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Abstract

We study a σ -model with target space the flag manifold U(3)

U(1)3 and a nonzero Kalb–Ramond field, which 
is specified by a choice of integrable complex structure on the target space. We describe the classical solu-
tions of the model for the case when the worldsheet is a sphere CP1.
© 2015 The Author. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

In his seminal paper [1] Pohlmeyer discovered that the σ -model with target space S2 is clas-
sically integrable. He showed that this can be related to the fact that the equations of motion 
(e.o.m.) of the model are equivalent to the flatness of a one-parametric family of connections. 
Soon afterwards it was realized that analogous properties are shared by σ -models with sym-
metric target spaces [2]. The case of non-symmetric target spaces, however, resisted analysis 
by these methods. In [3] the author proposed a model with a homogeneous but not symmet-
ric target space, with the property that its e.o.m. may be rewritten as a flatness condition for a 
one-parametric family of connections.

In this paper we will solve the e.o.m. of the σ -model proposed in [3] (reviewed in Sec. 2) for 
the case when the worldsheet M is a sphere CP1. The target space of the model is the manifold 
of full flags in C3, which we will denote by F3. It can be viewed as the space of ordered triples 
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of orthogonal lines in C3 passing through the origin, and is also representable as a quotient 
space:

F3 = U(3)

U(1)3
. (1)

The flag manifold F3 may be parametrized by the orthonormalized vectors ui (ui ◦ ūj = δij ), 
modulo phase rotations uk → eiαk uk . Each of these vectors defines a point in projective 
space CP2, allowing to construct three natural forgetful maps {πi : F3 → CP2, i = 1, 2, 3}
by the formula πi(u1, u2, u3) = ui . For this reason the properties of the flag manifold are 
tightly related to the properties of the underlying CP2’s. As we shall see, solutions to the 
flag σ -model e.o.m. are to a large extent expressible through the solutions of the CP2 model. 
Due to this, and to introduce the notation, we begin by defining the σ -model with target 
space CP2.

1. The CP2 σ -model

We will be thinking of CP2 as the quotient CP2 = (C3 − {0})/C∗. A map v : M → CP2

from a Riemann surface M can be described by a vector-valued function v(z, ̄z) ∈ C3, where 
z, ̄z are coordinates on the worldsheet M . We may assume that the vector v is in fact normalized, 

that is v ∈ S5 ⊂C3: 
3∑

i=1
|vi |2 := v̄ ◦ v = 1, and henceforth we will use this normalization. This is 

a partial gauge for the gauge group C∗, which breaks it down to U(1).
Introduce the covariant derivative

D
(v)
i w := ∂iw − qw · (v̄ ◦ ∂iv)w , i = {z, z̄} (2)

where qw is the U(1)-charge of w, normalized so that qv = 1. In most of the applications of 
(2) below w is a vector obtained by applying covariant derivatives to the basic map v or its 
conjugate v̄. For example, w ∈ {v, D(v)

z v, D(v)
z̄ v, D(v)

z D
(v)
z̄ v, . . .}, in which case qw = 1, or w ∈

{v̄, D(v)
z v̄, D(v)

z̄ v̄, D(v)
z D

(v)
z̄ v̄, . . .}, in which case qw = −1. When this does not lead to confusion, 

we will sometimes simply write Dz in place of D(v)
z , Dz̄ for D(v)

z̄ .

The covariant derivative has the Leibniz property: D(v)
i (a · b) = D

(v)
i (a) · b + a ·D(v)

i (b). The 
commutator of covariant derivatives produces the pull-back of the Fubini–Study form:

[D(v)
z ,D

(v)
z̄ ] = D

(v)
z̄ v̄ ◦ D(v)

z v − D(v)
z v̄ ◦ D

(v)
z̄ v . (3)

The action of the CP2 σ -model (with zero θ -term) is:

S =
∫
M

i

2
dz ∧ dz̄

(‖Dzv‖2 + ‖Dz̄v‖2) (4)

The equation of motion following from this action reads

D
(v)
z̄ D(v)

z v = α v, (5)

where α is a scalar function. Multiplying this equation by v̄ and using the Leibniz property 
of the covariant derivative together with the identity v̄ ◦ D

(v)
z v = 0 (which follows from the 
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definition (2)), we find that α = − ‖Dzv‖2. Since, according to (3), [Dz, Dz̄] is a scalar function, 
the equation (5) can be equivalently rewritten as

D(v)
z D

(v)
z̄ v = α̃ v (6)

A map v satisfying (5)–(6) is called harmonic. For a review of the theory of harmonic maps we 
refer the reader to [4].

2. The flag manifold σ -model

As mentioned earlier, we wish to consider in detail the σ -model introduced in [3], which 
we will recall momentarily. In that case the target space is the flag manifold F3 = U(3)

U(1)3 , 
parametrized by the orthonormalized vectors ui (ui ◦ ūj = δij ), modulo phase rotations 
uk → eiαk uk . Introduce the currents

Jmn := um ◦ dūn , m,n = 1,2,3. (7)

The off-diagonal currents {Jmn, m 	= n} comprise the vielbein (and are defined up to phase fac-
tors). Note that Jnm = −J̄mn. One can define an almost complex structure on F3 by picking any 
three mutually non-conjugate forms, Jm1n1 , Jm2n2, Jm3n3 , and declaring them holomorphic. The 
other three, being conjugate to these, are therefore anti-holomorphic. In order to decide, which 
of these complex structures are integrable, a diagrammatic representation is useful. Draw three 
nodes and directed arrows from node m1 to n1, m2 to n2 and m3 to n3. Integrability of the so-
defined complex structure is equivalent to the condition that the graph is acyclic (i.e. does not 
have a directed closed loop). Let us prove this. First of all, let em, m = 1, 2, 3 be the standard 
unit vectors with components (em)n = δmn. To the holomorphic one-forms one can associate a 
subspace m+ of the Lie algebra (su(3))C = sl(3) as follows:

m+ = Span(Em1n1 ,Em2n2,Em3n3), where Emn = em ⊗ en (8)

Integrability of the complex structure is equivalent to the requirement that m+ is a subalgebra: 
[m+, m+] ⊂ m+. On the other hand, the matrices Emn have the commutation relations

[Emn,Epq ] = δnpEmq − δmqEpn (9)

Remembering that Emn is represented by an arrow from m to n, one sees that the closedness of 
m+ under commutation is equivalent to the following statement:

For any two consecutive arrows m → n and n → p

their ‘shortcut’ segment (m,p) has the arrow m → p (10)

For the diagram with three vertices, i.e. for the su(3) case under consideration, it is clear that the 
cyclic graphs are the only ones that are ruled out.

In the general case, corresponding to the flag manifold U(N)

U(1)N
, suppose we have N pairwise-

connected vertices, and the graph is acyclic. Then the requirement (10) is satisfied, since oth-
erwise there would be a cycle with three vertices. Reversely, suppose the graph has a cycle. 
Then, using (10), one can ‘cut corners’ to reduce again to the cycle with three vertices, which is 
prohibited by (10) (see Fig. 1).
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Fig. 1. The procedure showing that a cycle (1, 2, 3, 4, 5) in a graph leads to the violation of condition (10). Using (10), 
we replace the pair of segments (1, 2), (2, 3) by (1, 3), i.e. cut a corner. Then we replace (1, 3), (3, 4) by (1, 4), arriving 
at the cyclic lower triangle, which violates (10).

We now return to the su(3) case. Once we are given an acyclic graph Q, the action proposed 
in [3] is

SQ =
∫
M

i

2
dz ∧ dz̄

⎛
⎜⎝ ∑

Arrows
m→n

∣∣(Jmn)z̄
∣∣2

⎞
⎟⎠ (11)

It was also shown that the actions corresponding to three different integrable complex structures, 
whose associated graphs are shown at the top of Fig. 2, differ only by topological terms:

SQ1 − SQ2 = const. etc. (12)

Therefore they produce the same e.o.m. In particular, it follows from (11)–(12) that a curve, 
holomorphic in a complex structure corresponding to one of the three graphs Q1, Q2, Q3 in 
Fig. 2, is a solution to the e.o.m. What is more surprising, however, is that a curve holomorphic 
in either of the two non-integrable complex structures is a solution to the e.o.m. as well. To see 
this, one needs to write out the e.o.m. explicitly1:

Dz(J12)z̄ = 0, Dz(J31)z̄ = 0, Dz(J23)z̄ = 0 and c.c. ones (13)

Here D is the U(1)3-covariant derivative, acting as follows: DJmn := dJmn +(Jmm −Jnn) ∧Jmn. 
One sees that (J12)z̄ = (J31)z̄ = (J23)z̄ = 0 is a solution to (13), and this is precisely the defining 
equation of a curve, holomorphic in the almost complex structure that corresponds to the cyclic 
graph QI in Fig. 2. As regards the opposite non-integrable complex structure −I , one can rewrite 
the equations (13) alternatively as

Dz̄(J12)z ∼ (J13 ∧ J32)zz̄, Dz̄(J31)z ∼ (J32 ∧ J21)zz̄, Dz̄(J23)z ∼ (J21 ∧ J13)zz̄ (14)

In the complex structure −I the l.h.s. vanishes, and all of the one-forms in the r.h.s. are of type 
(1, 0) (i.e. proportional to dz), hence their wedge products vanish as well. Note, however, that the 
e.o.m. written with reference to the complex structures I (13) and −I (14) are of rather different 
form (despite being equivalent), which is the reason that we present the corresponding graphs in 
Fig. 2 in different colors.

1 The e.o.m. for the models defined by the three integrable complex structures not shown in Fig. 2 are as well identical 
to each other and can be obtained from (13) by the replacement J12 → J21, J31 → J13, J23 → J32.
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Fig. 2. The triangles indicate the complex structures, whose associated holomorphic curves are solutions of the σ -model. 
The three top triangles correspond to integrable complex structures, whereas the two lower ones correspond to the non-
integrable ones. (For interpretation of the references to color in this figure, the reader is referred to the web version of 
this article.)

Remark. In order to understand the integrable complex structures on F3, it is most useful to 
recall the following definition of the flag manifold (see, for example, [5]):

F3 = {w0v0 + w1v1 + w2v2 = 0, (w,v) ∈CP2 ×CP2} (15)

Such an embedding into CP2 ×CP2 defines a complex structure on F3. In order to make contact 
with our previous definitions in terms of the one-forms Jmn, consider for instance the complex 
structure corresponding to the graph Q1, and a curve C holomorphic in this complex structure. 
The following facts are easily derived:

ū2 ◦ ∂z̄u1 = 0, ū3 ◦ ∂z̄u1 = 0 ⇒ D
(u1)
z̄ u1 = 0 (16)

u1 ◦ ∂z̄ū3 = 0, u2 ◦ ∂z̄ū3 = 0 ⇒ D(u3)
z u3 = 0 (17)

This means that the projections of C to the CP2’s with coordinates u1, ū3 are holomorphic 
curves. Moreover, u1 ◦ ū3 = 0. Comparing with (15), one realizes that (w, v) in (15) may be 
identified with (u1, ū3). All other integrable complex structures on F3 are obtained by replacing 
(w, v) with the various pairs (ui, ūj ) and using the embedding (15).

3. Critical maps CP1 →F3

We call a map M → F3 critical if it is a solution of the e.o.m. (13). Henceforth in this paper 
we will be concerned with the case M =CP1.

From the equations (13) one deduces the following conservation equation:

∂z ((J12)z̄(J23)z̄(J31)z̄) = 0 (18)

Note that the expression in brackets is a section of the cube of the canonical bundle K of 
CP1, and the conservation law states that it has to be anti-holomorphic, i.e. (J12)z̄(J23)z̄(J31)z̄ ∈
H 0(K3, CP1). However, as H 0(K3, CP1) = 0, the only such section is zero. Hence

(J12)z̄(J23)z̄(J31)z̄ = 0 (19)

Suppose

(J31)z̄ = 0, (20)
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then the remaining equations (13) assume the form

ū1 ◦ Dz̄Dzu2 = 0, ū3 ◦ Dz̄Dzu2 ⇒ Dz̄Dzu2 = α u2, (21)

where α is an arbitrary (scalar) function. Hence u2(z, ̄z) is harmonic (see (5)).

3.1. Harmonic maps CP1 →CP2

In this section we review the construction of the harmonic maps CP1 → CP2, which was 
carried out long ago [6] (using a method developed in [7] for the description of minimal maps 
S2 → Sn). The key property of such maps, which lies at the heart of the construction, is called 
‘complex isotropy’:

Dn
z v̄ ◦ Dm

z v = 0 for m + n > 0 (22)

Note that this property does not hold, in general, for harmonic maps Cg → CP2, where Cg is a 
curve of positive genus g > 0.

Proof of (22). First of all, by definition of covariant derivative,

v̄ ◦ Dzv = 0 = Dzv̄ ◦ v (23)

Suppose we have proven (22) for m + n ≤ N . Then it follows that Dn+1
z v̄ ◦ Dm

z v for m + n = N

is a tensor under complex-analytic changes of variables. Indeed, under a coordinate change 
z → w = w(z) one has

Dn+1
z v̄ ◦ Dm

z v →
(

dz

dw

)n+m+1

Dn+1
z v̄ ◦ Dm

z v +
∑

m+n<N

gm,n Dn+1
z v̄ ◦ Dm

z v, (24)

and the sum vanishes by our assumption. Therefore Dn+1
z v̄◦Dm

z v ∈ �(Km+n+1, CP1). Consider

∂z̄(D
n+1
z v̄ ◦ Dm

z v) = (Dz̄D
n+1
z v̄) ◦ Dm

z v + Dn+1
z v̄ ◦ (Dz̄D

m
z v) (25)

for m +n = N . Using the commutation relation (3) for covariant derivatives and the harmonicity 
of v, we find that Dz̄D

m
z v = ∑

k<m

fkD
k
zv, and we have already proven that Dn+1

z v̄ ◦ Dk
zv = 0 for 

n + k < N .
Therefore ∂z̄(D

n+1
z v̄ ◦ Dm

z v) = 0, so that DN−m+1
z v̄ ◦ Dm

z v is a holomorphic section of the 
line bundle KN+1 over CP1. The key property (which we already used above for the case m = 3) 
is that

H 0(Km,CP1) = 0 for m > 0, (26)

hence such a section is necessarily zero, leading to (22). �
Once (22) is established, consider the following sequence of maps:

. . . → D2
z̄ v → Dz̄v → v → Dzv → D2

z v → . . . (27)

The sequence can be continued to the left and right, however for CP2 it is sufficient to consider 
the terms shown in (27). Assume that v is neither holomorphic nor anti-holomorphic. According 
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to (22), (v, Dzv, Dz̄v) and (v, D2
z v, Dz̄v) are two triples of mutually orthogonal vectors. Since 

the ambient space is three-dimensional, we have:

D2
z v = βDzv (28)

for some scalar function β . Upon the introduction of a unit vector w = Dzv
‖Dzv‖ , a direct calculation 

shows that this equality may be rewritten as follows:

D(w)
z w = 0 (29)

which implies that w = Dzv
‖Dzv‖ is anti-holomorphic. Analogously Dz̄v

‖Dz̄v‖ is holomorphic.
Since (anti)-holomorphic maps are harmonic, both of these maps constitute solutions of (5)

as well. In the general case of CPN an analogous statement is a consequence of a remarkable 
fact, namely the existence of a general Bäcklund transformation, producing new solutions of the 
e.o.m. out of a given one.

3.1.1. The Bäcklund transformation
A remarkable fact about the equation (5) is that, given a solution v(z, ̄z), one can generate 

another solution w(z, ̄z) via [8]

w = B ◦ v = Dzv

‖Dzv‖ (30)

To see this, note the following fact. If v is a solution of (5), then

D(v)
z = f −1 · D(w)

z · f, D
(v)
z̄ = f · D(w)

z̄ · f −1, f = ‖Dzv‖ (31)

Therefore (5) implies D(w)
z̄ w = −f v. Acting by D(w)

z and using (31), one obtains

D(w)
z D

(w)
z̄ w = −f 2 w, (32)

which means that w is harmonic. (Here we use the second form (6) of the σ -model e.o.m.)
Analogously to (30), one can construct a second Bäcklund transform:

w̃ = B̃ ◦ v = − Dz̄v

‖Dz̄v‖ (33)

It is, in fact, inverse to B , when acting on non-(anti)-holomorphic maps:

B̃ ◦ B = 1 on non-anti-holom. (B ◦ v 	= 0) (34)

B ◦ B̃ = 1 on non-holom. (B̃ ◦ v 	= 0) (35)

To prove (34)–(35), one should use (31) and the analogous relations

D(v)
z = f̃ · D(w̃)

z · f̃ −1, D
(v)
z̄ = f̃ −1 · D(w̃)

z̄ · f̃ , f̃ = ‖Dz̄v‖ (36)

Combining the results of the discussion above, we arrive at the conclusion that harmonic 
maps CP1 →CP2 are generically in 3 : 1 correspondence with holomorphic maps CP1 → CP2. 
Namely, for every holomorphic map v we can construct two additional harmonic descendants: 
w1 = B ◦ v and w2 = B ◦ B ◦ v, the second one being anti-holomorphic, so that B ◦ w2 = 0. 
In the special case when v is not a full map, i.e. when it is a map to a proper linear subspace 
C2 ⊂ C3, it turns out that w2 ≡ 0, so that there is a single descendant w1, which in this case is 
anti-holomorphic. The extreme case w1 ≡ 0 corresponds to a constant map v.
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3.2. Lift to the flag manifold

In order to convert a harmonic map

v = u2 :CP1 →CP2 (37)

into a critical map to F3, we wish to show that we can lift the former to the flag manifold, 
satisfying the remaining equation (20): (J31)z̄ = u3 ◦ ∂z̄ū1 = 0, where u1 and u3 are orthogonal 
to each other and to u2.

I. Dzu2 	≡ 0, Dz̄u2 	≡ 0. Both of these vectors are orthogonal to u2 (by definition) and to each 
other (by the isotropy property). Therefore u1 and u3 are linear combinations of these two vec-
tors:

u1 = a Dzu2 + bDz̄u2, (38)

u3 = cDzu2 + d Dz̄u2 (39)

Acting on u3 with D(u2)
z̄ , we obtain (α is the scalar function from (21)):

D
(u2)
z̄ u3 = ∂z̄cDzu2 + c α u2 + (∂z̄ d + τ d)Dz̄u2, (40)

where τ is the proportionality constant from the equality (D(u2)
z̄ )2u2 = τDz̄u2 (which is derived 

analogously to (28)). A simple calculation shows that

τ = ∂z̄(log‖Dz̄u2‖2) . (41)

The equation u3 ◦ ∂z̄ū1 = 0 then requires

∂z̄c ā ‖Dzu2‖2 + b̄ (∂z̄ d + τ d)‖Dz̄u2‖2 = 0 (42)

Together with the orthogonality condition ū1 ◦ u3 = 0, expressed as

c ā ‖Dzu2‖2 + b̄ d ‖Dz̄u2‖2 = 0, (43)

this leads to

∂z̄c d − (∂z̄d + τ d) c = 0, (44)

hence(
c

d

)
= λ(z, z̄)

(
f (z) · ‖Dz̄u2‖2

g(z)

)
, (45)

with two holomorphic functions (f (z) : g(z)) ∈ CP1. It is easy to see that the remaining un-
knowns, such as λ, a, b can be now found from (43) and the normalization conditions ū1 ◦ u1 =
ū3 ◦ u3 = 1. Therefore what defines the lift to the flag manifold is a holomorphic map

(CP1)z → (CP1)(f :g) . (46)

One can also think of this map as a rational function f (z)
g(z)

.

Note that the critical map CP1 → F3 constructed in this fashion is not holomorphic in either 

of the almost complex structures on F3, unless the matrix 
(

a b

c d

)
has some zero elements. This 
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is so, since Dzu2, Dz̄u2 are not orthogonal to either u1 or u3, hence violating the holomorphicity 
conditions for all complex structures. Due to (43), the only possibilities for the above matrix to 
have zero elements are as follows:

Ia. a = d = 0, i.e. u1 ∼ Dz̄u2, u3 ∼ Dzu2. Then ū1 ◦ Dzu2 = 0 = ū3 ◦ Dz̄u2. It is also easy to 
check that ū3 ◦ Dzu1 = 0, as well as ū3 ◦ Dz̄u1 = 0. This means that the lift is a horizontal curve 
(with respect to the twistor fibration), which is holomorphic in the almost complex structures Q1
and QI .

Ib. b = c = 0, i.e. u3 ∼ Dz̄u2, u1 ∼ Dzu2. This is essentially a u1 ↔ u3 reversal of the case Ia. 
Therefore the lift in this case is a horizontal curve, holomorphic in Q−1 and Q−I . Note that this 
is an exceptional case when the curve is holomorphic in the complex structure Q−1, not shown 
in Fig. 2. Such holomorphicity is possible due to the horizontality of the map, i.e. J13 ≡ 0.

II. Dz̄u2 = 0. In this case u2 is a holomorphic map. The condition is equivalent to the following 
two:

(J21)z̄ = 0, (J23)z̄ = 0 (47)

The remaining e.o.m., (20), states that

(J31)z̄ = 0 . (48)

Together the above equations (47)–(48) imply that we are dealing with a curve M → F3, 
holomorphic in the complex structure, defined by the graph Q3.

III. Dzu2 = 0. Hence u2 is an anti-holomorphic map. In this case

(J12)z̄ = 0, (J32)z̄ = 0, (J31)z̄ = 0 (49)

which corresponds to a curve, holomorphic in the complex structure Q2.

The situation when Dz̄u2 = Dzu2 = 0, i.e. when u2 is a map to a point, is at the intersection 
of cases II and III. In this case, due to the condition (J31)z̄ = 0, (u1, u3) specify a holomorphic 
map to a CP1, orthogonal to the fixed vector u2. In other words, it is a map to the fiber of the 
fibration F3 → (CP2)u2 , and this map is holomorphic in two complex structures, Q2 and Q3. 
This property was already observed in [3].

Analysis of the cases, when in place of (20) one has (J12)z̄ = 0 or (J23)z̄ = 0, goes along the 
same lines, with obvious permutations of u1, u2, u3.

4. Summary

In this paper we have solved the e.o.m. (13), which follow from the action (11), introduced in 
[3]. The solutions that we obtained correspond to the case when the worldsheet is the sphere CP1, 
and they exhaust all solutions in this case. We have shown, that, apart from various holomorphic 
curves, there exists a subclass of solutions that are not holomorphic in any (almost) complex 
structure on F3. The data for such solutions consist of a full holomorphic curve CP1 → CP2 – 
the ‘Bäcklund primitive’ of (37) – and a holomorphic map CP1 →CP1 (46).

The key property which allowed us to solve the equations is that, due to the fact that CP1 does 
not have holomorphic differentials, the problem reduced to the one of finding harmonic curves 
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in CP2 (see (19)–(21)), and the latter problem was solved long ago [6]. This approach is not 
directly generalizable to other worldsheets. However, in [3] it was shown that the e.o.m. (13) can 
be written in terms of a one-parametric family of flat connections. For σ -models with symmetric 
target spaces such representation provides a method for the construction of solutions, which was 
developed in [9] and rigorously justified in [10]. It would be very interesting to explore, whether 
a suitable modification of the method would allow to obtain all solutions of the equations (13)
in the case when the worldsheet is not a sphere but rather a higher-genus Riemann surface, or a 
cylinder.

Acknowledgements

I am indebted to Prof. A.A. Slavnov and to my parents for support and encouragement. I would 
like to thank the Institut des Hautes Études Scientifique (IHES), where part of the work was 
done, and especially V. Pestun for hospitality. My work was supported in part by grants RFBR 
14-01-00695-a, 13-01-12405 ofi-m2 and the grant MK-2510.2014.1 of the President of Russia 
Grant Council.

References

[1] K. Pohlmeyer, Integrable Hamiltonian systems and interactions through quadratic constraints, Commun. Math. 
Phys. 46 (1976) 207.

[2] H. Eichenherr, M. Forger, On the dual symmetry of the nonlinear sigma models, Nucl. Phys. B 155 (1979) 381.
[3] D. Bykov, Integrable properties of σ -models with non-symmetric target spaces, Nucl. Phys. B 894 (2015) 254, 

arXiv:1412.3746 [hep-th].
[4] S. Salamon, Harmonic and holomorphic maps, in: Geometry Semin. “Luigi Bianchi”, in: Lect. Sc. Norm. Super. 

Pisa, 1984, Lect. Notes Math., vol. 1164, 1985, p. 161.
[5] H.B. Lawson Jr., Surfaces minimales et la construction de Calabi–Penrose, Sémin. Bourbaki 26 (1983–1984) 

197–211.
[6] A.M. Din, W.J. Zakrzewski, General classical solutions in the CP(n−1) model, Nucl. Phys. B 174 (1980) 397.
[7] E. Calabi, Minimal immersions of surfaces in Euclidean spheres, J. Differ. Geom. 1 (1–2) (1967) 111–125.
[8] J.C. Wood, Harmonic maps into symmetric spaces and integrable systems, in: Harmonic Maps and Integrable Sys-

tems, in: Asp. Math., E, vol. 23, Friedr. Vieweg, Braunschweig, 1994, pp. 29–55.
[9] V.E. Zakharov, A.V. Mikhailov, Relativistically invariant two-dimensional models in field theory integrable by the 

inverse problem technique, Sov. Phys. JETP 47 (1978) 1017.
[10] K. Uhlenbeck, Harmonic maps into Lie groups: classical solutions of the chiral model, J. Differ. Geom. 30 (1) 

(1989) 1–50.

http://refhub.elsevier.com/S0550-3213(15)00390-9/bib506F686C6D65796572s1
http://refhub.elsevier.com/S0550-3213(15)00390-9/bib506F686C6D65796572s1
http://refhub.elsevier.com/S0550-3213(15)00390-9/bib466F72676572s1
http://refhub.elsevier.com/S0550-3213(15)00390-9/bib42796B6F76s1
http://refhub.elsevier.com/S0550-3213(15)00390-9/bib42796B6F76s1
http://refhub.elsevier.com/S0550-3213(15)00390-9/bib53616C616D6F6Es1
http://refhub.elsevier.com/S0550-3213(15)00390-9/bib53616C616D6F6Es1
http://refhub.elsevier.com/S0550-3213(15)00390-9/bib4C6177736F6Es1
http://refhub.elsevier.com/S0550-3213(15)00390-9/bib4C6177736F6Es1
http://refhub.elsevier.com/S0550-3213(15)00390-9/bib44696Es1
http://refhub.elsevier.com/S0550-3213(15)00390-9/bib43616C616269s1
http://refhub.elsevier.com/S0550-3213(15)00390-9/bib576F6F64s1
http://refhub.elsevier.com/S0550-3213(15)00390-9/bib576F6F64s1
http://refhub.elsevier.com/S0550-3213(15)00390-9/bib5A616B6861726F76s1
http://refhub.elsevier.com/S0550-3213(15)00390-9/bib5A616B6861726F76s1
http://refhub.elsevier.com/S0550-3213(15)00390-9/bib55686C656E6265636Bs1
http://refhub.elsevier.com/S0550-3213(15)00390-9/bib55686C656E6265636Bs1

	Classical solutions of a ﬂag manifold σ-model
	1 The CP2 σ-model
	2 The ﬂag manifold σ-model
	3 Critical maps CP1->F3
	3.1 Harmonic maps CP1->CP2
	3.1.1 The Bäcklund transformation

	3.2 Lift to the ﬂag manifold

	4 Summary
	Acknowledgements
	References


