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Abstract: Experiments for space and ground-based gravitational wave
detectors often require a large dynamic range interferometric position
readout of test masses with 1 pm/

√
Hz precision over long time scales.

Heterodyne interferometer schemes that achieve such precisions are avail-
able, but they require complex optical set-ups, limiting their scalability for
multiple channels. This article presents the first experimental results on
deep frequency modulation interferometry, a new technique that combines
sinusoidal laser frequency modulation in unequal arm length interferometers
with a non-linear fit algorithm. We have tested the technique in a Michelson
and a Mach-Zehnder Interferometer topology, respectively, demonstrated
continuous phase tracking of a moving mirror and achieved a performance
equivalent to a displacement sensitivity of 250 pm/

√
Hz at 1 mHz between

the phase measurements of two photodetectors monitoring the same optical
signal. By performing time series fitting of the extracted interference
signals, we measured that the linearity of the laser frequency modulation is
on the order of 2% for the laser source used.
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1. Introduction

New interferometer schemes using different phase modulation techniques, like digital inter-
ferometry (DI) [1–4] and deep phase modulation (DPM) [5, 6], are currently investigated to
simplify the optical part of future experiments in gravitational physics and for metrology exper-
iments. Reduced optical complexity is an attractive improvement considering satellite missions
like LISA [7], LISA Pathfinder (LPF) [8] and future geodesy missions [9]. Especially missions
that will aim to measure all degrees of freedom of multiple test masses will benefit from such
simplifications if they use an optical readout system instead of electrostatic readout, to achieve
the sensitivities of 1 pm/

√
Hz. The classic heterodyne interferometry used for the 2-test-mass-

readout in LPF is too complex to be adapted for future experiments using gradiometers with,
for example, six test masses and a full optical readout of all 36 degrees of freedom.

One recently proposed scheme to simplify optical set-ups is the so-called deep frequency
modulation (DFM) [10], a type of frequency modulated continuous wave (FMCW) technique
[11] that uses strong laser frequency modulations in unequal arm length interferometers in com-
bination with a phase readout based on fitting the complex amplitudes of the modulation har-
monics [5]. This fit algorithm is an alternative to established windowing based, multiplexing-
capable phase extraction methods [12]. Recent progress in these methods has let to the demon-
stration of phase measurement sensitivities in the order of 1 · 10−4 rad/

√
Hz above 1 Hz [13].

However, in contrast to DFM these methods require in general much larger frequency modula-
tion amplitudes or optical pathlength differences, because their windowing algorithm extracts
the phase only from a part of the interferogram. While DFM does not offer multiplexing without
additional components [10], it can tolerate much smaller effective phase modulations since the
fit algorithm uses the amplitudes of all relevant harmonics except for the DC component. Test
mass readout, especially in satellite missions, greatly benefits from miniaturisation and smaller
optical pathlength differences also inherently reduce the laser frequency noise coupling, making
DFM in theory the preferred method in this application area.

In this article, we present the first experimental results for the research of this technique.
We show the working principle in a Michelson and a Mach-Zehnder Interferometer and we
investigate the current performance with optical π-measurements by comparing the noise floor
between the two complimentary optical signals generated in the Mach-Zehnder Interferome-
ter. We analyse the noise couplings that are relevant for DFM and based on this we make a
prediction about the achievable performances in future implementations.
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2. Deep frequency modulation in a nutshell

We briefly introduce the basics of deep frequency modulation for the sake of completeness.
In [10], Gerberding et al., the detailed analysis can be found.

A deep frequency modulation (DFM) of

fDFM(t) = ∆ f · cos(2π fmt +ψm) (1)

is applied to the frequency of our laser source. The strength of the modulation is given by
the modulation depth ∆ f , the modulation frequency fm, and the modulation phase ψm [10].
Considering an interferometer that inserts an optical pathlength difference of τ between the
two interfering beams the resulting power on the photodetector is equivalent to an interference
with a strong sinusoidal phase modulation [5, 6, 11, 12]

Pout(t) = E +E ·κ · cos(ϕ +2π∆ f τ cos[2π fmt +ψm]), (2)

under the assumption that 2π fmτ� 1, which is valid for modulation frequencies in the order of
1 kHz and the interferometer dimensions used in this article with optical pathlength differences
in theirs arms in the order of 10 cm (τ < 1ns). The equivalent effective phase modulation depth
is given by

m = 2π∆ f τ, (3)

which linearly depends on the optical pathlength delay τ and on the modulation depth ∆ f .
This allows us to demodulate the signal by applying the deep phase modulation (DPM) readout
algorithm, which uses the complex signal amplitudes determined by multiple single-bin Fourier
transforms [5]. A sophisticated fit algorithm estimates the four signal parameters, namely the
effective modulation depth m, the optical amplitude E, the contrast κ , the interferometric phase
ϕ and the modulation phase ψm, by comparing the complex amplitudes of the harmonics with
the model given by the Bessel functions.

3. Experimental set-up

The experimental set-up is shown in Fig. 1; a fiber-based laser preparation is used, shown in
Fig. 1(a). An electro-optical amplitude modulator (EOAM) stabilises the laser amplitude, which
fluctuates due to the frequency modulation and due to the inherent noise of the diode laser itself.
The stabilised light is split via fiber splitters (FS) and fed into two free beam interferometers. As
laser source we use an external cavity laser (TLB 6700 Velocity from Newport) that provides
a laser beam with a wavelength of 1550 nm and a laser power of 20 mW maximum. It ensures
a continuous, mode-hop-free tuning and can produce strong frequency modulations with peak
amplitudes in excess of 10GHz deviation at frequencies of 1 kHz or higher (range used in this
article).

The first of two interferometers, constructed on an aluminium breadboard in the test bed
shown in Fig. 1(b), is the Michelson Interferometer (MI). It is used for sinusoidal signal injec-
tion at one of its end mirrors. The purpose of this is to test the functionality of the fit algorithm
under dynamic disturbances and to simulate phase signals appearing in one of the interferome-
ter arms which should be recovered by the algorithm.

The Mach-Zehnder Interferometer (MZI) is the second interferometer layout that enables us
to detect two complementary optical measurements of one interference signal. The photodetec-
tor signals P+ and P- at both interferometer outputs contain the same optical phase information,
but with a phase shift of π due to the recombining beamsplitter. Both interferometers have
optical pathlength differences of 94 mm and 137.5 mm for the MI and the MZI, respectively.
Applying a frequency modulation amplitude of ∆ f ≈ 3.1GHz therefore results in different ef-
fective modulation depths (see Eq. (3)) of m ≈ 6.16 for the MI and of m ≈ 9.01 for the MZI.
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Fig. 1. Sketch of the experimental set-up. The laser preparation shown in (a) is a fiber-
based set-up with amplitude stabilisation. The test bed shown in (b) consists of a Michelson
Interferometer (MI) and a Mach-Zehnder Interferometer (MZI) which are free beam set-
ups. Part (c) shows the data post-processing system using an IQ−demodulation and the fit
algorithm to extract the phase, amplitude and modulation information.

The interferometers and the laser preparation are operated in air and without any temperature
stabilisation other than standard laboratory air conditioning.

The signal detection and data post-processing are shown in Fig. 1(c). The photodetector
signals are simultaneously digitised by using a data acquisition (DAQ) card with a sampling
rate of 250 kHz per channel. The complex amplitudes of the higher harmonics are determined
by using an IQ−demodulation scheme that also averages (rectangular window) and decimates
the data to a rate of 100 Hz and is implemented in software (LabView). In the last step the
frequency domain fit algorithm uses the predicted Bessel function amplitudes to estimate the
four signal parameters (C code) [5]. The processing is done in real time on a personal computer.
Fig. 3 shows a typical DFM signal (blue dots) that is measured for a modulation frequency of
fm = 1kHz and an effective modulation depth of m≈ 6.47 using the MZI layout.

4. Phase measurement performance

The two different interferometer schemes mentioned above allow the investigation of different
noise sources by combining the phase measurements of the MI, ϕa, and those of the MZI, ϕ+

and ϕ−, in two different ways.
Electronic noise can be measured by subtracting the two phase readouts generated by elec-

tronically splitting one photodetector output and feeding it into two DAQ channels 1 and 2 as
it is shown in Fig. 1. The subtraction of the phases from two identical channels theoretically
combines to zero:

ϕi,∆ = ϕi1 −ϕi2 ≈ 0, (4)

with i = {a,+,−}, here denoted as zero combination.
An alternative combination is the addition of the phase readouts from two photodetector

outputs after the recombining beamsplitter. The combination of the two complementary MZI
outputs, here denoted as π-combination, is

ϕπ = ϕ+ +ϕ- ≈ π. (5)
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Fig. 2. Spectral densities of the phase determined from the frequency domain fit algorithm
using the Bessel function amplitudes [5] with the modulation parameters fm = 800Hz,
m≈ 6.16 for the Michelson Interferometer (MI) and m≈ 9.01 for the Mach-Zehnder Inter-
ferometer (MZI). The dark blue line shows the phases ϕ+ and ϕ- from both interferometric
outputs of the MZI. The yellow curve shows the initial phase measurements ϕa from the MI,
the green dashed curve shows the corresponding laser frequency noise corrected phase data
ϕa,corr. The residuals between two measurements which are electronically split are given by
ϕi,∆ (red line and light blue line for the MZI and MI). The residuals of the π-combination
are given by ϕπ (purple line). As reference we also plot the typical 1 pm requirement for
the displacement sensitivity aimed at in LISA.

We investigated the phase performance, which is a measure of the expected displacement
sensitivity and linearity of the readout from the fit algorithm. To determine the performance
at frequencies down to a few mHz1 mHz, the directly measured phases, as well as the signal
combinations have been tracked continuously over approximately 12 hours. The results are
shown as phase spectral densities in Fig. 2. In the following we will discuss each combination
and comment on the relevant noise sources. For each phase and phase spectral density we quote
the equivalent, approximate displacement sensitivity in brackets to simplify the comparison
with other displacement sensing techniques.

The dark blue and yellow lines represent directly the reconstructed phase outputs for the MZI
and MI. The piezo induced length modulation of the MI end mirror at 1 Hz, with an amplitude
of approximately 1 rad (250 nm), is clearly visible together with some harmonics. It is unclear
if these harmonics are real piezo motion or non-linearity of our readout. DFM is influenced
by non-linearities due to finite bandwidth of the analogue front-end and the photodetectors [5],
and non-sinusoidal laser frequency modulations [10], which we discus in more detail in the
next section. Both interferometer outputs, ϕa and ϕ+, show the expected influence of acoustic
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couplings, dominating above 1 Hz and noise increasing to low frequencies. Since we do not
have a suitable displacement reference for either interferometer, we at first cannot distinguish if
this noise is caused by thermally driven length fluctuations or laser frequency noise. However,
one of the fundamental concepts of DFM is the use of a stable reference interferometer to ei-
ther stabilise the laser frequency noise or to provide a reference measurement of it that can then
be subtracted. In our experiment we can consider the MZI as the reference interferometer and
the MI as the readout interferometer, within the limits of our thermal and acoustic stabilities.
Under this assumptions we have corrected ϕa using the ratio of the two respective modulation
depths, which corresponds to the optical pathlength delays and takes into account the different
coupling of laser frequency noise. The result is shown as green, dashed line in Fig. 2. We ob-
serve a noise reduction only at very low frequencies, but already improving the readout of the
MI by about a factor of 2 at 1 mHz and below. Based on this we assume that the low frequency
noise was largely dominated by thermal fluctuations and air density changes and not by laser
frequency noise. Interferometers that achieve 1 pm/

√
Hz level sensitivities below 1 Hz are op-

erated in vacuum with much higher thermal stability and they are additionally constructed from
materials with low coefficients of thermal expansion. This explains the discrepancy between
our measurements and earlier, more sensitive experiments [14, 15].

However, the earlier introduced combinations, ϕi,∆ and ϕπ , give valuable insight into the
presence of other limiting noise sources. The zero combinations for both interferometers, the
light blue and red line in Fig. 2, show a white noise floor of 0.6 µrad/

√
Hz (0.15 pm/

√
Hz)

which we assume is caused by additive noise in our signal acquisition, most probably ADC
digitisation noise usually present at these levels [16]. Optical noise sources, like shot noise and
amplitude noise, are common mode and, hence, do not contribute to this combination. The MI
zero combination, ϕa,∆, contains a small residual of the 1 Hz mirror modulation and its har-
monics. We assume that this coupling is due to small differences in the detection bandwidth
of the DAQ system, leading to non-linearities with a resulting dynamic range of about 6 or-
ders of magnitude. The noise in the MZI zero combination, ϕ+,∆, increases slightly to lower
frequencies which cannot be observed in the MI combination. The MZI has a larger effective
modulation depth and the photodetector output will be spread more to higher harmonics. These
are, in general, more sensitive to temperature induced phase variations in the analogue compo-
nents and we assume that this behaviour causes the noise increase in the MZI zero combination
to lower frequencies [16]. However, both zero combinations showed an improvement of about
one order of magnitude in comparison to similar zero measurements demonstrated earlier [6].

Finally, we analysed the π-combination for the MZI, ϕπ , plotted as purple line in Fig. 2. The
white noise floor of this combination is not clearly visible but it is probably on the same order of
magnitude as for the zero combinations. The π-combination is not sensitive to either displace-
ment noise, laser frequency noise or non-sinusoidal frequency modulations because, except for
a phase shift of π , both beams contain the same interference. However, this phase shift causes
amplitude fluctuations to couple differently in both outputs, making the π-combination sensi-
tive to amplitude noise at the modulation harmonics, as well as shot noise, additive noise in
the DAQ and, again, finite detection bandwidth. Above 3 Hz this combination achieves a per-
formance better than 4 µrad/

√
Hz (1 pm/

√
Hz), except for some peaks also visible in the direct

interferometer output, ϕ+, with a dynamic range of about 3 orders of magnitude. We excluded
that this is caused by non-linearities due to finite detection bandwidth by separately measuring
the flatness of the photo receivers transfer functions (the receivers have a bandwidth of more
than 1 MHz). This leaves some form of unwanted amplitude modulation as the likely cause for
this non-linear coupling. Around 1 Hz the π-combination shows a characteristic noise shoulder,
which is often caused by small vector coupling [14,16], leading to a noise floor of 20 µrad/

√
Hz

(5 pm/
√

Hz) between 100 mHz and 1 Hz. This small vector coupling is consistent with the noise
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shoulder, the non-linearities at higher frequencies and even the noise increase below 100 mHz
which, again shows a dynamic range of about 3 orders of magnitude between the π-combination
and ϕ+. This leads to a performance of 1mrad/

√
Hz (250pm/

√
Hz) at 1 mHz. The amplitude

noise, creating the small vector coupling, can either be a classic amplitude fluctuation of the
laser light sent into the interferometer or an effective amplitude modulation of the interference
caused by ghost beams, stray light or poor polarisation control in the interferometer. The strong
frequency modulation is expected to generate some residual amplitude modulation of the laser
power at the critical frequencies. While we have implemented a power stabilisation to sup-
press this somewhat we do not know the effective residual amplitude modulation at the input
of the interferometers. Measurements without the power stabilisation did not change the phase
performance of the π-combination, leading us to believe that laser induced amplitude modula-
tions are not the limiting factor, however we cannot fully exclude them either. A more probable
explanation is poor polarisation control, creating amplitude fluctuations due to polarisation de-
pendent optical properties of the components, or the presence of ghost beams in our set-up
due to internal reflections in the beamsplitters caused by non-ideal anti-reflecting coatings [15].
Spurious optical signals that create small vector noise with a dynamic range of about 3 orders
of magnitude will have, in a simplified picture, power levels of about 6 orders of magnitude less
than the beams of interest. Such contaminations are easily introduced, but these effects can be
suppressed in future implementations by using polarisers to extinct unwanted polarisation com-
ponents and by a detailed stray light analysis and optimisation involving component placement
and potentially wedged components to separate ghost beams and the actual interference.

5. Time domain analysis of frequency modulation linearity

A second effect, that can not spoil the performance of ϕπ , but the overall readout performance
of DFM is the excitation of higher harmonics of the modulation tone in the laser frequency
modulation [10, 13]. This can for example be caused by non-linearities in the frequency actu-
ation, realised here by changing the laser cavity length with a piezo crystal. To analyse this in
our set-up we utilise another set of fits, which are operating in the time domain. The fits are
implemented in Matlab and each one uses a 10 ms long timeseries of our photodiode output of
the MZI (here with a slightly different effective modulation depth), sampled at 250 kHz. With
the full sampling rate we can include higher modulation harmonics not taken into account by
the frequency domain fit used for the phase extraction.

First, we assume a perfectly sinusoidal frequency modulation of the laser and use the follow-
ing equation, based on Eq. (2), to fit the data:

h1(t) = E +E ·κ · cos(ϕ +mcos[2π fmt +ψm]). (6)

The result of this fit is shown (yellow line), together with the measurement data (black dots),
in Fig. 3. It matches the data with a sum of squared errors (SSE) of 227.1 V2. Under the as-
sumption that the laser was not perfectly modulated at a single frequency but also excited at
higher harmonics (here we consider up to 10), Eq. (6) expands to

h10(t) = E +E ·κ · cos

(
ϕ +

10

∑
k=1

mk cos[k ·2π fmt +ψm,k]

)
. (7)

We fitted the same data also with Eq. (7) and the results are shown in Fig. 3 (green line).
The extrapolated function h10(t) matches the measured data set better, especially at the turning
and reversal points. The improvement is clarified by plotting the residuals of the fit functions
to the measured data (red and blue line). The SSE of our fit could be improved by a factor of
25 when using Eq. (7). Regarding the fit output parameters, the values for amplitude E and
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Fig. 3. A typical DFM signal in the time domain of a measured data series for fm = 1kHz
(black dots) and a modulation depth of m = 6.47. The function h1(t), given by Eq. (6)
and denoting the theoretical DFM signal, fits the data with a sum of squared errors of
SSE = 227.1 V2. The function h10(t), given by Eq. (7), includes frequency modulations
at harmonics of 1 kHz due to the very deep frequency modulation and has an error of
SSE = 8.8 V2. The remaining two curves show the difference of the measured data and the
two fit functions.

contrast κ differed by 3%-4% for the different fit functions, but the effective amplitude, given
by the product of these values, was identical. The modulation depth for the first harmonics
was determined to be m1 = 6.47 for both cases. The first three higher harmonics made the ma-
jor contribution to the undesired additional frequency modulation with an effective modulation
depth of m2 = 0.09, m3 = 0.08 and m4 = 0.12. The maximal contribution of the higher harmon-
ics is about 1.4%, which, if not addressed, will limit the displacement performance in future
implementations [10].

6. Conclusion and outlook

This article reports on the implementation of deep frequency modulation interferometry by in-
vestigating two interferometer types. A Mach-Zehnder Interferometer was used to validate the
functionality and continuous longterm readout given by deep frequency modulation and the
sophisticated fit algorithm, operating in the frequency domain, that was originally designed
for deep phase modulation. Potential noise sources were identified by comparing two different
interferometer types and forming different signal combinations. We have shown that the tech-
nique is able to extract actual phase signals injected in one arm of the Michelson Interferometer
and that a sensitivity of 0.15 pm/

√
Hz at 1 mHz in a measurement combining two electrical

signals to zero is achievable. The π-combination analysed in a Mach-Zehnder Interferome-
ter constellation readily achieved a sensitivity of 250pm/

√
Hz at 1 mHz without yet applying

techniques for stray light suppression or polarisation cleaning [15]. A probably smaller spuri-
ous impact on the overall phase performance was given by the excitations of higher harmonics
during the very deep frequency modulation injected on the laser source. Using time series fits
of our data we were able to quantify this non-linear modulation and thereby to characterise
the laser frequency modulation linearity. In future experiments one can either try to actively
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stabilise the modulation or use a more extensive readout scheme to account for them [13]. This
could, for example, be an expanded fit algorithm based on the Bessel functions that will include
the higher harmonics while running in real-time.

Based on the experience achieved in previous LISA interferometry experiments [15], it is
a reasonable assumption that quasi-monolithic, stray light optimised set-ups in vacuum, with
higher thermal stability, will enable LISA-like performance levels. Improvements will also be
achieved by using polarisation-maintaining fiber components or a free beam laser preparation
set-up using a single and clean polarisation orientation. Other effects that remain to be studied
in more detail include the laser amplitude stabilisation, to suppress fluctuations at the modula-
tion harmonics, and linearisation schemes of the laser frequency tuning, to ensure sufficiently
sinusoidal modulations.

Finally, we can summarise that DFM has been demonstrated to operate with commercially
available, conventional equipment, small interferometers and straightforward set-ups, espe-
cially in comparison to classic heterodyne techniques. Further development of DFM will surely
improve the performance and enable a more elegant optical readout of multiple test masses.
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