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ABSTRACT
For the modeling and numerical approximation of problems
with time-dependent Dirichlet boundary conditions, one can
call on several consistent and inconsistent approaches. We
show that spatially discretized boundary control problems can
be brought into a standard state space form accessible for
standard optimization and model reduction techniques. We
discuss several methods that base on standard finite element
discretizations, propose a newly developed problem formula-
tion, and investigate their performance in numerical examples.
We illustrate that penalty schemes require a wise choice of the
penalization parameters in particular for iterative solves of
the algebraic equations. Incidentally, we confirm that standard
finite element discretizations of higher order may not achieve
the optimal order of convergence in the treatment of bound-
ary forcing problems and that convergence estimates by the
common method of manufactured solutions can be misleading.

INTRODUCTION
In practical applications, see [1,2] for examples on flow
control, a system is typically controlled via actuations at an
interface. The mathematical model to use is, thus, a partial
differential equation (PDE) with respect to space and possibly
time posed on a domain and controls acting at the boundary.
Depending on the application, the control may appear as a
Dirichlet or a Neumann or Robin boundary condition.

Despite their importance in the modeling of control setups, cf.
[3, Ch. 1], time-dependent inhomogeneous Dirichlet conditions
have sparsely been investigated in terms of analysis and
numerical approximation. Also for the elliptic or time-
independent case, in textbooks on optimal control of PDEs,
inhomogeneous Dirichlet conditions are often not considered
because they are not of variational type, i.e., the equations are
not posed in a dual space of the solution space, see, e.g., Refs.
[4, Ch. 2] and [5, Ch. 2.3]. Another rather obvious obstacle is
that a standard choice of trial and test function formulations
implies a certain smoothness of the boundary data which may
be impractical [5, Ch. 2.3].

For a general overview of the functional analysis for parabolic
systems with Dirichlet boundary control, we refer to Refs.
[4,6]. One basic approach is to transpose the involved elliptic
operator so that the boundary conditions appear in the
dynamic equations. This approach considers test functions of
higher regularity and allows for rough solutions and boundary
values. In the books mentioned, this method is referred to as
Method of Transposition.

More recently, in the literature on numerical approximation of
this type of solutions, the term very or ultra weak solutions has
been used. The elliptic case is treated in Refs. [7–9], and time-
dependent formulations are considered in Refs. [10,11]. The
existence and the approximation of very weak solutions are
well understood [7]. The key ingredient is the proper
approximation of functions at the boundary via a projec-
tion [7,8,10].

An alternative approach of relaxing the boundary constraint
via a penalization term in Robin boundary conditions has been
investigated in Refs. [12,13].

The scope of the work presented is the assessment of the
numerical treatment of boundary control problems in view
of employing standard finite dimensional state space sys-
tem theory for optimal control and model reduction; see
Ref. [14] for an application example. The main criterion is
that we can use standard continuous Galerkin schemes and
that the spatially discretized problem can be written in the
form:

_vðtÞ ¼ gðt; v; uÞð1Þ

or, in the linear case, in the form:

_vðtÞ ¼ AðtÞvðtÞ þ BðtÞuðtÞ:ð2Þ

We will consider algebraic manipulations of spatial discreti-
zations of the standard formulation, as well as reformulations
of the abstract equations and discuss their performance in
numerical approximation of convection-diffusion problems.
Apart from the value of an overview and a comparison of
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more or less well-known approaches, this paper provides
evidence and insight into two phenomena that are important
for the numerical analysis but that have not gained particular
attention yet:

1 The convenient and analytically well-understood
approach of the approximative Robin boundary condi-
tions will likely fail if the state equations are solved
only up to a given relative residual.

2 In the considered example, the convergence order of
standard finite element schemes of polynomial degree
2 for time-dependent boundary-driven problems is
lower than what one would expect from the conver-
gence order for stationary problems. This lower
convergence rate is not detected by the method of
manufactured solution that is often used to numerically
determine the convergence.

In this manuscript, we define consistency, i.e., the reformula-
tion does not change the solution, on the semi-discrete level.
Hence, we take the point of view that the solution of the
equivalent representation will converge, if the chosen
discretization scheme converges. However, this might not
be the case, see Ref. [15, Ch. 1] for an example considering
the Navier–Stokes equations. In short, the consistency of the
algebraic manipulations with reformulations of the abstract
equations is of highest importance for stable and convergent
approximations. We will consider this issue for the treat-
ment of Dirichlet conditions separately in a forthcoming
paper.

This paper is organized as follows. In the section Generic
problem formulations, we state the type of problems that we
will consider both in an abstract setting and after a spatial
discretization. In the section Rewriting the spatially discre-
tized equations, we consider approaches that reformulate the
spatially discretized equations into the desired form. In the
section Incorporation via variational formulations and their
discretizations, we discuss methods that reformulate the
abstract equations such that a spatial discretization is a
system of distributed type (1). In the section Numerical tests,
we report on numerical tests concerning the approximation
properties of the introduced methods. We conclude the
paper by summarizing remarks and an outlook.

GENERIC PROBLEM FORMULATIONS
We will define a general continuous formulation that covers
weak formulations of many PDEs from the modeling of
physical phenomena. Also, we state the generic form of a
spatial semi-discretization. We will restrict the considerations
to the scalar case.

Continuous equations

Let X 2 Rd; d 2 f2; 3g, be a bounded and regular domain such
that the trace theorem as formulated in Ref. [16, Thm. 3.1]
applies. Let Γ be its boundary. We define the Sobolev spaces

V :¼ W1;2ðXÞ and H :¼ L2ðXÞ and the dual space V 0 of V with
respect to the continuous embedding of V in H to get:

V ,! H ,! V 0:

We also introduce abbreviations for the trace spaces, cf. [17,
Ch. 1.1], via

Q0 ¼ W
1
2;2ðCÞ and Q ¼ Q00 :¼ LðQ0;RÞ;

the space of bounded linear functionals on Q0.
Let

c : V ! Q0ð3Þ

be the trace operator as defined, e.g., in Ref. [17, Thm. 1.5].
We state the prototype of the continuous problem.

Problem 2.1. Let T > 0 and consider A : ð0;TÞ � V ! V 0. For
F 2 L2ð0;T;V 0Þ, for t0 2 H, and U 2 L2ð0;T;Q0Þ, find t with
tðtÞ 2 V and _tðtÞ 2 V 0, a.e. on (0, T), so that:

_tðtÞ � Aðt; tðtÞÞ ¼ FðtÞ;ð4aÞ

ctðtÞ ¼ UðtÞ;ð4bÞ

holds for almost all t 2 ð0;TÞ, and so that tð0Þ ¼ t0 in H.
The system of abstract Equations (1) contains common weak
formulations of PDEs that model physical phenomena, cf. [18].
We will not address time regularity here and, thus, leave the
properties of the mappings t 7! Aðt; tðtÞÞ and, e.g., t 7! _tðtÞ
undefined in the statement of Problem 2.1.
As an example, we consider the convection diffusion equation
that models the propagation of a scalar quantity ρ due to
convection and diffusion in a domain.

Problem 2.2. Given a domain X 2 Rd , a diffusion parameter n,
a convection wind β, with bðx; tÞ 2 Rd for time t > 0 and x 2 X,
an initial value ρ0, and a function g, with gðtÞ : C ! R
prescribing the boundary conditions, find a function ρ of space
and time that satisfies:

_qðtÞ þ b � rqðtÞ � nDqðtÞ ¼ 0;ð5aÞ

qjCðtÞ ¼ gðtÞ;ð5bÞ

and ρ(0) = ρ0.
In standard weak formulations, assuming t 2 V :¼ W1;2ðXÞ,
Problem 2.2 is of the type of Problem 2.1, with, e.g., A defined
via:

hAðt; tðtÞÞ;/iV 0 ;V ¼
Z
X
ðw � rtðtÞ;/Þ þ nðrtðtÞ;r/Þ dx

�
Z
C
n

@t
@n

ðtÞ;/
� �

dc;ð6Þ

for all / 2 V and with @=@n denoting the normal derivative.
Here and in what follows, the pairing ð�; �Þ denotes the inner
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product in the spaces under consideration. The boundary
integral in Equation (6) is only well defined for sufficiently

regular solutions and test functions. For tðtÞ, / 2 V ¼ W1;2ðXÞ,
it holds that @t

@n ðtÞjC 2 W�1
2;2ðCÞ and /jC 2 W

1
2;2ðCÞ, so that the

term
Z
C
n @t

@n ðtÞ;/
� �

dc is well defined as the continuous

extension of the inner product in L2(Γ), see Ref. [17, Ch. 1.1].
Note that there are other possible choices for a weak
formulation [11].
The boundary condition in Equation (4), viewed as a
constraint, can also be incorporated using the dual operator
of c : V ! Q0 and a so-called Lagrange multiplier. Then, under
certain smoothness and consistency conditions [19], Problem
2.1 is equivalent to:

Problem 2.3. Let T > 0 and consider A : ð0;TÞ � V ! V 0. For
F 2 L2ð0; T;V 0Þ, t0 2 H, and U 2 L2ð0;T;Q0Þ, find t with
tðtÞ 2 V and _tðtÞ 2 V 0 and Λ with KðtÞ 2 Q, a.e. on (0, T), so
that:

_tðtÞ � Aðt; tðtÞÞ � c0KðtÞ ¼ FðtÞ;ð7aÞ

ctðtÞ ¼ UðtÞ;ð7bÞ

hold for almost all t 2 ð0;TÞ, and so that tð0Þ ¼ t0 in H.
Note that, in general, the Lagrangian multiplier resides in the
dual space of the constraint. In the considered case, where
Q0 ¼ W

1
2;2ðCÞ is a Hilbert space, we can deliberately identi-

fy Q00 ¼ Q.

Spatially discretized equations

We consider a generic spatial discretization of the introduced
equations. Let V ⊂ V be a finite dimensional subspace spanned
by the basis functions fwignvi¼1. As it is standard for spatial
discretizations of PDEs, we consider nodal bases, i.e., the basis
functions are associated with nodes of a mesh and they have
local support. We consider the decomposition:

V ¼ VI � VC;

where VI ¼ spanfwignIi¼1 is the space spanned by the basis
functions that are associated with nodes in the inner and that
are zero at the boundary. Accordingly, nI is the number of
nodes in the inner and VC⊂V is spanned by the basis functions
fwignvi¼nIþ1 that have nonzero values at the boundary. We will
use the abbreviation dof to address a degree of freedom that is
represented by a basis function of V. Note that the considered
splitting of V is not necessarily orthogonal.
Thus, at time t, the function tðtÞ 2 V is to be approximated by
a finite dimensional function tðtÞ 2 V or the vector tðtÞ 2 Rnv

containing the coefficients of the expansion in the considered
basis. We will assume that t ¼ ðtI ; tCÞ is partitioned, with tI
being associated with VI and tC being associated with VΓ, i.e.,
the parts of V that live in the inner and at the boundary of the
considered domain.

Without further mentioning, for a function t 2 V , we will

identify tI and tC with their coefficient vectors of the
expansion in Equation (8) and simply write:

t ¼ tI þ tC ¼
XnI
i¼1

tiwi þ
Xnt

i¼nIþ1

tiwi:ð8Þ

We will consider test spaces that are subspaces of V. If only

Dirichlet conditions are posed, the standard test space is VI.

Otherwise, all boundary dofs that are not fixed by a Dirichlet

condition are included in the test space.

Generally, in the assembled coefficient matrices, rows will

correspond to dofs in the test space and columns will corres-

pond to dofs in the ansatz space. In particular, we will consider

complying partitions of the coefficient matrices like the mass

matrix:

M :¼ ½ ðwi;wjÞH �i;j¼1;…;nv

with respect to the test space,

M ¼ MI

MC

� �
;

and, once more, with respect to the trial space,

MI ¼ ½MII MIC �;ð9Þ

where

MII :¼ ½ðwi;wjÞH�i;j¼1;…;nI and 

MIC :¼ ½ðwi;wjÞH�i¼1;…;nI ; j¼nIþ1;…;nt

are the parts associated with the inner dofs and the part of the

mass matrix that relates to the boundary dofs tested against

the inner nodes, respectively.

Similarly, we define the discrete approximation A : ð0; TÞ �
Rnt ! Rnt to A as:

Aðt; tÞ ¼ ½ hAðt; tÞ;wiiV 0;V �i¼1;…;nt

and AI : ð0;TÞ � Rnt ! RnI as its restriction to the test

functions of the inner nodes, where, again, we have associated
a vector t 2 Rnt with a function in V via (8). If A is linear, then
its approximation on A : ð0; TÞ � Rnt ! Rnt can be assembled
as a matrix-valued function via:

AðtÞ ¼ ½ hAðt;wjÞ;wiiV 0;V �i; j¼1;…;nt ;

with the partitions AI, AII, and AIΓ as they were defined for M in

Equation (9).

The discrete approximation f : ð0; TÞ ! Rnt to the right-hand

side F : ð0;TÞ ! V 0 is given as:

f ðtÞ ¼ ½ hFðtÞ;wiiV 0;V �i¼1;…;nt :
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We will not distinguish notationally between f and its

restriction to the inner test functions.

To assign the boundary values, we simply assign the dofs

associated with the corresponding boundaries via:

Gt ¼ u; where G ¼ ½ 0 I � 2 Rnt�nI ;ntð10Þ

and where u 2 Rnt�nI is a vector that will contain the current

value of the boundary control at the given locations. As
defined in Equation (10), the operator G picks out the
boundary dofs of a function t 2 V and assigns the control
values. Note, however, that there are other discrete approx-
imations to the trace operator c that consider, e.g., the inner
product in Q0 or include suitable projections [7,8].
Thus, if we assume tðtÞ 2 V and if we test against the basis

functions of VI, the generic spatial discretization of Problem
2.1, that treats the boundary separately from the differential
equation is of the form:

Problem 2.4. Let T > 0, nt, nI 2 N, and nd :¼ nt � nI and
consider AI : ð0;TÞ � Rnt ! RnI , G 2 Rnd ;nt , and MI 2 RnI ;nv as
defined in the beginning of the section, Spatially discretized
equations. For f 2 L2ð0;T;RnI Þ, a 2 Rnt , and u 2 L2ð0;T;Rnd Þ
find t with tðtÞ : ð0; TÞ ! Rnt , so that:

MI _tðtÞ � AIðt; tðtÞÞ ¼ f ðtÞ;ð11aÞ

GtðtÞ ¼ uðtÞ;ð11bÞ

hold for almost all t 2 ð0;TÞ and tð0Þ ¼ a.
For the system of Problem 2.3 with the multiplier, a possible

spatial discretization defines a differential equation consider-

ing also the boundary parts, cf. [19,20]. It generically takes

the form:

Problem 2.5. Let T > 0, nt, nI 2 N, and nd :¼ nt � nI and

consider A : ð0;TÞ � Rnt ! Rnt , G 2 Rnd ;nt , and M 2 Rnt;nt as
defined in the beginning of the section Spatially discretized
equations. For f 2 L2ð0;T;RntÞ, a 2 Rnt , and u 2 L2ð0;T;Rnd Þ
find t : ð0;TÞ ! Rnt and k : ð0;TÞ ! Rnd , so that:

M _tðtÞ � Aðt; tðtÞÞ � GTkðtÞ ¼ f ðtÞ;ð12aÞ

GtðtÞ ¼ uðtÞ;ð12bÞ

hold for almost all t 2 ð0;TÞ and tð0Þ ¼ a.
For illustration purposes, we will use the linear time-invariant

case of Problem 2.4, for which AI is a linear map given as a

matrix AI 2 RnI ;nt and write (4) as:

MI _tðtÞ � AItðtÞ ¼ f ðtÞð13aÞ

GvðtÞ ¼ uðtÞ:ð13bÞ

More often than not, we will omit the time dependency of the
variables and functions.

Remark 2.6. Until now we have not addressed time regularity,
but, for sufficiently smooth input functions, we expect to
obtain solutions in the classical sense. Only the values at the
boundaries may have a jump at t = 0, since consistency with
the boundary conditions is not possible for an arbitrary input.
This is in line with the infinite dimensional setting, where the
solution is typically only continuous in ðt ! HÞ, with
H ¼ L2ðXÞ, where boundary conditions do not play a role.

REWRITING THE SPATIALLY DISCRETIZED EQUATIONS
In this section, we consider the spatially discretized equations
introduced in the section Spatially discretized equations. For
the sake of illustration, we assume that we only have Dirichlet
boundary conditions. This is not a restriction, since one can
always split the boundaries and consider the parts separately.

Direct assignment of the boundary dofs

We now illustrate that the immediate way of assigning the
dofs at the boundary, as it is commonly done for inhomogen-
eous Dirichlet conditions for stationary problems [21], does
not simply lead to a system of the form (1).

Consider the linear formulation (6) of Problem the 2.4
with the assignment of the boundary conditions as in
Equation (13b):

MI _v � AIt ¼ f ;ð14aÞ

Gt ¼ tC ¼ u;ð14bÞ

tð0Þ ¼ a:ð14cÞ

Then, with the partitioning of MI and AI as in Equation (9), the
state equation reads:

½MII MIC � _tI
_tC

� �
¼ AIItI þ AICtC þ f

which, having inserted Equation (14b), gives:

MII _vI ¼ AIIvI þ f þ AICu�MIC _u:ð15Þ

System (15) is not of the form (2) because of the appearance
of _u.
Remark 3.1. One can define a new input as ~u :¼ u and consider
the system:

1 0
0 MII

� �
d
dt

u
tI

� �
� 0

AIIðtI þ uÞ þ f

� �
¼ 1

�MIC

� �
~u:

This approach uses a so-called dynamical controller that is
defined via a differential relation. As pointed out in Ref. [22],
for a dynamical controller one can set the initial value to
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zero to circumvent the expected inconsistencies mentioned
in Remark 2.6.

Although Rothe’s method is out of consideration, since it leads
to a sequence of algebraic equations rather than to a
differential equation, it is worth mentioning that it implicitly
approximates the time-derivative of the Dirichlet conditions as
they appear in Equation (15).

Remark 3.2. Using Rothe’s method of discretizing Problem (2)
in time, first, e.g., via using an explicit Euler scheme with a
time step length s, and subsequently discretizing in space,
leads to systems of type:

MIt
kþ1 ¼ MIt

k þ sðAIt
k þ f kÞ;

Gtkþ1 ¼ tkþ1
C ¼ ukþ1;

where the superscript k relates to the values of the functions
at the kth time instance. If at the previous time instance
tkC ¼ uk , then the direct assignment at the current instance
gives:

MIIt
kþ1
I ¼ MIIt

k
I þ sðAIIt

k
I þ f kÞ þ sAICu

k �MIC½ukþ1 � uk �;

which can be seen as time-discrete approximation to Equa-
tion (15).

Lifting of the boundary conditions

These approaches base on a lifting ~t that fulfills the boundary
conditions for all time and the decoupling of the solution
t ¼ y þ ~t, see [23] for an example with linearized Navier–
Stokes equations.
We consider the linear time-invariant case (7) and assume
that f = 0.

At time t 2 ½0;T�, we define a lifting as:

~tðtÞ ¼ ~tIðtÞ
uðtÞ

� �
:ð16Þ

Then, considering Equation (8) with t ¼ y þ ~t and splitting AI
and MI as in Equation (9), we find that yC ¼ 0 and we obtain
the relation:

MII _yI ¼ AIIyI þ AI~t�MI
_~t; yIð0Þ ¼ aI � ~tIð0Þ:

We use the abbreviation �AII ¼ M�1
II AII and, with the well-

known solution representation, we obtain that:

yIðtÞ ¼ e
�AII tðaI � ~tIð0ÞÞ þ

Z t

0
e
�AIIðt�sÞM�1

II ðAI~t�MI~tðsÞÞds:

After an integration by parts, we find that:

yIðtÞ ¼ e
�AII tðaI � ~tIð0ÞÞ þ

Z t

0
e
�AIIðt�sÞðAI~tðsÞ � �AIIM

�1
II MI~tðsÞÞds

�M�1
II MI~tðtÞ þ e

�AII tM�1
II M~tð0Þ:

Using that MI~t ¼ MII~tI þMICu and having regrouped the
terms, we conclude that btI :¼ yI þM�1

II M~t ¼ tI þM�1
II MICu

fulfills the ordinary differential equation (ODE):

MII
_btI ¼ AIIbtI þ Bu; btIð0Þ ¼ aI þM�1

II MICuð0Þ;ð17Þ

with

B ¼ ½AIIM
�1
I MIC � AIC�:

The actual solution is easily retrieved from bt ¼ tI þM�1
II MICu.

Note, however, the dependency of the initial value on uð0Þ in
Equation (17).
Remark 3.3. The dependency of the initial value on uð0Þ is due
to the ansatz that assumes smoothness of ~t, which then
extends to the boundary nodes. Accordingly, at the boundary,
the initial value needs to be consistent with the control at time
t = 0, cf. Remark 2.6.
This is not an issue in practical applications where the

determination of a control law does not depend on the initial

value for the state like it is the case in linear-quadratic optimal

control.

Remark 3.4. We find it worth pointing out, that the system

(17) does not depend on the choice of the lifting (16) and,

thus, includes in particular the lifting by means of the

harmonic extension of the boundary values into the inner.

Split mass matrix lifting

For the particular choice of the lifting:

~tðtÞ ¼ �M�1
II MICuðtÞ
uðtÞ

� �

which leads to MI
_~tðtÞ ¼ 0 for all time t, the application for

nonlinear systems is straightforward. Considering again,
y ¼ t� ~t, and the nonlinear case of Problem 2.4, one arrives
at the ODE:

MII _yI ¼ AIðyI þ ~tðuÞÞ þ f ; yIð0Þ ¼ aI þM�1
II MICuð0Þ:

Again, the actual solution is easily obtained by a backwards

substitution tI ¼ yI þ ~tI ¼ yI �M�1
II MICu, but the initial value

depends on the possibly unknown input u.
Remark 3.5. A lifting as defined in this chapter leads to an ODE

of the desired form. In a forthcoming work, we will investigate

similar manipulations on the abstract equations. If the

proposed algebraic splitting has a counterpart in infinite

dimensions, then one can expect well posedness of the

transformed system also for every finer discretizations.

Remark 3.6. For linear time-dependent cases, similar formulas

can be derived using fundamental solution matrices or

transition matrices. Also, the split mass matrix approach is

readily applicable and gives a system of type (2).

P. Benner et al.: Time-dependent Dirichlet conditions in finite element discretizations SOR-MATH

5



Incorporation of the boundary data via Lagrange
multiplier

We consider the formulation of Problem 2.5:

M _tðtÞ � Aðt; tðtÞÞ � GTkðtÞ ¼ f ðtÞ;ð18aÞ

GvðtÞ ¼ uðtÞ;ð18bÞ

with the Lagrangian multiplier k.
The saddle point structure is similar to the velocity-pressure
formulation of Navier–Stokes equations, where the pressure
can be interpreted as the multiplier that couples the diver-
gence constraint to the momentum equation. In particular, it is
a special case of semi-explicit index-2 DAEs as they were
considered, e.g., in Ref. [24]. Thus, the formulations for the
treatment of the boundary conditions that we propose in this
section are adaptions of algorithms for the numerical time
integration of Navier–Stokes equations or, more general, DAEs
of index 2.

Decoupling by projection. In the considered case, G has the
form G ¼ ½ 0 I � and M is symmetric positive definite. Thus,
we can define:

P :¼ I �M�1GTS�1G; S :¼ GM�1GT; and Q� :¼ S�1GM�1:

With this, system (8) can be equivalently [15] reformulated as
ðt; kÞ ¼ ðti þ tg; kÞ, where the transformed variables are the
solutions of:

tg ¼ M�1GTS�1u;ð19Þ

k ¼ �Q�Aðvg þ viÞ � Q�f � Q�M _tC;ð20Þ

and

_ti � PM�1Aðti þM�1GTS�1uÞ ¼ PM�1f :ð21Þ

Note that the differential Equation (21) is of type (1).

With MP = PTM, in the linear case, we can write the differential
equation for ti as:

M _ti � PTAti ¼ PTf þ PTBu;

with B :¼ AM�1GTS�1. In the nonlinear case, the input appears
inside the nonlinearity.
Remark 3.7. Since nd5nt, i.e., the number of dofs associated
with the boundary is small if compared to the number of inner
nodes, an explicit realization of the projection P is feasible.
This is different from the analogue for the Navier–Stokes
equation, where the dimension of the subspace of the
divergence free functions equals the dimension of the pres-
sure space and, thus, can be large.
Remark 3.8. The variable ti has zero values at the boundary at
all time. Thus, if one only considers the ODE (21) for vi, there
is no problem of possibly inconsistent initial values due to the

chosen control, cf. Remark 2.6. However, a given initial value
has to fulfill also (19).
Regularization via penalization. If one adds the term akðtÞ,
0 < a51, to the left-hand side of Equation (18b), one can
solve for the multiplier and eliminate it from the differential
part:

M _tðtÞ � Aðt; tðtÞÞ þ 1
a
GTGt ¼ f ðtÞ þ 1

a
GTu:

This approach is known as penalty scheme and pressure
penalization in the numerical integration of multibody and
Navier–Stokes systems, respectively, cf., e.g., [25,26]. The
method is straightforward to implement but comes with the
need of a proper choice of the penalization parameter. The
main difficulty is that a small parameter α not only increases
the quality of the approximation of the constraints but also
increases the stiffness of the resulting ODE.

INCORPORATION VIA VARIATIONAL FORMULATIONS AND
THEIR DISCRETIZATIONS
In its most general form, the variational or weak incorporation
of the Dirichlet boundary conditions is derived from Problem
2.1 as follows. Instead of considering the constraint (4b) one
adds a penalty term to the variational formulation of the
dynamic Equation (4a):

_tðtÞ � Aðt; tðtÞÞ þ 1
a
k0ðctðtÞ � UðtÞÞ ¼ FðtÞ;ð22Þ

where k0 : Q ! V 0 and α is a small penalization parameter.
Then, for various choices of k and Q, various weak incorpora-
tions of the Dirichlet conditions are realized. For example,
defining k0 through:

hk0q;/iV 0;V ¼
Z
C
ðq;/Þ dc

for a q 2 Q and for any / 2 V , one obtains the penalized
Robin approximation described in the section Penalized Robin
in this paper.

Ultra weak formulations

The basic concept of the ultra weak variational formulation is
the transfer of smoothness requirements from the test space
to the trial space. In numerical experiments, in a conforming
discretization, this concept will require special finite element
spaces that are not part of common finite element libraries.
We will introduce the formulation and a nonconforming
discretization suitable for a direct implementation.

Let U ¼ W2;2ðXÞ \W1;2
0 ðXÞ and consider the diffusion Equa-

tion (5) with β = 0. We call t an ultra weak solution if:

Z
X
ð _t;/Þdx�

Z
X
nðt;D/Þ dx¼hf ;/iU0 ;U�

Z
C
n g;

@/
@n

� �
dcð23Þ
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for all /2U, cf. [8]. The abstract Equation (23) indicates that a

spatial discretization may lead to a system in the form of (2).
The difficulty with a conforming approach, however, lies in the
definition of matching test functions of high regularity with
zero boundary values and suitable ansatz functions.
A possible approach is to drop the requirement that the test

functions have zero boundary conditions and to consider:

Z
X
ð _v;/Þ dx�

Z
X
nðv;D/Þdx�

Z
C
n

@v
@n

;/

� �
dc

¼ hf ;/iU0;U �
Z
C
n g;

@/
@n

� �
dc;

which can be numerically approximated with standard finite

element spaces of sufficiently high regularity.

With the nonconforming ansatz spaces V⊂W1;2
0 ðXÞ, an approx-

imation to (23) that is readily realizable is given through v 2
V that satisfies:

Z
X
ð _t;/Þ dxþ

Z
X
nðrt;r/Þ dx

¼
Z
X
ðf ;/Þ dx� n

Z
C

g;
@/
@n

� �
dcð24Þ

for all / 2 V , cf. [27, Ch. 5.2.1]. This approximation of the

solution of the boundary value problem through functions
with zero boundaries necessarily leads to a solution of L2

regularity regardless of possibly higher regularity of the
problem. We have observed this low regularity in experiments
using explicit schemes for time integration. However, in the
reported numerical tests that use implicit schemes, the
discretization (24) leads to decent approximations.
The numerical approximation to ultra weak solutions of

elliptic problems with boundary control as proposed in Ref.

[7] uses a finite dimensional ansatz space V ⊂ H1ðXÞ and as

the test space W :¼ V \ H1
0ðXÞ, see Refs. [8,10] for the

extension to parabolic problems. The elliptic case then reads,
find t 2 V , such that:

Z
X
nðrv;r/Þ dx ¼

Z
X
ðf ;/Þ dx; 

for all / 2 V \ H1
0ðXÞ;

ð25aÞ

t ¼ PV ðuÞ  on C;ð25bÞ

where PV is the L2 projection in L2ðCÞ onto the grid induced

by the triangulation that defines V. Using the spaces and
formulations of (9) for a spatial discretization of a parabolic
problem, one obtains a system that is the same as (7) apart
from the appearance of the projector PV in the boundary term
(14b). Anyways, the elimination of the boundary nodes will
lead to a system like (15) that includes the time derivative _u of
the control. A discontinuous Galerkin ansatz for the time

discretization as used in Ref. [10] includes _u implicitly in the
same way as Rothe’s method, cf. Remark 3.2.
Remark 4.1. Since the known numerical approaches that base
on (9) do not lead to systems of type (2) or (1), we did not
consider them in the numerical experiments in this manu-
script. However, the lifting, cf. the section Lifting of the
boundary conditions, and the projection approach, cf. the
section Decoupling by projection, readily apply to the formu-
lation of the boundary term that includes the projector PV .
The inclusion of the projection is necessary for well posedness
of the Dirichlet control problem for the case of less regular
boundary controls [7,8,10].

Nitsche variational formulation

A variant of the standard weak formulation of the pure
diffusion, cf. (2) with β = 0, as proposed in Ref. [28] for the
stationary Poisson equation reads:

Z
X
ð _t;/Þ dxþ

Z
X
nðrt;r/Þ dx�

Z
C
n

@v
@n

;/

� �
dc

�
Z
C
n t;

@/
@n

� �
dcþ cc

Z
C
ðt;/Þ dc

¼ hf ;/iU0;U �
Z
C
n g;

@/
@n

� �
dcþ cc

Z
C
ðg;/Þ dcð26Þ

for all / 2 U ¼ W1;2ðXÞ. The formulation is derived by
considering the cost functional:

J ðwÞ ¼
Z
X
nðrw;rwÞ dx� 2

Z
C
n

@w
@n

;w

� �
dc

þ cc

Z
C
ðw;wÞ dc;

with a parameter cc and the first order optimality conditions
for J ðw � vÞ ! min, where t is the solution of the stationary
Poisson problem with nonhomogeneous Dirichlet boundary
conditions. If for a given mesh cc is chosen sufficiently large,
namely cc � h�1 where h is a characteristic length of the
triangulation, then the discretized optimization problem is
convex [28, Equation (12)].
For (26), a standard discrete formulation leads to an equation
of type (2) with A and B explicitly given, see Ref. [29]. Cf. also
[27, Ch. 5.2.2] where nonzero boundary values of y have been
assumed.

Penalized Robin

If one approximates the Dirichlet conditions by a Robin-type
condition:

t � a
@t
@n

þ t ¼ g or 
@t
@n

� 1
a
ðg� tÞ  on C;

with a parameter α that is intended to go to zero, then the
boundary conditions are incorporated naturally in the weak
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formulation of the convection–diffusion operator (6) and a
standard finite element discretization leads to a system of
type (1). For the pure diffusion case, convergence of the
solutions to the actual solution for a ! 0 has been shown in
several contexts, cf. [12] and the references therein.

NUMERICAL TESTS
We consider two-dimensional convection–diffusion-reaction
problems. All setups are directed to actuation at the boundary.
In particular, there are no source terms. This excludes the
method of manufactured solutions for consistency and conver-
gence checks, where one constructs a solution and derives the
corresponding source term and boundary data. In any case,
the method of manufactured solution seems not well suited to
test the modeling of boundary actuation, since the numerical
solution will depend almost exclusively on the volume force;
see the test case at the end of this section.

Hence, in order to evaluate the convergence numerically, we
compute a reference solution using the naive approach (15) of
directly assigning the boundary nodes and a very fine grid in
space and time.

We refer to the tested schemes as follows:

. dias – direct assignment of the boundary values – cf.
the section Direct assignment of the boundary dofs

. lift – lifting of the boundary conditions via split mass
matrix – cf. the section Lifting of the boundary
conditions

. proj – incorporation of the constraint via Lagrange
multiplier and projections – cf. the section Decoupling
by projection

. pena – penalization of the constraint – cf. the section
Regularization via penalization

. ncul – nonconforming approximation of ultra week
solutions – cf. the section Ultra weak formulations

. nits – approximation via the Nitsche variational for-
mulation – cf. the section Nitsche variational
formulation

. pero – relaxation via Robin approximation – cf. the
section Penalized Robin

For all test setups, we will check the convergence of dias and

that the theoretically equivalent formulations lift and proj give

the same results. Also, we will investigate how the relaxed

methods pena, nits, and pero perform for different choices of

the penalization parameter and for inexact solves of the

resulting linear systems. Furthermore, we will investigate

how the schemes perform if an iterative solver is applied.

Test setups

We consider several convection–diffusion setups on a two-

dimensional square domain. Let X ¼ ½�1; 1� � ½�1; 1� ⊂ R2 be

the computational domain with the spatial coordinates
x ¼ ðx0; x1Þ. Let Γ be the boundary with parts Γ0 to Γ3 as
depicted in Figure 1. All setups model the evolution in time
and space of a scalar quantity ρ due to a convection wind β

and diffusion with a diffusion coefficient n, cf. Problem 2.2.
The quantity ρ is seeded into the domain at Γ0, where we

enforce the time-dependent Dirichlet conditions:

qjC ¼ gðxÞuðtÞ :

¼ 1
2

sin px0 þ p
2

� 	
þ 1

� 	
ðcosð2t þ pÞ þ 1Þ:ð27Þ

Figure 1. Illustration of the domain, the arrangement of the boundary segments, a triangulation with Nh = 12, and a snapshot of
an approximation to the internal convection–diffusion as described in Test Case 1 at time t = 3.0.
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Here, gðxÞ :¼ 1
2 sin px0 þ p

2

� �þ 1
� �

is the spatial shape function
and uðtÞ :¼ cosð2t þ pÞ þ 1 is the scalar control function. At
the remainder boundaries, Γ1, Γ2, and Γ3, depending on the
setup, homogeneous Dirichlet or homogeneous Neumann
boundary conditions are applied. As the initial value, we set
ρ(0) = 0, which is consistent with the control action at time
t = 0.
As the first test case, we consider a setup with no convection
at the boundary, so that the boundary control is propagated
into the domain only by diffusion.
Test case 1 (internal convection–diffusion). Given a convection
wind and a diffusion parameter:

b0ðxÞ ¼ �x1ðx0 � 1Þ2ðx0 þ 1Þ2ðx1 � 1Þðx1 þ 1Þ
x0ðx0 � 1Þðx0 þ 1Þðx1 � 1Þ2ðx2 þ 1Þ2

� �
 and

 n0 ¼ 0:1;

find approximations to the scalar function ρ satisfying:

_qðtÞ þ b0 � rqðtÞ � n0DqðtÞ ¼ 0;ð28aÞ

qjC0
ðtÞ ¼ guðtÞ;ð28bÞ

qjC1[C2C3
ðtÞ ¼ 0;ð28cÞ

qð0Þ ¼ 0;ð28dÞ

on given discretizations of the spatial domain X ¼ ½�1; 1�2
and of the time interval ½0; 4�.

As a second test case, we consider a convection–diffusion
problem with inflow and outflow, for which the boundary

values are also transported into the domain via convection.

See Figure 2a for an illustration of the setup.

Test Case 2 (convection–diffusion). Given a convection wind

and a diffusion parameter

b1ðxÞ ¼
1
10

x0 þ 1
�ðx1 þ 1Þ

� �
 and n1 ¼ 0:1;

find approximations to the scalar function ρ satisfying:

_qðtÞ þ b1 � rqðtÞ � n1DqðtÞ ¼ 0;

qjC0
ðtÞ ¼ guðtÞ;

qjC1[C2
ðtÞ ¼ 0;

@q
@n

jC3
ðtÞ ¼ 0;

qð0Þ ¼ 0;

on given discretizations of the spatial domain X ¼ ½�1; 1�2
and of the time interval ½0; 0:2�.
The third test case is the same as the second but with

an additional reaction source term rðqÞ ¼ qð1� qÞ in the

dynamical equation. This source term r is positive for
values of 0 ≤ q≤ 1 and negative elsewhere. Thus,
for values of ρ > 0 the reaction pushes ρ towards ρ = 1, cf.
Figure 2b.
The considered system, for t 2 ð0; 1�, now reads

Figure 2. Illustration of the distribution of the scalar ρ seeded at the upper boundary after diffusion and convection (a) and
additional reaction (b) as described in Test Cases 2 and 3 for Nh = 15 at time t = 3.0.
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Test Case 3. Given the wind and the diffusion parameter
defined in Test Case 2, find approximations to the scalar
function ρ satisfying:

_qðtÞ þ b1 � rqðtÞ � n1DqðtÞ ¼ qðtÞð1� qðtÞÞ;
qjC0

ðtÞ ¼ guðtÞ;
qjC1[C2

ðtÞ ¼ 0;

@q
@n

jC3
ðtÞ ¼ 0;

qð0Þ ¼ 0;

on given discretizations of the spatial domain X ¼ ½�1; 1�2
and of the time interval ½0; 0:2�.
For all test cases, the spatial discretization is done on a
uniform criss-cross triangulation described by the parameter
Nh ¼ 2

h which is the length of the boundary parts divided by
the length of the longest edge of the triangles, see Figure 1.
For the discrete function space, we use the parameter cg,
denoting the polynomial degree of the chosen standard
Lagrange elements. For the time discretization, we use a
uniform grid of size Ns � 1

s corresponding to the ratio of the
length of the time interval versus the length of one time step.
Here and in the following examples, already for the coarsest
discretization, the local Peclet number Pe :¼ kbðtÞkh=v is
smaller than 1. Thus, we can expect reliable approximations
without additional, e.g., upwind, stabilization [30].
For the spatial discretization, we use the Python interface
dolfin [31] to the finite element software suite Fenics [32]. Our
investigation focusses on the space discretization errors but
we will make sure that the time integration error is
sufficiently small. For the linear cases, the time integration is
done by means of the implicit trapezoidal rule. The nonlinear
case is treated implicitly in the linear part and with the
Method of Heun in the nonlinear part. The norms are
computed using the piecewise trapezoidal rule for the time
integration and dolfin’s built-in function error norm that
evaluates the L2 norm in the discrete function spaces. In
general, we solve the occurring linear equation systems via a
direct solver that makes use of the python module scipy’s
built-in sparse LU decomposition method. In some tests, we
employ the generalized minimal residual method (GMRES)
method using the implementation of the python module krypy
[33]. The code used can be obtained from the author’s public
git repository [34].

By qpcghNh;sNs
, we denote the approximation to the solution of

(10) with the discretization parameters Nh, Ns, and cg. By

epcghNh;sNs
, we denote the approximation error

epcghNh;sNs
:¼ qpcghNh;sNs

� qref

measured in a numerical approximation of the

L2ð0; 1; L2ð½�1; 1�2ÞÞ norm, where ρref is a reference computed
with the cg ¼ 2 scheme with Ns ¼ 240 and Nh ¼ 96.

Convergence tests

In Tables 1 and 2, we list the approximation errors for dias for

increasingly fine space and time discretizations for Test Cases

1 and 2. One can see, that the spatial discretization error is

dominating, i.e., convergence in the time discretization is only

observed for larger values of Ns. This justifies the choice of

Ns :¼ 240 as the reference discretization for further error
comparisons.

The errors epcghNh;s120 for a fixed time discretization and varying

space discretizations are plotted in Figure 3 for all three test
cases. From the plots, one can see that the equivalent

Table 1. (Time space convergence of dias for linear elements, cf.
the section Convergence tests) The approximation error epcghNh;sNs

with ρref ¼ q p2
h96;s120 scaled by the inverse of ep1h6;s30 ¼ 1:119�10�1

(top) and ep2h6;s60 ¼ 3:201 � 10�2 (bottom) for varying space and

time discretizations and for polynomial degree cg ¼ 1 (top) and
cg ¼ 2 (bottom) for Test Case 1. Cf. also Figure 3a and b
illustrating the convergence in space for the finest time
discretization (the rightmost columns in the tables).

NhnNs 30 60 120

6 1.0000 1.0026 1.0033
12 0.2608 0.2641 0.2651
24 0.0654 0.0661 0.0671
48 0.0244 0.0163 0.0166
96 0.0215 0.0059 0.0041

NhnNs 60 120 240

6 1.0000 0.9982 0.9978
12 0.2295 0.2272 0.2269
24 0.0482 0.0424 0.0419
48 0.0201 0.0077 0.0063

Table 2. (Time space convergence of dias for quadratic elements,
cf. the section Convergence tests) the approximation error epcghNh;sNs

with ρref ¼qp2
h96;s120 scaled by the inverse of ep1h6;s30 ¼ 4:349�10�4

(top) and ep2h6;s60 ¼ 8:551�10�05 (bottom) for varying space and

time discretizations and for polynomial degree cg ¼ 1 (top) and
cg ¼ 2 (bottom) for Test Case 2. Cf. also Figure 3c and d
illustrating the convergence in space for the finest time
discretization (the rightmost columns in the tables).

NhnNs 30 60 120

6 1.0000 0.9997 0.9996
12 0.3696 0.3695 0.3694
24 0.1060 0.1059 0.1059
48 0.0276 0.0275 0.0275
96 0.0071 0.0070 0.0069

NhnNs 60 120 240

6 1.0000 1.0000 0.9999
12 0.1699 0.1699 0.1699
24 0.0316 0.0330 0.0305
48 0.0085 0.0071 0.0071
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Figure 3. Convergence tests for the consistent implementations, cf. the section Convergence tests. The error epcghNh;s120
for varying

space discretizations Nh and for linear (left) and quadratic (right) shape functions. The first row of plots (a and b) corresponds to
Test Case 1, the middle row (c and d) to Test Case 2, and the bottom line (e and f) to Test Case 3. The dashed lines indicate the
slope of a quadratic convergence the dotted lines indicate a convergence of order 2.5.
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formulations lift and proj give the same results and one can
read off the numerically estimated order of spatial conver-
gence (EOC). For the linear elements (cg ¼ 1), one obtains
EOC ¼ 2 and for the quadratic elements (cg ¼ 2), one obtains
EOC ¼ 2:5 at a lower error level. The observed order of
convergence is not optimal as laid out in the section Conver-
gence tests with volume forcing. For the linear elements, also
ncul converges quadratically although with an error that is
slightly larger than the one reported for proj and lift.

For piecewise quadratic shape functions, the scheme ncul
delivered good approximations but its convergence rate was
estimated as EOC ¼ 0:5, see Figure 3 (right column), which is
much less than expected from theory. A possible explanation
for this breakdown is the oscillation that occurs when
approximating a step function by a quadratic polynomial.
Recall that the scheme ncul enforces a zero value at the
boundary, while in the inner it approximates a solution which
is not zero at the boundary. The inevitable jump in the

Figure 4. Penalization parameter study, cf. the section Parameter studies for the penalty schemes. The error ep1hNh;s120
for varying

space discretizations Nh versus the penalization parameter α for the schemes pena (left), pero (middle), and nits (right). The first
row of plots (a–c) corresponds to Test Case 1, the middle row (d–f) to Test Case 2, and the bottom line (g and h) to Test Case 3.
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solution approximation is seemingly well captured by linear
but not by quadratic elements.

Parameter studies for the penalty schemes

For the schemes pena, nits, and pero that depend on a
parameter, we investigate the accuracy of the approximation
versus the choice of the penalization parameter α, where we
have defined the relation cc ¼ n

a to fit in Nitsche’s method (26).

Judging from the results depicted in Figure 4, for large
penalization parameters, the approximation is bad, while for
small parameters the accuracy of the consistent approxima-
tions is obtained. The Nitsche method nits did not lead to
reasonable approximations for large values of a.
The necessity to properly choose the penalization parameter

is evident in the errors that are reported for inexact solutions

of the resulting linear systems. If one applies GMRES pre-

conditioned with the inverse of the mass matrix, to solve the

Figure 5. Penalty schemes and inexact solves, cf. the section Parameter studies for the penalty schemes. The error ep1;tol1e�5
hNh;s120

for
varying space discretizations Nh versus the penalization parameter α for the schemes pena (left), pero (middle), and nits (right),
where the occurring algebraic equations are solved via GMRES up to an residual of 10�5. The first row of plots (a–c) corresponds
to Test Case 1, the middle row (d–f) to Test Case 2, and the bottom line (g–i) to Test Case 3.
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algebraic equations in every time step, the approximation

error of the penalization schemes increases with smaller

penalization parameters α. The plots in Figure 5 show this

phenomenon. For this investigation, we allowed a relative

residual of at most tol ¼ 10�5, which is already less than the

overall error which is of magnitude 10�4.
The increase in the approximation error is mainly due to the

increase of the magnitude of the right-hand side that scales

with 1
a. In fact, having solved the exemplary linear system

Ax ¼ f up to a relative residual of tol, one has that:

kAx � f k
kf k ¼ tol or kAx � f k ¼ tol � kf k;

which means that for larger right-hand sides f, the absolute

residual kAx � f k can be larger. A remedy is to control the

absolute residual which can be done by correcting the
provided relative residual by a factor tolcor¼min 1

kf k; 1
n o

,
where f denotes the current right-hand side. In Figure 6d–f,

Figure 6. Penalty schemes and absolute tolerances, cf. the section Parameter studies for the penalty schemes. The error ep2;tol1e�5
hNh;s120

for a fixed relative residual tol ¼ 10�5 (top row), the correction of the residual tolcor (middle row), and for a fixed absolute
residual abstol ¼ 10�5 (bottom row) for varying space discretizations Nh versus the penalization parameter α for the schemes
pena (left), pero (middle), and nits (left) for Test Case 2.
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we have reported the discrete L2ð0; 0:2Þ norm of tolcor for
Test Case 2. Applying this correction, that scales with 1

a, one
recovers the approximation properties of exact solves over the
whole range of α, cf. Figures 6g– i and 4d–f.

GMRES performance

In this test setup, we investigated how the different but

mainly equivalent formulations of the same problem affect the

performance of an iterative solver. Therefore, we fixed the

time and space discretization Nh ¼ 48 and Ns ¼ 120 and, for

polynomial degrees cg ¼ 1; 2, we considered the simulations
of Test Case 1, 2, and 3 if the resulting linear equations are
solved using GMRES up to a relative residual smaller than
tol ¼ 10�7. The results are listed in Tables 3 and 4.
The residuals were calculated in the inner product induced by

the inverse of the mass matrices which was achieved by using

the inverses as a preconditioner. At each timestep, as initial

guesses, we took the values obtained by linear extrapolation

on the bases of the two latest values. The parameter α was set

to a ¼ 1 for pena and a ¼ 10�3 for pero which corresponds to
the optimal values for the cg ¼ 1 case, cf. Figure 5.
As a performance measure that is comparatively independent
of the sophistication of the implementation, we took the
averaged numbers of iteration per timestep that were needed
to obtain a residual below tol ¼ 10�7. A second quality
measure was the resulting approximation error with respect
to the reference solution. In all tests, the methods proj and lift
took the least number of iterations. In some cases, in terms of
approximation quality, they were outperformed by pero, but
at the price of significantly more necessary iterations. The
scheme ncul performs similar to proj and lift for cg ¼ 1. For
cg ¼ 2 the approximation was much worse as it was already
observed in Ref. [22]. At almost all tests, the penalization
schemes needed more iterations and lead to worse approx-
imations if compared to the consistent schemes. Note, how-
ever, that the choice of the penalization parameters was
certainly not optimal for the cg ¼ 2 cases.

Convergence tests with volume forcing

In the beginning of the section Numerical tests, we have
mentioned that the method of manufactured solutions is not
suitable for boundary controlled processes. This is intuitively
clear since for every finer discretizations the weight of a
boundary tends to zero if compared to a surface or volume
patch. More concretely, in two spatial dimensions, the number
of nodes at the boundary grows linearly, while the number of
nodes in the inner grows at least quadratically. Thus, if the
boundary conditions are merely an extension of a volume
force, the volume force will dominate over what happens at
the boundary.

To back this assertion by a numerical experiment, we consider
Test Cases 1 and 2 (see the section Test setups) but with an
additional volume force in Equation (10a) corresponding to
the constructed solution:

qref ¼
1
8

sin x0pþ p
2

� 	
þ 1

� 	
sin

x1
2
p

� 	
þ 1

� 	
ð1þ x1ÞuðtÞ;

with u as in Equation (27). The solution ρref is constructed
such that at C0 it coincides with the boundary control function
defined in Equation (27) and such that it is zero at the
remaining boundaries. Also, it holds that @qref

@n jC3
¼ 0 as

required for the setup of Test Case 2.
Taking the method lift and tabulating the approximation
errors for varying time and space discretization, for linear
elements, we find spatial convergence orders EOC ¼ 2, i.e.,
doubling Nh reduces the error by a factor of 2�2. For quadratic
elements, we find EOC ¼ 3, i.e., doubling Nh reduces the error
by a factor of 2�3, cf. Tables 5 and 6, and Figure 7. The
convergence order is as expected for stationary problems and,
for the quadratic ansatz functions, significantly better than in
the previous experiments, cf., in particular, Table 1 and Figure
3b and d. This indicates that the boundary conditions are not

Table 3. Performance of GMRES within various formulations, see
section GMRES performance. The averaged number of iterations
per time-step av:]its and the approximation error for several
methods and all three test cases for Nh ¼ 48, Ns ¼ 120, and
linear elements (cg ¼ 1 ) in the case that the resulting linear
equations are solved using GMRES up to a relative residual
of tol ¼ 10�7.

Test Case 1 Test Case 2 Test Case 3

av:]its ep1;tol1e�7
h48;s120 av:]its ep1;tol1e�7

h48;s120 av:]its ep1;tol1e�7
h48;s120

proj 41.7 1.9·10�3 10.6 1.2·10�5 10.6 1.1·10�5

lift 41.7 1.9·10�3 10.6 1.2·10�5 10.6 1.1·10�5

pero 60.8 4.0·10�3 14.2 7.8·10�6 14.2 7.6·10�6

pena 48.9 9.7·10�3 15.5 1.2·10�5 15.5 1.1·10�5

ncul 43.2 3.7·10�3 10.6 1.1·10�5 10.6 1.1·10�5

The colored cells contain the lowest measured values.

Table 4. (Performance of GMRES within various formulations, see
section GMRES performance) The averaged number of iterations
per time-step av:]its and the approximation error for several
methods and all three test cases for Nh ¼ 48, Ns ¼ 120, and
quadratic elements (cg ¼ 2 ) in the case that the resulting linear
equations are solved using GMRES up to a relative residual
of tol ¼ 10�7.

Test Case 1 Test Case 2 Test Case 3

av:]its ep2;tol1e�7
h48;s120 av:]its ep2;tol1e�7

h48;s120 av:]its ep2;tol1e�7
h48;s120

proj 83.4 2.5·10�4 20.1 6.3·10�7 20.1 6.1·10�7

lift 83.4 2.5·10�4 20.1 6.0·10�7 20.1 6.1·10�7

pero 106.7 4.6·10�3 24.9 1.1·10�5 24.9 1.1·10�5

pena 71.2 3.8·10�2 20.6 4.2·10�6 20.6 4.4·10�6

ncul 84.9 7.7·10�2 20.3 1.1·10�4 20.3 1.1·10�4

The colored cells contain the lowest measured values.
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optimally considered by standard discretization schemes.
Moreover, this insufficiency is not captured by numerical
tests with systems that are driven by a volume force.

CONCLUSION
We have listed common numerical schemes and introduced a
projection-based method for problems with time-dependent
Dirichlet boundary conditions. We have made the distinction
between consistent schemes and relaxed schemes that depend
on a penalization parameter.

Using a reference solution on a fine discretization, we
investigated the order of convergence of the space discretiza-
tion for the different schemes. The estimated order of
convergence was in between EOC ¼ 2 and EOC ¼ 2:5 which
is not satisfactory. Similar tests but with a volume force led to
an EOC ¼ 3, the quadratic elements. This result suggests that
boundary-driven problems are not treated optimally in the
considered finite element schemes. A numerical analysis
would be needed to detect the source of the breakdown and
to find remedies like, maybe, the boundary concentrated Finite
Element approximation [35]. Apart from that, the results as a
whole show that the method of manufactured solutions is not
well suited for the numerical investigation of spatial conver-
gence of boundary actuation-driven setups.
The relaxed schemes showed the same accuracy as the
consistent schemes, but only at certain ranges of the penaliza-
tion parameter value. If one solves the algebraic equations
with high accuracy, one only has to choose the penalization
small enough. However, if the algebraic equations are solved
iteratively up to a certain residual, then the approximation
gets worse again for smaller penalization parameters. This
effect might be partially due to an ill-conditioning of the
system which might be cured by a suitable preconditioner.
The main factor, however, is that for small penalization
parameters α the residual is dominated by the penalization
term. As a remedy, one can consider absolute residuals as
convergence criteria. Conversely, that means that one has to

Table 5. (Time space convergence of lift with volume forcing,
cf. section Convergence tests) The approximation error ep1hNh;sNs
scaled by the inverse of ep1h6;s30 ¼ 9:7149�10�2 for linear ansatz
functions (top) and ep1hNh;sNs scaled by the inverse of ep2h6;s60 ¼
5:288�10�3 for quadratic ansatz functions (bottom) with ρref
explicitly given for varying space and time discretizations for Test
Case 1.

NhnNs 30 60 120

6 1.0000 0.9975 0.9975
12 0.2720 0.2579 0.2579
24 0.1064 0.0652 0.0651
48 0.0797 0.0172 0.0163
96 0.0766 0.0067 0.0041

NhnNs 60 240 960

6 1.0000 0.9429 0.8810
12 0.3681 0.1049 0.1018
24 0.3488 0.0258 0.0124
48 0.3485 0.0218 0.0021

Table 6. (Time space convergence of lift with volume forcing, cf.
section Convergence tests) The approximation error ep1hNh;sNs scaled
by the inverse of ep1h6;s30 ¼ 1:29�10�4 for linear ansatz functions
(top) and ep1hNh;sNs scaled by the inverse of ep2h6;s60 ¼ 7:234�10�6 for
quadratic ansatz functions (bottom) with ρref explicitly given for
varying space and time discretizations for Test Case 2.

NhnNs 30 60 120

6 1.0000 1.0773 0.9992
12 0.2744 0.2740 0.2740
24 0.0614 0.0610 0.0610
48 0.0153 0.0152 0.0152
96 0.0039 0.0038 0.0038

NhnNs 60 120 240

6 1.0000 0.9998 0.9997
12 0.1175 0.1174 0.1174
24 0.0140 0.0139 0.0139
48 0.0022 0.0017 0.0017

Figure 7. Spatial convergence with manufactured solutions, cf. section Convergence tests. The error epcghNh;sNs
for Test Case 1 (a) for

Test Case 2 (b) for sufficiently fine time discretizations Ns , for varying space discretizations Nh , and for linear and quadratic shape
functions. The dashed lines indicate the slope of a quadratic convergence the dotted lines indicate a convergence of order 3.
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prescribe relative residuals that scale with α which is not

practical for small α.

In addition to the approximation quality, we have investigated

the performance of GMRES applied within the various

schemes. In these tests, as expected, the consistent schemes

outperformed the schemes with a penalization.

Based on the results, depending on the situation, we speak out

in favor of certain methods as follows. In view of minimal

effort for implementation, pero and ncul are the methods of

choice. If one wants to invest some time in implementation,

proj and lift are better choices since they provide reliable

approximations independent of parameters and for higher-

order elements and they perform better in iterative schemes.

If one can afford the incorporation of the projector, in

particular for optimization, proj might be preferable over lift

since a possibly inconsistent initial value is not an issue here.

A main motivation of the survey was that standard model

reduction or optimal control approaches are readily applicable

to systems of distributed type like (2). In a forthcoming paper,

we will investigate how well the proposed formulations work

in control setups. Also the consistency of the reformulations

with the abstract equations is still open and subject to

ongoing work.
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