
EPJ manuscript No.
(will be inserted by the editor)

Angular dependence of double electron capture in collisions of
C4+ with He

Stueckelberg oscillations in the differential cross section for capture into C2+(1s22s2 1S)
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Abstract. In charge-transfer collisions of C4+(1s2 1S) with He (1s2 1S), the process of double electron
capture into the ground state C2+ is well known to dominate other channels by an order of magnitude for
projectile energies below 10 keV. This work presents a calculation of differential cross-sections resolved in
the angle and energy gain variables, based on an ab initio treatment of electronic states, and compares
with the measurements published in the literature (projectile energy E=270, 400, and 470 eV). We also
briefly discuss the semi-empirical two-state models developed by experimentalists for this process.

PACS. 34.70.+e charge transfer – 31.15.Ar ab initio calculations

1 Introduction

Experimental data on electron capture in charge transfer
collisions of C4+ with He have been abundant in the litera-
ture, both for integral and angle-differential cross sections
[1–5]. By contrast, theoretical works based on ab initio
potentials are extremely scarce; this is in part due to the
difficulty in calculating the interaction between the closed
1s2 shells of C4+ projectile and He target, the polariza-
tion term. The most elaborate theoretical work to date
presents a calculation of integral single-capture (SC) and
double-capture (DC) cross sections by Kimura and Olson
[6], who used an ion-core pseudo-potential for C2+(1s2),
dealing explicitly with the two active valence electrons.
Ref. [6] provides the integral cross section data for projec-
tile energies between 750 eV and 200 keV.

To date, experimentalists have mostly relied upon semi-
empirical representations of the system (e.g. 2-state model
in Ref. [3] or 4-state model in Ref. [4]), using polariza-
tion and Coulomb type diabatic potentials with position-
dependent effective charges, or potentials defined as an
interpolation between the asymptotic terms for low and
large internuclear distance R. In either case, the coupling
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between the diabatic states was estimated by an elaborate
analytical formula of Grozdanov and Janev [7] with ad-
justed parameters. Model potential curves were also used
to deduce the diabatic coupling in an inverse problem (fit-
ting model to cross section data) [8], resulting in different
coupling terms than in Ref. [7]. By using free parame-
ters in the model formulas, experimental data could be
modelled rather accurately, yet the potentials and cou-
pling terms vary among the experimental groups. Clearly,
since CHe+4 is now an inexpensive 4-electron system even
for large basis sets, a full ab initio calculation is there-
fore preferable. The differential cross-sections also depend
more strongly on the details of the interaction, and repre-
sent a stricter test on the accuracy of theory as compared
to the integral cross sections published before [6].

Here we calculate the differential cross-sections for the
above process, motivated by recent publications of state-
resolved angle-differential and energy-gain differential cross
sections in the literature [1,2]. The differential cross-sections
for the main capture channel are evaluated in both equiv-
alent forms, and compared with the experimental data
available for the collision energy E=270, 400 and 470 eV.

The paper is organized as follows. Section 2 summa-
rizes the ab initio calculation and compares the result-
ing potentials and couplings to empirical models used by
experimentalists. Section 3 briefly explains the standard
theoretical procedure and lists the kinematic and cross-
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Fig. 1. Potential energy curves of CHe4+: asymptotic region

section transform relations in order to compare with the
experiment. Results are discussed in Section 4. Section 5
concludes the paper. Atomic units are used throughout
unless mentioned otherwise.

2 Electronic States of CHe4+

In order to obtain the potential curves of the C4+/He
system, we have carried out ab initio configuration in-
teraction calculations by using an extended version of the
multireference single- and double excitation MRD-CI pro-
grams [9]. The correlation consistent polarized valance
quadruple zeta, cc-pVQZ Gaussian basis [10] was employed
for the C and He atoms. A selection threshold of 10−9

Hartree was used to select the configuration wave func-
tions of which the electronic wave functions are composed.
Nonadiabatic couplings < Q(R)i|dQ(R)j/dR > were eval-
uated by using a numerical differentiation method. The
lowest 13 electronic states of 1A1 symmetry (12 Σ states
and a ∆ state) were tracked for internuclear distances
ranging between 0.8 and 100 au. In solving the coupled
equations, three highly excited states in the loosely cou-
pled manifold were dropped because of their negligible
coupling to the initial state and sensitivity to configura-
tions below the selection threshold.

Figure 1 shows the manifold of electronic state poten-
tial energy curves for the ten electronic states considered
in the calculation. The initial channel is flat as the po-
larization terms behaves ∼ R−4. The potential in capture
channels decays as 3/R (SC) or 4/R (DC). At R = 100,
the state assignment is as follows (numbering with increas-
ing energy): 1, 3, and 8 are single capture states; 2, 4,
5-9 are double-capture states; the initial state is No. 10;
all capture is driven by the behavior of electronic states
and their nonadiabatic coupling (both radial and angular
components) at shorter distances, where exothermic tran-
sitions may take place. The location of avoided crossings
along the 1s2-1s2 curve is shown in Fig. 2; grey circles
show a sequence of diabatic crossings, while the empty
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Fig. 2. Potential energy curves of CHe4+: transition region
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Fig. 3. Initial channel C4+(1s2 1S) - He(1s2 1S) (flat line)

circle indicates the key crossing point responsible for dou-
ble electron capture to the He2+ ground state. The grey
circles practically mean a mere change of electronic state
label, since the electronic potential curves almost touch;
also the electronic wave functions show that the electronic
configurations are conserved along the crossing lines. De-
tailed behavior of the potential curve corresponding to
the initial channel and its diabatic crossings can be seen
in Fig. 3.

The values of nonadiabatic couplings for R above the
potential ridge R ∼ 2 clearly indicate that the avoided
crossing in Fig. 3 (Rx ∼ 3) is by far the main tran-
sition mechanism, in accordance with previous findings
[4]. All other crossings of the initial state above the ridge
are largely diabatic. At the transition region, the FWHM
of the broad coupling peak is RFWHM ∼ 0.38 a.u., and
throughout this region the two potential energy curves go
in parallel. This can be seen in Fig. 4 in more detail, along
with the empirical potential curves used by Danared and
Barany in analytical form [3] (dashed line). The crossing
point calculated here is 0.5 a.u. lower than that of the
model potentials (dashed line) [3]. The adiabatic curves
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Fig. 4. Adiabatic curves: two-state model
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Fig. 5. Diabatic curves: two-state model

from our calculation coincide well with the model poten-
tials shifted to the transition point (dotted line) through-
out the entire transition region, but differ at larger dis-
tances. Such a difference should not have an impact on
the transition probabilities, although it may appear as a
phase in the scattering amplitudes.

Figures 5 shows the diabatic potentials, which are ob-
tained by a rotation matrix C applied on the 2-by-2 diag-
onal matrix of adiabatic potentials. The matrix C satisfies

C(R) = I +
∫ ∞

R

A(R′)C(R′)dR′, (1)

where Ai,j(R) = (1 − δi,1−j)〈i|d/dR|j〉 for i, j = 1, 2. In
the basis of electronic states rotated by C(R), all nona-
diabatic coupling terms identically vanish. Such an repre-
sentation is required in the full quantum calculations [11,
12]. The present results differ quite significantly from the
shifted model diabatic potentials. This is plausible since
in general, the adiabatic potential matrix includes only
the two eigenvalues, while a full 2-by-2 hamiltonian ma-
trix consists of three independent elements, and its details
depend on the behavior of the derivative coupling term.

3 Charge Transfer Collision Dynamics

In this section, we review the standard kinematic relations
and reference frame transforms [13], and summarize the
procedure to obtain differential cross sections.

The angle-differential cross section in the laboratory
system (angle θL) consists of two contributions in the
center-of-mass frame, θCMS± =

cos−1
[
−ξ sin2 θL ± (1− ξ2 sin2 θL)1/2 cos θL

]
, (2)

with ξ = m1vi/(m2vf ), where m1,2 is the mass of the
projectile and the target, respectively, and vi,f the initial
and final relative velocity. The differential cross sections
then transform as

dσ

dΩL
(θL) =

(
1 + 2ξ cos θL + ξ2

)3/2

|1 + ξ cos θL|
dσ

dΩCMS
(θCMS), (3)

for scattering angles up to the maximum θL,max = sin−1 ξ−1.
Given a particular gain/loss of projectile internal en-

ergy Q in the scattering event, the energy gain of the pro-
jectile (energy E0) and the scattering angle are equivalent,
according to

∆(E) =
(

m1

m1 + m2

)2

E0 cos2 θL {1 + [1−

−m2
2 + m1m2

m2
1 cos2 θL

(
m1

m2
− 1− Q

E0

)]1/2
}2

− E0, (4)

which yields the cross-section transform

− dσ

d(∆E)
=

π(m1 + m2)2(1 + γ/ cos2 θL)1/2

m2
1E0 cos θL[1 + (1 + γ/cos2θL)1/2]2

dσ

dΩL(θL)
. (5)

The de Broglie wave length of the projectile at the lowest
energy considered in this work is 1.5 × 10−3 a.u., due to
the large mass of the C4+ projectile, and much below the
characteristic distance of the potential matrix. Therefore
we apply the eikonal approximation to solving the coupled
equations for state-dependent amplitudes cj,i0(b, z), j=1,
10. The semiclassical formulation of these equations is
given in detail in Refs. [14,15] (cf. also references therein)
and thus will not be repeated here. The cross-section then
follows from the diffraction integral,

dσ

dΩ
(θ) = (mv)2

∣∣∣∣
∫ ∞

0

J0(ηb)cfi0(b;∞)bdb

∣∣∣∣
2

, (6)

where m is the reduced mass, v is the relative collision
velocity, J0 is the Bessel function and η = 2mv sin(θ/2)
[14]. To calculate the diffraction integral in Eq. (6), we
employ a 10,000-point grid of impact parameters.
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Fig. 6. Double-differential cross section for double electron
capture to C2+(1s22s2 1S)
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Fig. 7. Angle-differential cross section for electron double cap-
ture to C2+(1s22s2 1S) at 270 eV

4 Results and Discussion

Before presenting the calculated cross section results, let
us briefly discuss the experimental results previously pub-
lished [2]. Figure 6 shows a map of the differential cross
section at E0=400 eV resolved both in the angle θL and
energy gain/loss ∆(E) variables. The parabolic border
along which the cross-section peaks are located is given
by Eq. (4) with Q ∼33.4 eV, which corresponds to the
transition from C4+ ground-state to C2+ ground state. In
the following, we compare theoretical data to the mea-
surements by Hoshino et al. published previously [1,2].

The angle differential cross sections calculated for E0

= 270, 400 and 470 eV are shown in Figs. 7, 8 and 9
(full lines), along with the experimental values arbitrarily
scaled in the vertical direction (full squares). It can be
seen that the previous experiments could not resolve well
oscillatory structures in the θL dimension. In Figs. 7 and
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Fig. 8. Angle-differential cross section for electron double cap-
ture to C2+(1s22s2 1S) at 400 eV
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Fig. 9. Angle-differential cross section for electron double cap-
ture to C2+(1s22s2 1S) at 470 eV

9, we apply small horizontal shifts of experimental data
to the left, which is within the experimental error bars
[1,2]. Next, the situation substantially improves when we
compare with the differential cross sections resolved in
the energy gain/loss variable ∆E, i.e. the two-dimensional
map in Fig. 6 integrated over the θlab variable. Since the
experimental cross sections are subject to much smaller
errors in ∆(E), the oscillatory cross section structures in
Fig. 10 are now much better resolved. The agreement of
the present results with experiment in Fig. 10 is considered
to be very good, especially when taking into account the
sensitivity of differential cross sections to the details of ab
initio potentials and couplings.

The calculated angle-differential cross-sections in Figs.
7-9 clearly show the existence of Stueckelberg oscillations.
Due to relatively weak coupling of other channels, the
cross section minima fall near zero, which is a typical fea-
ture for two-state systems. Therefore in order to asses the
applicability of two-state classical models to the present
results, we have also calculated the semiclassical phases
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Fig. 10. Energy-gain differential cross section for double elec-
tron capture to C2+(1s22s2 1S) at 400 eV

on the ab-initio adiabatic potentials, i.e. θCMS,i(b) =

π − 2b

∫ Rx

Rt,i

dR

R2(1− Ui(R)/E − b2/R2)1/2
, (7)

i = 1, 2. Here Rt,i is the turning point on adiabatic poten-
tial Ui and Rx the crossing point. The Stueckelberg phase
in the semiclassical model is then given by the phase inte-
gral of the inverse function along the two bi(θ) branches
[3],

φ(θCMS) =
√

2mE

∫ θCMS

θ(Rx)

(b1(θ)− b2(θ))dθ (8)

The oscillatory factor cos(φ(θlab)) is shown in Fig. 8 as
a dashed line. It can be inferred that the classical pic-
ture alone does not apply to the present case, which is
especially due to (1) delocalized transition in the broad
vicinity of the crossing point, and (2) neglect of transition
phases at the crossing point.

5 Concluding Remarks

We have calculated the differential cross sections for dou-
ble electron capture to C2+ ground-state in the collisions
of C4+ with He based on ab initio potentials and couplings.
The double electron capture channel to C2+(1s22s2 1S) by
far dominates the other states, which could be explained
by the analysis of the crossing point in the delocalized
transition region. The present diabatic potential matrices
and double capture cross sections differ from those based
on the 2-state model [3]; the adiabatic potentials agree
well up to a horizontal shift. The Stueckelberg oscillations
in the calculated results could not be resolved in the data
measured by Hoshino et al [1,2] because of insufficient
resolution in the experiment. On the other hand, the os-
cillatory structures in the energy gain differential cross
sections agree very well with the experimental data, sug-
gesting this kind of spectroscopy to be a useful tool for

studying state-resolved electron capture processes. Fur-
ther experimental work is in progress to confirm the cross
section structures seen in the theoretical calculation.
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