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Analyzing single protein molecules using optical methods

Petra Schwille* and Ulrich Kettling?

Studies on single protein molecules have advanced from mere
proofs of principle to insightful investigations of otherwise
inaccessible biological phenomena. Recent studies predict a
tremendous number of possible future applications. The long-
term vision of biologists to watch single molecular processes in
real time by peering into a cell with three-dimensional resolution
might finally be realized. Another fascinating perspective is the
identification and selection of single favorable variants from
complex libraries of diverse biomolecules.
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Abbreviations

AFM atomic force microscopy

FCS fluorescence correlation spectroscopy
FRET  fluorescence resonance energy transfer

Introduction

Scientific discoveries are usually preceded by the inven-
tion of new scientific tools. The enormous progress in the
life sciences in recent years is a direct result of the
emergence of new powerful bioanalytical technologies.
Single-molecule analyses are among the most striking of
these, paving the way for new applications in biophysics
and biotechnology. The most ambitious goal is probably
the investigation of single protein molecules inside the liv-
ing cell. Another significant challenge is the development
of methods to trace, manipulate and select biomolecules
with respect to their individual properties. The require-
ment for only minute amounts of analytes without the
need to synchronize their dynamics, and the possibility to
distinguish subpopulations of molecular species, which in
bulk analysis would be hidden by a statistic mean, open up
great opportunities for miniaturized analytical methods
and screening techniques.

Single-molecule analysis is presently dominated by two
different kinds of approach: optical methods based on fluo-
rescence [1,2°] and, more recently, Raman spectroscopy
[3,4]; and atomic force microscopy (AFM), that is, imaging
and manipulating single molecules using microscopic can-
tilevers; (see [5,6] for reviews). The AFM technique yields
extremely high spatial resolution and is the most direct way
to make contact with molecules. On the other hand, optical
techniques are not restricted to surfaces and, therefore, are
more versatile with respect to the molecular environment.
Optical techniques offer a particularly attractive approach

to probe molecules in thermodynamic equilibrium, as they
cause minimal interference with the biological system. The
scope of this short review will be limited to optical studies,
in particular those based on fluorescence methods, report-
ed over the past two years; specific focus is given to protein
analysis. For a broader view on the topic, the reader is
referred to several excellent review articles highlighting the
systematic and historic contiguity of this fascinating field of
research [1,2°,7-9].

Optical detection of single biomolecules

The increasing importance of fluorescence-based tech-
niques for single-protein analysis can be attributed not
only to the rapid development in laser and detector tech-
nology, but also to the availability of a large variety of
highly efficient fluorescent labels in the visible spectral
range. Protein autofluorescence of tryptophan residues or
intrinsic chromophores is scarcely sufficient for a direct
analysis of single units [10°*,11]. Of particular importance,
especially for iz vive applications, are genetically encoded
tags such as green fluorescent protein and its mutants or
homologs that can be fused to proteins at specific sites
[12,13]. Appropriate labels should not only exhibit large
absorption cross-sections and fluorescence quantum
yields, but also high photostability (i.e. the potential to
withstand strong laser intensities), as required for large
signal-to-background ratios. It is assumed that a conven-
tional dye molecule used for single-molecule analysis
emits about 105 to 10° photons before being irreversibly
photobleached [7].

"The primary measurement parameters obtained from fluo-
rescence spectroscopy are the wavelength and intensity of
emitted light (i.e. the energy and emission rate of pho-
tons). Pioneering work on single-molecule spectroscopy,
mainly at low temperatures, showed that it is possible to
record full fluorescence spectra for individual dye mole-
cules and even to trace the dynamics of spectral jumps [1].
Most applications in biology, however, sacrifice spectral
resolution in order to enhance the overall photon detection
yield. Combinations of specific interference filters in the
detection pathway are often sufficient to suppress back-
ground light, such as Rayleigh and Raman scattering, and
allow spectral identification of probe molecules. Other
parameters with increasing relevance for optical single-
molecule measurements are the fluorescence lifetime
[14-16] (i.e. the average decay time of the first excited
[fluorescent] state), which is sensitive to the local microen-
vironment of the probe, and fluorescence polarization
anisotropy [17,18,19°,20], which is strongly dependent on
rotational mobility of the molecular dipoles. At present,
there is a general tendency to simultaneously acquire as
many of these parameters as possible, in so-called multi-
dimensional approaches [2°,16,17,20].
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A spectroscopic principle that has recently advanced
to become a prominent tool for single molecule studies
is fluorescence resonance energy transfer (FRET)
[21,22°°,23,24°,25°°,26-28,29°] between two spectrally
distinguished labels. The labels can be attached to two
interacting species [22°°,30°°] or to different sites of a
single protein molecule [22°°,23,25°°,26-28]. Depending
on the spectral properties, distances and relative orienta-
tions of these labels, thought of as molecular dipoles,
radiationless energy transfer from the excited donor dye to
the non-excited acceptor dye is facilitated leading to a
decrease in donor fluorescence and an increase in acceptor
fluorescence. Therefore, the proper design of fluorescence
assays with specifically labeled proteins with different tags
at different positions allows the relative distances between
the labels to be studied as a FRE'T pair by a visible change
in their relative emission. FRET efficiency can thus be
considered a molecular ruler [21] for distances in the range
of several nanometers, enabling studies of protein—protein
colocalization and/or interaction [22°%,30**] and allowing
conformational changes within a single protein to be ana-
lyzed [23,28]. Although fluorescence as a reporter of the
molecular environment has little potential to reveal struc-
tural properties, the combination of smart labeling with
elaborate detection schemes provides the basis for a
‘dynamic structural biology’ [8].

Measurements on diffusing single molecules

An important task for single-molecule detection is the
reduction of background noise, preferably accomplished by
spatial restriction of the sample volumes. One of the most
versatile detection schemes with effective volume elements
of less than 10-15 L is the open confocal setup, which can
easily be adapted to freely diffusing molecules in any trans-
parent environment [14°°,24°25°°]. The measurement
volume in the radial direction is defined by the diffraction-
limited spot of a laser beam focused by a high-resolution
objective; a pinhole in the image plane establishes the
depth of focus, and thus limits the volume axially. A graph-
ic representation of this so-defined open volume element is
given in Figure 1. Photons emanating from single molecules
traversing the illuminated region (red trace) are detected by
an extremely sensitive avalanche photodiode. If the mea-
surement volume is thought to be empty for most of the
time, the arrival and limited dwell time of fluorescent mole-
cules within this region is represented by so-called ‘bursts’
of the measured fluorescence count rate. If photobleaching
of the fluorophores is prevented at appropriate power levels,
these burst intervals or ‘detection time windows’ are limited
only by molecular mobility. Selective analysis of certain
fluorescence parameters and characteristic fluctuation time
constants can then be performed on single bursts in solution
[1,14°°,15], in cells [31] or in membranes [32].
Subpopulations, that is, groups of molecules with different
mobility [33-35] or different spectral features, such as
brightness [36,37,38°], fluorescence lifetime [14°°] or
anisotropy [17], can be distinguished. Burst analysis on
subpopulations of different FRET efficiency, indicating

Figure 1
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The principle of confocal single-molecule detection: fluorescent
particles are analyzed during their residence in the illuminated focal
spot. Measurement parameters are wavelength (M), fluorescence
lifetime (t¢), translational mobility (Dyans), rotational mobility (D,y),
fluorescence fluctuations (8F), coincidence or cross-correlation (CC)
and FRET. Molecular interactions can be analyzed by changes in
mobility and/or anisotropy (Dyans: Drot): CC or FRET. Intramolecular
dynamics are best studied by recording intensity fluctuations (6F)
resulting from changes in t; or FRET efficiency.

different intramolecular distances of labeled residues, was
successfully used to study pathways of protein folding at the
single-molecule level [25°°]. Both the static and dynamic
heterogeneity of processes occurring on timescales faster
than the average residence times can be resolved.

An elegant method with high statistical confidence to
derive characteristic time constants of single-molecule
dynamics is fluorescence correlation spectroscopy
(FCS) [33-35,39°°]. Here, the fluctuating intensity signal
recorded from any fluorescent sample is subject to a
mathematical procedure called autocorrelation analysis.
Applied to highly dilute samples, FCS provides direct
access to fast intramolecular dynamics that modulate the
fluorescence intensity [40,41] or lifetime [42] and allows
many different modes of molecular mobility to be distin-
guished, particularly in the cellular environment [33-35].
The two-color variant of FCS, cross-correlation spec-
troscopy or, more generally, coincidence analysis
[39°°,43,44], is a sensitive tool to follow the association or
dissociation of different molecular species. It has been
used to follow the specific cleavage of a double-labeled
DNA substrate by a restriction endonuclease at the single-
molecule level in real time [39,44], with sampling intervals
of less than 100 ms [44]. Recently, two-color coincidence
analysis has even enabled diagnostics of sparse pathologi-
cal prion protein aggregates in cerebrospinal fluid [45°].

Imaging and dynamic analysis of fixed molecules
"Temporal resolution in open confocal setups is extremely high
and only limited by the detector dead time. By averaging large
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numbers of molecular transit events or bursts, the measure-
ment statistics are usually very good, and by allowing the
molecules to diffuse freely the interference of the detection
process with the biological system is minimized. On the other
hand, processes on larger timescales than the mobility-restrict-
ed residence times in the focal spot cannot be followed. For
this reason, increasing numbers of investigations are being
carried out on immobilized single molecules attached to glass
surfaces [20,22°°,26,28,29°] or embedded in buffer-filled pores
of polymers (e.g. polyacrylamide or agarose gels [10°*,27,46]).
Molecules are located either using sample-scanning and con-
focal detection or by widefield illumination in conjunction
with extremely sensitive charge-coupled device (CCD) cam-
eras. Lateral resolution down to 50 nm can be obtained [47].
"To gain better axial resolution and to suppress the background
above and below the focal plane, many researchers
[26,30°*,48] implement an illumination strategy using total
internal reflection (TTR) of the laser light at a glass surface (e.g.
a coverslip). The penetration depth of light into samples on
the other side of this surface is only several hundred nanome-
ters. Near-field scanning microscopy [49] is another elegant
approach to increase resolution, but has considerable disad-
vantages if complex sample topologies are to be studied. For
analyses in living cells, a particularly important tool is the use
of two-photon excitation of fluorophores at wavelengths of
approximately twice their absorption maxima [34,39°°,50].
"This technique provides dramatically enhanced background
suppression, owing to the limitation of the excitation to the
focal plane, and has the additional crucial advantage of access-
ing multiple labels by a single excitation wavelength [39°°].

Some fascinating studies on single enzymes have been car-
ried out by combining imaging and time-resolved detection
on fixed molecules. In measurements on cholesterol oxi-
dase, which is naturally fluorescent in its oxidized form but
nonfluorescent in its reduced form, enzymatic turnovers
could be observed as an on/off blinking behavior of the
immobilized molecules [10°*]. By recording turnover distri-
butions, the validity of the Michaelis—-Menten mechanism
could be tested. The most striking outcome of these and
similar studies [51] is the finding of dynamic disorder, indi-
cating memory effects of the enzyme (i.e. the activity and
dynamics of an enzyme are dependent on previous substrate
turnover). Applying FRET and polarization anisotropy mea-
surements to single immobilized copies of staphylococcal
nuclease, Ha ez a/. [22°*] recorded conformational dynamics
and were able to relate the characteristic timescales of
FRET efficiency fluctuations to enzyme activity. The prin-
ciple of studying conformational transitions by FRET has
been applied to the folding and unfolding of single proteins
[26,28] and recently also to ribozymes [29°], where a folding
intermediate was discovered.

In the above-mentioned and other studies [48,52], much
information is derived from changes in the overall fluores-
cence capacity of single molecules. It is therefore crucial to
rule out dye-induced dynamics that have nothing to do
with protein activity or conformational changes. Recent

measurements on immobilized or free single fluorophores
report blinking induced by light or other environmental
factors [40,41,46] and act as an important corrective to
unmask disadvantageous labeling systems and other
sources of potential artifacts to be suppressed by data
analysis [23].

Spatial tracking of mobile molecules

"To investigate certain processive molecules, such as motor
proteins [9,53] or transcription enzymes [54], or to observe
functional proteins in their native cellular environment,
spatial and temporal information need to be combined. In
order to track these molecules over large enough time
intervals, but with sufficient spatial and temporal resolu-
tion to record colocalization [30°*,55] and characteristic
dynamics [56°,57,58], successive imaging of a whole plane
or space in conjunction with elaborate image analysis is
required. Fluorescence widefield illumination and detec-
tion with sensitive CCD cameras have been successfully
employed for this purpose. This approach has been used to
map single receptor molecules in three-dimensions on cell
membranes [56°] and to track slow diffusion of single
green fluorescent protein molecules through the pores of
polyacrylamide gels [57]. Implementing objective TIR,
Sako er al. [30**] succeeded in unraveling the early events,
such as dimerization and autophosphorylation, in the
signal transduction of epidermal growth factor (EGF)
receptors on live cell surfaces. They tracked single
fluorescent spots representing labeled EGF bound to
receptors. This landmark study, which provided direct evi-
dence for dimerization before EGF binding, demonstrated
that single-molecule investigations are indeed possible in
living cells and can provide us with information that can-
not be derived from ensemble studies on many molecules.

Conclusions: implications for biotechnology

Besides their impact on basic research, one of the most
promising features of methods for single protein detection
and analysis is their compatibility with ultra-high-through-
put screening strategies. This compatibility could be
utilized in the proteomics field, for drug screening purpos-
es, or for the screening-based directed evolution of
proteins. Screening applications take advantage of several
of the above-mentioned aspects: with access to molecular
distributions, rather than the statistical mean, and with
high temporal resolution, unique protein characterization
is facilitated. Furthermore, the high sensitivity leads to
inherent miniaturization and thereby to more compact
formats, higher throughput and less consumption of mate-
rials [59,60]. The perspectives of single-molecule-based
approaches for the discrimination and sorting of biomole-
cules with desired properties were envisaged at an early
stage [61]. The combination of optical single-protein
analysis with corresponding miniaturized sorting devices
(e.g. based on microfluidic structures [62,63]) or other
approaches for particle manipulation [64] may constitute
the next generation of tools for evolutionary protein
design: libraries of gene fragments with their gene product
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linked to them could be probed molecule by molecule,
classified, and sorted with respect to the protein pheno-
type. Selected genes would then undergo the next step of
variation and expression before being sorted once more,
leading cycle by cycle to optimized protein functions.
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