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Inertial particles advected by many natural and industrial flows undergo coagulation upon colli-

sions and fragmentation if their size becomes too large or if they experience large shear. Here we

study this advection-coagulation-fragmentation process in time-periodic incompressible flows. We

find that this process approaches an asymptotic, dynamical steady state where the average number

of particles of each size class is roughly constant. We compare the steady-state size distributions cor-

responding to the two fragmentation mechanisms and find that shear-induced fragmentation leads

to a distribution which has an invariant functional form, similar to what has been reported to occur

in shear-fragmentation experiments in stirring tanks. When only coagulation is taken into account,

we observe that a distribution initially peaked on small sizes can eventually develop a second peak

at large sizes, comparable with the collisional growth of cloud droplets. Finally, we comment on the

robustness of our findings.

PACS numbers: 05.45.-a, 47.52.+j, 47.53.+n

I. INTRODUCTION

The dynamics of inertial particles in fluid flows is im-

portant in several natural and industrial contexts. It has

been subject of increasing interest in several disciplines,

from dynamical systems [1–8] to atmospheric science [9–

11] and turbulence [12, 14, 15]. Almost all the works

have been devoted to purely advective dynamics of iner-

tial particles. A major reason for this is that the advec-

tion dynamics is already very rich, displaying features yet

to be understood in their full complexity, as inhomoge-

neous spatial distributions [16] and multivalued velocity

fields [12, 17]. Interestingly, these very same features

yield an increased rate of collisions, the consequences of

which are in most cases not explicitly taken into account.

Typically one assumes a dilute regime and fully neglects

the collisions. In some other works, one keeps track of

the collisions numerically without actually addressing the

outcome of such events (ghost collisions) [14, 18]. To our

knowledge, only very recent works have addressed effects

of collisions on the dynamics of inertial particles [19, 20].

In Ref. [19], we have reported our first results on the

dynamics of inertial particles coagulating upon collisions

and fragmenting under certain conditions. In Ref. [20],

the authors considered elastic collisions in a monodis-

perse system and pointed out the existence of bursts in

the spread of the particles out of the attractors of the

purely advective dynamics.

In this paper we extend the work of Ref. [19] to dif-

ferent flows and to a broadened parameter set. Our mo-

tivation lies primarily on natural phenomena as the col-

lisional growth of cloud droplets [21], sediments in lakes

and rivers, and marine snow in the ocean [22]. We con-

sider fragmentation to be of two possible origins. First,

particles break up if their size exceeds a certain maximum

allowed size. This is motivated by the hydrodynamical

instability of large water drops (e.g. cloud drops) set-

tling due to gravity [24]. Second, particles fragment if

the shear forces due to the fluid flow are sufficiently large.

This mechanism has been reported to be the dominant

one in the case of marine snow [31].

At a first glance, one might be tempted to pursue a
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field-theoretical approach, inertial particles, in the frame-

work of which one treats the problem of particle motion

as a multiphase flow and then applies the Smoluchowski

equation [13] to model coagulation and fragmentation for

the particle distribution. The particle velocity may, how-

ever, take on several values even at the same location of

inertial particles. Due to the presence of such ’caustics’

[12, 17, 26], a field-theoretical approach cannot be well

founded. Therefore a study based on an individual track-

ing of the particles, as is the one presented here, becomes

necessary.

Here we consider the fluid flow to be spatially smooth

and to have a single macroscopic time scale. We are mo-

tivated by flows having coherent (e.g. convective) struc-

tures on length scales much larger than the ones at which

turbulence plays a major role. The effect of turbulence

can then be taken into account as a stochastic perturba-

tion described by an eddy diffusivity [23] at small scales.

For simplicity, we neglect this small scale noise in the

present work and focus only on the large scale motion of

the fluid.

We study the dynamics of the system formed by the ad-

vected inertial particles undergoing coagulation and frag-

mentation in three different fluid flows, as described in

Section II. We find that the system tends to approach

a steady state where several size classes coexist (Section

III). The average number of particles in each size class

is roughly constant, with a mild periodic time depen-

dence — with a period identical to the one of the ad-

vecting fluid flow. The distribution of particles as well

as the mean average size in the steady state depends

on the type of fragmentation mechanism taking place.

First, when fragmentation occurs solely due to particles

exceeding a maximum allowed size, the distribution is in

general quite broad. Second, for fragmentation occurring

also under sufficiently large shear, the distributions typi-

cally decay exponentially fast beyond a certain size class.

The distributions depend on the fluid flow for both types

of fragmentation. In the case of shear fragmentation, we

derive a scaling relation for the average size class in the

steady state as a function of the coagulation strength pa-

rameter γ. The size distribution in the steady state has

in this case a functional form which does not depend on

γ. In the Discussion we also study the dynamics with-

out fragmentation. In this situation, we observe that a

distribution initially peaked on small sizes can eventually

develop a second peak at large sizes, a process that has

similarities with the collisional growth of cloud droplets

[21]. Finally, we show that our results are robust with

respect to the number of allowed size classes.

II. ADVECTION, COAGULATION AND

FRAGMENTATION MODEL

A. Advection

First, we present the equations of motion for the ad-

vection of finite size particles that will be used here. For

simplicity we consider heavy spherical aerosols, i.e. par-

ticles much denser than the ambient fluid and assume

that the difference between their velocity ẋ and the fluid

velocity u = u(x(t), t) at the same position is sufficiently

small so that the drag force is proportional to this dif-

ference (Stokes drag). The dimensionless form of the

governing equation for the path x(t) = (x1(t), x2(t)) of

the center of mass for such heavy aerosols subjected to

drag and gravity reads in this case as [32–34]:

ẍ =
1

τ
(u(x(t), t) − ẋ − Wn) , (1)

where n is a unit vector pointing upwards in the vertical

direction. Throughout this paper we consider the verti-

cal direction along the axis x2. Under the assumption

that the density ratio ρf/ρp ≪ 1, the particle response

time τ can be written in terms of the density ρp of the

particle, the radius a of the aerosols, the fluid’s dynamic

viscosity η, and the characteristic length L and velocity

U of the flow as τ = (2a2ρpU)/(9ηL). We note that

the response time τ is nothing but the Stokes number
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which can be written in our case as τ = τp/T where

τp is the particle’s dimensional Stokesian relaxation time

and T is the characteristic time of the flow. The dimen-

sionless settling velocity in a medium at rest is given by

W = (2a2ρpg)/(9ηU).

Every particle produces perturbations in the flow that

decay at least inversely proportional to the distance from

the particle [37, 38]. Here we assume a dilute regime,

where the local concentration of particles is low enough,

so that particle-particle interaction can be neglected [43]

unless particles come into direct contact.

The assumption that the particle radii a are small also

means that the feedback from the particle motion on the

flow will be small as well [34] and is therefore neglected

in the following.

B. Coagulation

Second, we present a model for the coagulation of finite

size particles.

The smallest particles considered will in the follow-

ing be called primary particles. These primary particles

can combine to form larger particles, called coagulates.

Coagulation takes place upon collision. All particles are

assumed to consist of an integer number of these primary

particles, i.e. the primary particles can never be broken

up. The number α of primary particles in a coagulate is

called the size class index. We consider n different size

classes, i.e. coagulates can consist of a maximum of n

primary particles. A coagulate of size class α has a ra-

dius aα = α1/3a1, where a1 is the radius of the primary

particles. The response time is τα = (aα/a1)
2τ1 = α2/3τ1

and the settling velocity in still fluid is Wα = α2/3W1.

Here τ1 and W1 are the response time and the settling ve-

locity for the primary particles, respectively. The largest

coagulates therefore have a radius an = n1/3a1. We note

that particles of different sizes have different parameters

τα and Wα and therefore follow the flow with different

parameters in the equation of motion (1).

We define a collision of two particles if the centers

of the particles, say of radius ai and aj , come closer

than a distance d = ai + aj. In that case the parti-

cles coagulate and form a larger particle. Mass con-

servation requires the radius of the new particle to be

a3
new = a3

i + a3
j . For the size class index this implies a

linear rule, αnew = αi + αj , which determines the new

response time and settling velocity via ταnew
= α

2/3
newτ1

and Wαnew
= α

2/3
newW1, respectively.

The velocity of the new particle follows from momen-

tum conservation. The position of the new coagulate is

the center of mass of the two old particles.

C. Fragmentation

Third, we present a model for the fragmentation of

particles. Primary particles cannot be broken up. In the

following, we will compare two different fragmentation

rules.

(i) Size-limiting fragmentation: If a particle becomes

larger than the maximum radius an, it is broken up

into two smaller fragments (binary fragmentation) whose

radii are chosen randomly, from a uniform distribution

between a1 and half the original radius. If any fragment

is larger than an this process is repeated, until no frag-

ment exceeds an.

(ii) Shear fragmentation takes place when the hydro-

dynamical force Fhyd acting on the particle exceeds the

forces Fcoag holding the coagulate together by a certain

factor. The criterion for breakup can therefore be ex-

pressed as [36]

Fhyd/Fcoag > γ̃ (2)

where γ̃ is a constant.

The hydrodynamical force in this case is proportional

to the local velocity gradients in the flow. For solid spher-

ical particles the hydrodynamical forces are usually far

too weak to break up these particles. However, for liquid

particles, e.g. water drops moving in air, shear forces are
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generally able to break up the particles. For liquid spheri-

cal particles (drops) in the size range where viscous forces

dominate, Taylor [39] and later Delichatsios [40] derived

an expression for the critical velocity difference ∆u across

the drop required for breakup. They treated a drop as a

vibrating spring-mass system and calculated the breakup

velocity gradient under the condition that the character-

istic time of drop deformations is small compared to the

time where this velocity gradient occurs. Their result can

be written in our notation as

∆u

aα
∝

σ

µpaα
, (3)

where σ and µp is the surface tension and the viscosity

of the drop, respectively.

For our purposes here this condition can be written

with a single parameter as

∆u

aα
= γ

(

a1

aα

)

= γα−1/3 (4)

where γ is a constant, the coagulate strength parameter

(the same quantity is called stickiness in [19]). The radius

has been normalized with the radius of a primary parti-

cle. If the maximum velocity difference across the radius

of the drop exceeds the threshold value given by Eq. (4),

the particle is broken up into two smaller fragments (bi-

nary fragmentation) in the same way as for size-limiting

fragmentation.

At the instant of both coagulation and fragmentation

there is a sudden change in the dynamics: the number of

particles changes in 2 or 3 among the n available dynam-

ical systems defined by the size classes.

D. Fluid flows

For convenience, we treat the case where the fluid flow

is two-dimensional, therefore the phase space of the ad-

vection dynamics is 4-dimensional. We choose three sim-

ple paradigmatic flow situations with different character-

istics to indicate the generality of our results.

All flow domains are spatially periodic, with a charac-

teristic length L. More specifically, the flows are (a) a

convection cell flow with moving vortex centers (in the

following referred to as the moving convection flow), (b)

a convection cell flow with fixed vortices (referred to as

the fixed convection flow), (c) a sinusoidal shear flow.

The two convection cell flows (a) and (b) consist of

a regular pattern of vortices, or roll cells. Flow (b)

was first introduced by Chandrasekhar [46] as a solution

to the Rayleigh-Bénard problem and since then it has

been used in the context of different theoretical stud-

ies [1, 29, 41, 49]. The moving convection flow (a) is a

slightly modified version, with moving vortex centers, to

yield a more realistic chaotic regime for the particle mo-

tion. Convection flows are chosen because they contain

vortices (convection cells) and uprising/sinking regions,

which are characteristic features of realistic flows often

found in nature. The flows are defined by the velocity

field

(a) moving convection flow

u(x1, x2, t) = [1+k1 sin(ω1t)]





sin(2πx̂1) cos(2πx̂2)

− cos(2πx̂1) sin(2πx̂2)



 ,

(5)

where x̂1 = x1 + k2 sin(ω2t) and x̂2 = x2 + k2 cos(ω2t).

The parameters k1 = 2.72 and ω1 = π are the amplitude

and the frequency of the periodic forcing of the flow, re-

spectively. k2 = 1/(2π) and ω2 = π/4 determine the

amplitude and the frequency of the periodic motion of

the centers of the vortices in the flow. The period of the

flow is T = 2 and the characteristic length and velocity

are L = 1 and U = 1.

(b) fixed convection flow with the same equation for the

flow as in (a), but with the k2 = 0.

The sinusoidal shear flow (c) consists of alternating

horizontal and vertical velocity components, where each

velocity component consists of two plateaus in time. It

was introduced in Refs. [47, 48] and has been used many

times in chaotic advection studies. Here we consider a

time-continuous version (see [28]) defined by:
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(c) sinusoidal shear flow

u(x1, x2, t) = 0.5





(1 + tanh(β sin(2πt))) sin(2πx2)

(1 − tanh(β sin(2πt))) sin(2πx1)



 ,

(6)

where the parameter β describes how rapidly the transi-

tion between two values, a zero and a nonzero velocity,

takes place for each velocity component. The typically

used value β = 20/π corresponds to a very rapid transi-

tion.

The period of the flow is T = 1 and the characteristic

length and velocity are L = 1 and U = 1.
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FIG. 1: Maximum of the velocity gradient grad u(x1, x2, t)

vs. time for the two different flows described by Eqs. (5) and

(6).

The fluid flows are laminar and time-periodic, but the

dynamics of the inertial particles moving in these flows

can be chaotic.

To emphasize the difference between the flows, Fig. 1

shows the maximum of the velocity gradient vs. time

for the convection flows (there is no difference between

the moving and the fixed convection flow) and the sinu-

soidal shear flow. The difference in magnitude and also in

the temporal evolution between these two flows is clearly

visible, indicating a possibly very different behavior with

respect to shear fragmentation.

E. Numerical implementation

After presenting the model, we describe some details

about the implementation. In the bulk of the paper we

consider n = 30 size classes. The primary particles con-

sidered here have dimensionless radius a1 = 5/301/3 ×

10−5, mass m1 = ρp
4
3πa3

1, response time τ = 1/55 and

settling velocity W1 = 3.2τ .

The number of coagulates N(t) changes over time due

to coagulation and fragmentation leading to a distribu-

tion of coagulates of different radii in the flow, but the

total mass M =
∑30

i=1 αi(t)m1 remains constant during

any simulation.

As initial condition we take 105 primary particles and

no larger particles. Furthermore, particles are uniformly

distributed over the 1 × 1 unit cell of the configuration

space. This choice fixes the total mass of the system to

be M = 105m1. The initial particle velocity matches

that of the fluid at their position in all cases. All three

aspects, advection, coagulation, and fragmentation that

define the whole dynamics can be modelled separately.

The simulation is based on the following ingredients:

1. All particles move in the flow over some time step

dt according to Eq. (1). This integration time step

dt needs to be chosen small enough to allow for the

detection of every collision. We emphasize again at

this point that each coagulate size is characterized

by different values of τα and Wα, so that the motion

of particles of different size is governed by the same

equations but with different parameters.

After each time step dt there is an interaction be-

tween particles in the form of coagulation if they

are too close to each other. As a result, an unreal-

istic clustering of particles (an infinitely large par-

ticle density) cannot be formed in contrast to cases

where the center of mass motion of the particles

is considered only (see e.g. [26]). Our experience

shows that a choice dt = T/20 is sufficiently small

for the conditions considered here.

Because of the spatial periodicity of the flow, the

particle dynamics is folded back onto the 1×1 unit

cell, using periodic boundary conditions (see e.g.
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[29, 49]). Without folding back, particles heavier

than the fluid do not stay in a single unit cell of the

flow. In particular, they are not suspended [16].

Instead, particles generally fall downwards into a

vertically adjacent cell. This means that folding

the dynamics of the particles back onto the unit

cell is only a convenient way to visualize an in-

finitely extended system. If particles are initially

distributed homogeneously over the whole cell, the

total particle mass M remains the same over time

and therefore even if coagulation and fragmentation

are included, it is sufficient to restrict our studies

to one unit cell with periodic boundaries.

2. Particles coagulate if their distance is smaller than

the sum of their radii. Computationally, the coag-

ulation proccess is the most costly component of

the simulation. In particular, the naive approach

to calculate which particles are colliding at a given

time step involves looping over all pairs of particles

and therefore scales as O(N2) for a single time step,

where N is the number of particles. Therefore, here

a link-cell algorithm [27] is used to compute the dis-

tance between particles. The configuration space is

divided into grid cells of size ǫ, where each grid cell

stores information on which particles it contains.

After each time step this information is updated,

to reflect changes in the particle positions. The

looping over particle pairs to calculate their dis-

tance is then done only over particles in a given

grid cell and the neighboring cells. If the grid cell

size ǫ is small enough (but sufficiently larger than

the largest possible particle size, a30) the link-cell

algorithm scales as O(N) and is thus much faster

than the naive approach.

3. Coagulates can fragment either due to size-limiting

fragmentation or due to shear fragmentation.

(a) Size-limiting fragmentation: If the coagulate

size α exceeds the predefined maximum size,

which is in the following fixed at n = 30 unless

mentioned otherwise, the coagulate is broken

up.

(b) Shear fragmentation: If the shear at the posi-

tion of the coagulate exceeds a critical value,

determined by Eq. (4) the coagulate breaks

up. Normally, the velocity differences in all

directions across a coagulate would have to

be calculated and their maximum would have

to be found to determine the maximum shear

acting on the coagulate. Due to the symme-

try of the flows chosen here, the maximum

velocity difference is always either between

(x1 − aα, x2) and (x1 + aα, x2) or between

(x1, x2 − aα) and (x1, x2 + aα), i.e. in the di-

rection of one of the coordinate axes, therefore

only these values have to be calculated. Shear

fragmentation is always applied together with

size-limiting fragmentation to keep the maxi-

mum number of occurring size classes fixed at

n.

Whatever rule is applied, the result is the re-

versed process of coagulation: two new particles

are formed from an old one with the size class in-

dices: αi,new + αj,new = αold. As indicated ear-

lier, αi,new can take on any value between α1 and

αn/2 with equal probability. The centers of the new

particles are placed along a line segment in a ran-

dom direction so that the distance d between the

particle centers equals the sum of their radii, i.e.

d = ai + aj , and the center of mass remains un-

changed. Momentum is conserved. For simplicity

we assume that the new particles have the same

velocity as the old one.



7

III. SIMULATION RESULTS

In this section we show simulation results using the

model described above and compare the influence of the

different flows, and the effect of size-limiting fragmenta-

tion and shear fragmentation.

Before presenting any results for the complete model,

it is worth showing the attractors for the non-interacting

problem in the different flows. Figs. 2, 3 and 4 show the

stroboscopic section (taken with the period T of the flow)

of the attractors for the flows (a)-(c) projected onto the

plane of the coordinates for four different size classes.

‘

FIG. 2: Stroboscopic sections of the attractors of Eq. (1)

for the moving convection cell flow (Eq. (5)) projected onto

the configuration space for particle size classes (a) α = 1, (b)

α = 5, (c) α = 15 and (d) α = 30. All attractors are chaotic.

For the moving convection flow and the sinusoidal

shear flow the degree of clustering of the particles in

the attractors, quantified by their fractal dimension, de-

creases monotonically with the size class. The parameter

region is chosen in such a way that the attractors are

either area filling or fractal with dimension smaller than

2, which we consider to be closer to a realistic situation

than for example fixed point attractors.

FIG. 3: Stroboscopic sections of the attractors of Eq. (1) for

the fixed convection flow ((5) with k2 = 0) projected onto

the configuration space for particle size classes (a) α = 1,

(b) α = 5, (c) α = 15 and (d) α = 30. All attractors are

quasiperiodic.

It is worth noting that the finding of [26], according to

which the attractors densely fill in the space of the flow

for sufficiently large response times, is not valid here,

which we attribute to the presence of gravity and the

time periodicity of our flows. To provide a contrast, the

fixed convection flow has only quasiperiodic attractors in

the chosen parameter region, i.e. smooth curves in the

stroboscopic section.

Next, we look at the full dynamics, with advection, co-

agulation and fragmentation as described in the previous

section. A useful measure to follow the time evolution

of the particle size distribution is the average size class

index 〈α(t)〉 =
∑30

i=1 αiNαi
(t)/N(t), where Nαi

denotes

the number of particles in size class αi.

Fig. 5 shows this index for the different flows and the

different fragmentation rules. In all flows we find conver-

gence to an asymptotic steady state. Initially, coagula-

tion leads to a fast increase in the average particle size

class, independent of the fragmentation rules. Then frag-
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FIG. 4: Stroboscopic sections of the attractors of Eq. (1)

for the sinusoidal shear flow (Eq. (6)) projected onto the

configuration space for particle size classes (a) α = 1, (b)

α = 5, (c) α = 15 and (d) α = 30. All attractors are chaotic

and (a) and (b) are area filling.

mentation sets in and a balance between coagulation and

fragmentation is reached, with an asymptotic average co-

agulate size α∞ = lim
t→∞

〈α(t)〉 that depends on the frag-

mentation rule and the different flows. The difference in

the time it takes to reach the steady state comes mainly

from the different coagulation probabilities in the differ-

ent flows. The fixed convection flow takes the shortest

time to reach the steady state, because the attractors are

covering much less area than in the other cases, therefore

leading to higher local concentrations of particles.

We note that the shear forces in the convection flows

and the sinusoidal shear flow have a different magnitude,

as seen in Fig. 1. Therefore three different values of the

coagulate strength parameter γ need to be chosen to yield

a size distribution whithin the range of the 30 allowed size

classes. For the convection flows the coagulate strength

γ needs to be approximately a factor 3 larger than for

the sinusoidal shear flow.

In a real system similar particles would of course have a
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FIG. 5: Average size class vs. time for size-limiting fragmen-

tation (upper curve) and shear fragmentation (lower curve)

for (a) moving convection cell flow, (with γ = 50 for shear

fragmentation), (b) fixed convection cell flow, (with γ = 45 for

shear fragmentation), (c) sinusoidal shear flow (with γ = 17

for shear fragmentation). The insets show the periodic change

in the average size class that result from the period of the

shear for the moving convection cell flow and the fixed con-

vection cell flow.

similar coagulate strength, no matter what flow they are

in. Because in a real system there is no limitation to the

number of available particle size classes, the particle size

distribution would then be simply shifted to a different

position depending on the magnitude of the shear forces

in the flow.

More important is the fact that for the convection flow

the shear force oscillates smoothly with time, while for

the sinusoidal shear flow the shear remains almost con-

stant over time, except for a small ’dip’ when the direc-
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tion of the velocity field changes (cf. Fig. 1). In the case

of the two convection flows with shear fragmentation, the

asymptotic average size class α∞ therefore still oscillates

with the same period as the shear forces in the flow. This

is clearly visible in the insets in Figs. 5(a) and (b).

For the sinusoidal shear flow with shear fragmentation

the amplitude is much smaller because the shear stays

almost constant over time. For all flows with size-limiting

fragmentation the value of the asymptotic coagulate size

class α∞ is almost constant over time (see inset in Fig.

5(a)) due to the fact that the maximum size class is the

same for all times.

The value of α∞ of size-limiting fragmentations is dif-

ferent in the flows, due to the different coagulation and

fragmentation probabilities. However, the qualitative be-

havior remains the same.

When investigating cases with different total mass M ,

we find that for size-limiting fragmentation α∞ is, in a

broad range, independent of M . For shear fragmentation

with M < 3 × 106m1, α∞(M) increases approximately

linearly with M , while for higher values a saturation of

α∞(M) sets in, which is due to the fact that size-limiting

fragmentation is also present in this scenario.

By considering other initial particle size distributions

than mentioned above, for example any single size class

with α > 1 or a uniform distribution of sizes, and keep-

ing the total mass M fixed, the asymptotic state is found

for each flow and for both fragmentation rules (where it

applies) to be independent of the chosen initial distribu-

tion. Nonetheless, for shear fragmentation the asymp-

totic state does depend on the value of the coagulate

strength γ.

To illustrate this dependence of the steady state on the

coagulate strength γ, Fig. 6 shows how α∞ changes, at

a fixed M for the different flows.

A drastic increase of α∞(γ) can be observed in the

interval 40 < γ < 75 for the moving convection flow,

40 < γ < 60 for the fixed convection flow and 13 < γ <

20 for the sinusoidal shear flow. These are the intervals
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(a) - moving convection flow
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(b) - fixed convection flow

 2
 4
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 14
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α ∞

γ

(c) - sinusoidal shear flow

FIG. 6: Asymptotic average size class index α∞ as a function

of the coagulate strength parameter γ. Squares: numerical

results, solid line: fit by α∞ = c1 + c2γ
3 (see Eq. (8)). (a)

moving convection cell flow (c1 = 0.521, c2 = 3.7 × 10−5) (b)

fixed convection cell flow (c1 = −0.256, c2 = 6.2 × 10−5) and

(c) sinusoidal shear flow (c1 = 0.945, c2 = 1.6 × 10−3).

for each flow where, at the chosen value of αmax, shear

fragmentation dominates and size-limiting fragmentation

only plays a minor role.

It is clear that α∞ increases with γ, because particles

become more resistant to shear. The exact functional

relationship is however not so obvious. A first qualitative

estimate of the shape of this α∞(γ) curve can be derived

by assuming that over one period of the flow the particles

experience an ’average shear’

Ḡ =
1

T

T
∫

0

dt

∫

D

dx p(x, t)G(x, t) , (7)

where G(x, t) is the modulus of the local velocity gradi-
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ent, p(x, t) is the distribution of particles and D is the

unit square domain. From Eq. (4) we then get for the

average critical size at this velocity gradient

ᾱcrit = Ḡ−3γ3 . (8)

Particles that exceed this size will therefore typically

break up during one period of the flow. Since particles

break into two parts due to shear, the average size would

then be α∞ ≥ ᾱcrit/2. The average shear Ḡ is, how-

ever, somewhat complicated to estimate. It would have

to be calculated as a mean over the positions of all parti-

cles in the flow at a given time. Additionally, how larger

than the critical size particles get before they break up

depends on the coagulation probabilities, and therefore

also on the local concentrations of particles. The exact

dependency of α∞(γ) is therefore not easily calculated.

What can be seen from Eq. (8) is however that the av-

erage size is expected to scale with γ as

α∞ ∝ γ3 , (9)

even if the proportionality factor varies greatly for differ-

ent flows and particle distributions. This dependence is

expected to hold for all values of γ and α∞, where shear

fragmentation dominates. A fit with Eq. (9) for the dif-

ferent flows is shown in Fig. 6 and for lower values of

γ the fits agree very well with the simulation results. It

can be seen that for higher values of γ, when size-limiting

fragmentation becomes important, the α∞(γ) curves de-

viate from this estimate and converge towards the limit-

ing value α
(lim)
∞ (see Fig. 6).

After studying average quantities we investigate the

size distributions, i.e. how the number of particles of

each size class looks like for the different fragmentation

rules, and address the question of what is the role of the

flows.

Figure 7 shows histograms of the particle size distribu-

tion for shear fragmentation and size-limiting fragmen-

tation for the different flows. It can be seen that all size

distributions have their maxima at the smallest size class
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FIG. 7: Histogram of the particle size distribution in steady

state for size-limiting fragmentation and shear fragmentation

with (a) moving convection cell flow, (with γ = 50 for shear

fragmentation), (b) fixed convection cell flow, (with γ = 45 for

shear fragmentation), (c) sinusoidal shear flow (with γ = 17

for shear fragmentation). The insets show the exponential tail

of the size distributions for shear fragmentation in the case of

the moving convection cell flow and the fixed convection cell

flow.

and decay for larger size classes. For size-limiting frag-

mentation the distribution never drops to zero for any

flow.

For shear fragmentation the particle size distribution

tends to zero beyond a certain size class. In the case

of the convection flows the size distribution has a long

tail towards larger size classes that decays exponentially.

By contrast, for the sinusoidal shear flow the size dis-

tribution has a second, smaller peak (in addition to the

maximum at the smallest size class) and then drops off
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sharply towards zero beyond that point. Here this sharp

drop off occurs due to the almost constant level of shear

in the flow, which leads to a clearly defined maximum

size for the particles.
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FIG. 8: Histogram of the particle size distribution in steady

state for the moving convection cell flow (γ = 50) and the

smoothed out sinusoidal shear flow (γ = 8.5, β = π/20) for

(a) size-limiting fragmentation and (b) shear fragmentation.

That this difference is indeed mainly due to the dif-

ferent time evolution of the shear forces in the flow, and

does not depend e.g. on the detailed characteristics of

the particle motion, can be seen by adjusting the flow

parameters. Decreasing the parameter β for the sinu-

soidal shear flow to a much smaller one, e.g. β = π/20

results in a much smoother transition between the two

plateaus for the velocity components. As a consequence

we obtain two sinusoidal peaks per period for the shear

forces, similar to what happens in the convection flow

(cf. Fig. 1), except that for the sinusoidal shear flow

both peaks have the same height. For an appropriate

choice of γ, so that the average size classes match, it can

be seen that the shape of the particle size distributions

for both flows has become almost identical (Fig. 8(a)).

Even though the actual motion of the particles is still

very different in the two flows, once the shear forces ex-

hibit a similar temporal behavior (in this case all that is

required is that the shear in both flows changes compara-

bly smoothly over time) the size distributions are almost

identical. Once again we note that the coagulate strength

γ needs to be different for both flows when trying to get

overlapping particle size distributions because the ampli-

tudes of the shear forces are still different. Additionally,

this tuning of the parameters also affects the result for

size-limiting fragmentation, as can be seen in Fig. 8(b).

The size distribution in the case of the sinusoidal shear

flow has transformed from an almost homogeneous dis-

tribution to one much closer resembling the result for the

moving convection flow, even though there is still some

difference in the tail of the distribution.

For each flow there is a certain range of the coagu-

late strength parameters γ where the size distribution

for shear fragmentation is “fully developed”. By this

we mean that γ is large enough so that a sufficiently

large fraction of particles has left the smallest size class,

but γ is small enough so that break-up due to size-

limiting fragmentation does not play a significant role.

For the moving convection flow this range is approxi-

mately 40 < γ < 60, for the fixed convection flow this is

approximately 40 < γ < 50 and for the sinusoidal shear

flow the range is approximately 13 < γ < 19 (cf. Fig.

6). In this intermediate γ range, where the particle size

distribution is fully developed, a scaling form

Nα

max(Nα)
= f

(

a

〈a〉

)

(10)

is found to hold, where 〈a〉 represents the average radius.

Note that the form of the size distribution is independent

of γ. All distributions in this parameter range collapse

then onto a single master curve.

While this scaling form is independent of the parame-

ters of the coagulation and fragmentation process, it can
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FIG. 9: Normalized number of particles versus relative radius

in steady state for different values of the coagulate strength

parameter γ for (a) moving convection cell flow, (b) fixed

convection cell flow and (c) sinusoidal shear flow (β = 20/π).

be different for different flows. More specifically, the scal-

ing form f changes when the shear force distribution of

the flows varies very differently over time.

IV. DISCUSSION

We discussed the formation of a steady state size distri-

bution in a coagulation fragmentation process of particles

advected by different flows. We note that our findings are

robust against several changes of the model. The effect of

the number of new particles formed by fragmentation has

been considered. For instance, the distributions of par-

ticles for ternary fragmentation are similar to the ones

for binary splitting and only show a slight shift towards

smaller size classes [51].

10-5

10-4

10-3

10-2

10-1

2 3 4 5

N
α/

N

105a

n=30, γ=50
n=50, γ=50

FIG. 10: Histogram of the particle size distribution in steady

state for shear fragmentation for the sinusoidal shear flow for

two different values of the number n of size classes.

We also investigated the role of the number of size

classes. As illustrated by Fig. 10, we have found that

in the chosen range of γ values the size distributions for

shear fragmentation are not influenced by the fact of how

many size classes have been chosen.

We also considered the dynamics of pure coagulation,

without any fragmentation. This is of course a strongly

non-equilibrium process in which no steady state sets in.

What one observes (see Fig. 11) is that from an ini-

tially monotonically decreasing size distribution, a peak

at large sizes evolves. It becomes stronger as time goes

on and moves slowly towards larger size classes. Note

that the large size class tail is exponential. These qual-

itative features turn out to be independent of the flows,

and remain valid in a fluid at rest, too.

Finally we compare our findings with experiments and

observations of natural phenomena. The existence of a

steady state size distribution and the scaling form (10)

has been observed in shear-fragmentation experiments in

stirring tanks [50]. After an initial stage dominated by

condensation, the distribution of cloud droplets is known

to be determined by a coagulation process [9]. Field ob-

servations of cloud drop spectra show a well-separated

peak at large radii which shifts in time toward larger

sizes. The tail is exponential with good accuracy.
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FIG. 11: Time evolution of the size distribution (snapshots

taken at times t = 5, 25, 35, 45) without fragmentation for

the fixed convection flow, with an initial condition of M =

2× 107m1, distributed over the first four size classes with the

same mass in each of these size classes. Later instants of time

are not shown because the number of particles in large size

classes becomes very low.

The feature of the observed distributions that the peak

clearly separates from the peak at small drop sizes might

be due to the fact that collision of small and large cloud

droplets are less efficient than that of comparable size

droplets. This difference in efficiency is a consequence

of hydrodynamical interactions, which are not taken into

account in our approach. This could possibly explain

why no clear separation between the two peaks in the

size distribution appears in our results.

We have shown that an individual particle based mod-

eling approach is able to reflect typical properties of co-

agulation and fragmentation processes of inertial parti-

cles. The appearance of a steady state is demonstrated.

We outlined some of the differences in the approach

to the steady state and the particle size distribution

that can result from different types of fragmentation and

flow. Alltogether our results suggest that the underlying

flow is important to understand features of coagulaton-

fragmentation processes leading to steady states. How-

ever, the main features of pure coagulation, in particular

the appearance of a bimodal particle size distribution,

may be well captured independently of the fluid flow.
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