日本語
 
Help Privacy Policy ポリシー/免責事項
  詳細検索ブラウズ

アイテム詳細


公開

学術論文

Online investigation of respiratory quotients in Pinus sylvestris and Picea abies during drought and shading by means of cavity-enhanced Raman multi-gas spectrometry

MPS-Authors
/persons/resource/persons128342

Hanf,  Stefan
IMPRS International Max Planck Research School for Global Biogeochemical Cycles, Max Planck Institute for Biogeochemistry, Max Planck Society;

/persons/resource/persons173845

Fischer,  Sarah
Department Biogeochemical Processes, Prof. S. E. Trumbore, Max Planck Institute for Biogeochemistry, Max Planck Society;

/persons/resource/persons62400

Hartmann,  Henrik
Tree Mortality Mechanisms, Dr. H. Hartmann, Department Biogeochemical Processes, Prof. S. E. Trumbore, Max Planck Institute for Biogeochemistry, Max Planck Society;

/persons/resource/persons62589

Trumbore,  Susan E.
Department Biogeochemical Processes, Prof. S. E. Trumbore, Max Planck Institute for Biogeochemistry, Max Planck Society;

External Resource
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
フルテキスト (公開)

BGC2250.pdf
(出版社版), 3MB

付随資料 (公開)
There is no public supplementary material available
引用

Hanf, S., Fischer, S., Hartmann, H., Keiner, R., Trumbore, S. E., Popp, J., & Frosch, T. (2015). Online investigation of respiratory quotients in Pinus sylvestris and Picea abies during drought and shading by means of cavity-enhanced Raman multi-gas spectrometry. Analyst, 140(13), 4473-4481. doi:10.1039/c5an00402k.


引用: https://hdl.handle.net/11858/00-001M-0000-0027-7F52-A
要旨
Photosynthesis and respiration are major components of the plant carbon balance. During stress, like drought, carbohydrate supply from photosynthesis is reduced and the Krebs cycle respiration must be fueled with other stored carbon compounds. However, the dynamics of storage use are still unknown. The respiratory quotient (RQ, CO2 released per O2 consumed during respiration) is an excellent indicator of the nature of the respiration substrate. In plant science, however, online RQ measurements have been challenging or even impossible so far due to very small gas exchange fluxes during respiration. Here we apply cavity-enhanced multi-gas Raman spectrometry (CERS) for online in situ RQ measurements in drought-tolerant pine (Pinus sylvestris [L.]) and drought-intolerant spruce (Picea abies [L. H. Karst]). Two different treatments, drought and shading, were applied to reduce photosynthesis and force dependency on stored substrates. Changes in respiration rates and RQ values were continuously monitored over periods of several days with low levels of variance. The results show that both species switched from COH-dominated respiration (RQ = 1.0) to a mixture of substrates during shading (RQ = 0.77–0.81), while during drought only pine did so (RQ = 0.75). The gas phase measurements were complemented by concentration measurements of non-structural carbohydrates and lipids. These first results suggest a physiological explanation for greater drought tolerance in pine. CERS was proven as powerful technique for non-consumptive and precise real-time monitoring of respiration rates and respirational quotients for the investigation of plant metabolism under drought stress conditions that are predicted to increase with future climate change.