from Z + jets and W + jets. In [19], it was found that a similar
scenario (for collider purposes) –Natural Supersymmetry with low values of
the µ parameter– cannot be constrained by current LHC data, and that the
13 TeV LHC could probe dark matter masses up to 250 GeV. Based on those
results, we can claim that only a small fraction of the viable parameter space
of the SD3M model will be probed by searches at the 13 TeV LHC.

The allowed values for the Yukawa couplings are illustrated in the left
panel of figure 3. As a result of the direct detection constraint, they fulfill
y1, y2 . 4× 10−3. Thus, the dark matter Yukawa couplings must necessarily
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Figure 3: The viable models projected onto the planes (y1, y2) and (sin θL, sin θR).
The upper bound on the Yukawas and on the mixing angles are determined by the
direct detection bound from LUX.
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Figure 4: The dominant processes contributing to the dark matter annihilation
rate in the early Universe. Notice that the dark matter particle, χ1, does not
participate in these processes.

be small in this scenario. Such small Yukawa couplings guarantee that the
contribution from the new fermions to the electroweak precision parameters,
in particular to T , remain tiny –∆T ∝ (y21− y22)2 [4]. Notice that below their
upper bound, the Yukawa couplings can take essentially any value. That is,
the dark matter constraint does not restrict the possible values of y1 and
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Figure 5: The present dark matter annihilation rate, σv, versus the dark matter
mass for the viable models. Since the relic density is obtained via coannihilatios,
σv lies orders of magnitude below the so-called thermal value. No indirect detection
signals are expected in this model.

y2. The right panel of figure 3 shows the viable points projected onto the
plane (sin θL, sin θR). Due to y1, y2 � 1 and MD ∼ MS, both mixing angles
must be very similar, in agreement with equations (5) and (6). In fact, the
ratio sin θL/ sin θR is very close to 1 at large dark matter masses and it varies
between 0.92 and 1.08 for Mχ1 ∼ 100 GeV. The upper bound on sin θL,R
observed in the figure (∼ 4 × 10−2) is determined by the direct detection
limit from LUX, according to equation (10).

In this setup, the dark matter relic density is entirely determined by coan-
nihilation processes, as illustrated in figure 4. It displays the contribution
of the different annihilation processes to the total dark matter annihilation
rate in the early Universe. The dominant process, accounting for about 55%
of the total rate, is the annihilation of the charged fermion and the heavier
neutral fermion into SM fermions mediated by a W±, χ0

2χ
+ → ff̄ ′ (blue

points). The processes χ+χ− → ff̄ (green points) and χ2χ̄2 → ff̄ (red
points) together contribute another 30% or so. The remaining 15% (not
shown in the figure) is accounted for by annihilation into gauge bosons such
as χ2χ

+ → A/Z W+, χ+χ− → W+W− and χ2χ̄2 → ZZ. Processes involv-
ing the annihilation of dark matter particles give a negligible contribution
because they are suppressed by the Yukawa couplings or the mixing angles.
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Figure 5 shows the annihilation rate today, σv, versus the dark mat-
ter mass. Since the relic density is obtained via coannihilations, σv turns
out to be much smaller than the so-called thermal value (3× 10−26cm3s−1),
lying instead below 10−30cm3s−1. In fact, annihilation processes such as
χ1χ̄1 → ff̄ ,W+W− are strongly suppressed by Yukawa couplings and mix-
ing angles. In consequence, no observable indirect detection signal is expected
in this model. Conversely, if a signal were confirmed in any indirect detection
experiment, we could immediately exclude the SD3M model.

More promising is the possibility of testing this model via direct detection
experiments. Figure 6 displays the predicted spin-independent direct detec-
tion cross section as a function of the dark matter mass. By construction, all
the points are consistent with the current bound from LUX [10] (solid red
line). For comparison, we also show the expected sensitivities of XENON1T
[20] (dashed orange line) and LZ [21] (dash-dotted magenta line). Since the
spin-independent cross section strongly depends on the mixing angles, see
equation (10), and they can in principle vary over a wide range, the allowed
values of σSIN span more than 10 orders of magnitude. As can be seen in the
figure, many models feature cross sections within the expected sensitivity of
current and planned experiments. If a direct detection signal were indeed
observed in the near future, one could derive the dark matter mass and the
mixing angles directly from the measurement, using equation (10). Then, the
relic density constraint can be used, via figure 2, to estimate the mass differ-
ence. In this way, one could hope to eventually reconstruct the parameters
of the model.

The spin-dependent scattering of the dark matter particle with a nucleus
also proceeds through a Z mediated diagram, but it always has a small cross
section. We found that the viable models feature σNSD < 10−10 pb, well below
the expected sensitivity of future experiments.

5 SD3M in Gauge Extensions of the SM

In the previous sections we took the Lagrangian in equation (1) as our start-
ing point, and studied in detail the resulting dark matter phenomenology.
Now, we would like to demonstrate that such a Lagrangian can effectively
arise in gauge extensions of the Standard Model.

At first sight, the presence of the singlet fermions SL,R seems to be in-
compatible with a Dirac dark matter particle, because the Majorana mass
terms ScL,RSL,R are allowed, giving rise to Majorana mass eigenstates and,
in particular, to a Majorana dark matter particle. To obtain Dirac dark
matter, we must find a way to forbid such Majorana mass terms. As already
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Figure 6: The spin-independent dark matter-nucleon cross section versus the dark
matter mass for the viable models. The variation in σSIN is due to the mixing angles
–see equation (10). The red solid line shows the current experimental bound from
LUX. The other two lines correspond to the expected sensitivities of XENON1T
(orange dashed line) and LZ (magenta dash-dotted line).

mentioned in section 2, one way to do so is to assume the existence of an
additional U(1) gauge symmetry under which SL,R are charged. The charges
for the different fields can then be chosen to ensure that all the terms in
(1) be allowed and that the dark matter particle be automatically stable. If
necessary, additional fermions would be introduced to cancel the anomalies.
Such model would be effectively described by the Lagrangian in (1) when
the additional fermions are much heavier than the singlet and the doublet,
and when the effect of the new gauge interaction is negligible (due to a small
gauge coupling or a heavy gauge boson). An explicit and well-motivated
example of this framework is provided by the model with gauged baryon
number [22, 23, 24].

In this model, based on the gauge group SU(3)×SU(2)×U(1)Y ×U(1)B,
baryon number (B) is promoted to a local symmetry that is spontaneously
broken at a low scale. A realistic and anomaly-free realization of this theory
contains three vector-like fermions: an SU(2) doublet with Y = −1/2, an
SU(2) singlet with Y = −1, and a SM singlet, all of them charged under
U(1)B. The particle content of this model thus includes the singlets and
doublets of the SD3M model. The model also contains an additional scalar
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that spontaneously breaks baryon number and generates vector-like masses
for the new fermions. That is, in this model the parameters MD and MS in
equation (1) are actually proportional to the baryon number breaking scale.
This model satisfies the properties mentioned above, so there is a region
of the parameter space where its dark matter phenomenology is effectively
described by the SD3M model. This region of the parameter space was not
studied in [23, 24], where the effect of the Yukawa couplings –y1,2 in (1)– was
neglected.

6 Conclusions

We studied the Singlet-Doublet Dirac Dark Matter (SD3M) model, a min-
imal extension of the Standard Model featuring as a dark matter particle
a Dirac fermion that is a mixture of a singlet and an SU(2) doublet. The
spectrum consists of three Dirac fermions, one charged and two neutrals, the
lightest one being the dark matter particle. This scenario is very simple as
it only contains four free parameters: the singlet and doublet masses (MS,
MD), and two Yukawa couplings (y1, y2). Alternative, one can take as free
parameters the physical masses (Mχ1 , Mχ2) and the two mixing angles (θL,
θR). Due to the strong bounds from direct detection experiments, the dark
matter particle, χ1, has to be singlet-like, with a very small doublet compo-
nent (θL, θR � 1). The only way for such a particle to obtain a thermal relic
density consistent with the observations is via coannihilations with the dou-
blet. We found that, as a result, the dark matter mass should be below 750
GeV and the singlet-doublet mass splitting cannot exceed 9%. The viable
spectrum is thus quite degenerate and very challenging for LHC searches.
The dark matter density was shown to be set by the annihilation of the dou-
blet components, mostly χ2χ

+ → ff̄ ′, with a subdominant contribution from
χ−χ+ → ff̄ and χ2χ̄2 → ff̄ . We also analyzed the dark matter detection
prospects of this simplified scenario. Since σv lies at least four orders of mag-
nitude below the thermal value, the model predicts that no indirect detection
signals will be found in the near future. Regarding direct detection, planned
experiments will be able to probe new viable regions of the parameter space.
Finally, we also demonstrated that the SD3M model can effectively arise in
well-motivated extensions of the Standard Model.
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