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All-sky searches for gravitational-wave pulsars are generally limited in sensitivity by the finite
availability of computing resources. Semicoherent searches are a common method of maximizing
search sensitivity given a fixed computing budget. The work of Wette and Prix [Phys. Rev. D 88,
123005 (2013)] and Wette [Phys. Rev. D 92, 082003 (2015)] developed a semicoherent search method
which uses metrics to construct the banks of pulsar signal templates needed to search the parameter
space of interest. In this work we extend the range of validity of the parameter-space metrics using
an empirically-derived relationship between the resolution (or mismatch) of the template banks and
the mismatch of the overall search. This work has important consequences for the optimization of
metric-based semicoherent searches at fixed computing cost.

PACS numbers: 04.80.Nn, 95.55.Ym, 95.75.Pq, 97.60.Jd

I. INTRODUCTION

The pursuit of the first direct detection of gravitational
waves ended with the observation of the merger of two bi-
nary black holes [1]. Other classes of gravitational-wave
sources (see e.g. [2–4] for reviews) may also be detected
by the LIGO [5, 6], Virgo [7], and KAGRA [8] observato-
ries, as construction and commissioning of these detectors
continues over the coming years.

Rapidly-rotating neutron stars which may be radi-
ating continuous, quasisinusoidal gravitational waves –
gravitational-wave pulsars, for short – are one potential
source. Data from the LIGO and Virgo observatories has
been searched for gravitational waves from known elec-
tromagnetic pulsars [e.g. 9, 10] and the low-mass X-ray
binary Scorpius X-1 [e.g. 11], gravitational-wave pulsars
in supernova remnants [12, 13] and at the Galactic cen-
ter [14], and all-sky searches for gravitational-wave pul-
sars, both isolated [e.g. 15–18] and in binary systems [19].

The detection of gravitational-wave pulsars presents
a number of challenges. The gravitational wave ampli-
tude scales with the potential nonaxial deformability of
a neutron star; while maximum deformations have been
studied e.g. in [20], the scale of realistic deformations
that might exist in the population of Galactic neutron
stars, and hence the number of detectable gravitational-
wave pulsars, remain largely unknown. Furthermore, a
search for gravitational-wave pulsars using the most sen-
sitive search method – coherent matched filtering against
a known signal template – is computationally feasible
only in a few circumstances, e.g. searches targeting elec-
tromagnetic pulsars whose sky position and frequency
evolution are accurately known.

These challenges have motivated the development of
a variety of data-analysis techniques, in a quest to
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gain maximum sensitivity within computational con-
straints. These techniques include optimized signal tem-
plate banks [e.g. 21–23], semicoherent search methods
which trade sensitivity for reduced computing cost [e.g.
24–29], and follow-up procedures for potentially interest-
ing candidate signals [e.g. 30, 31].

This paper continues a series of papers [22, 29, 32]
which have developed a semicoherent search method for
isolated gravitational-wave pulsars. In common with
other semicoherent methods, the input gravitational-
wave data are partitioned in time into a number of seg-
ments, each of which is searched by coherent matched fil-
tering against a coherent template bank for each segment.
Detection statistics from each segment are then summed
together using a distinct semicoherent template bank for
the overall search. The method utilizes the idea of a
parameter-space metric [33–35], which determines both
the resolution of the coherent template banks of each seg-
ment, and that of the semicoherent template bank of the
overall search.

The resolutions of the template banks are typically
quantified by the maximum mismatch: the fraction of
signal-to-noise ratio lost when a signal in the input data
does not precisely match any one of the search templates.
The parameter-space metric models the mismatch as a
distance measure between the parameters of the signal
and that of a template. Typically, the resolution of the
semicoherent bank is much finer than that of the coherent
banks; in particular the method developed in [29] pre-
dicts that the semicoherent bank requires a much larger
number of templates than previously estimated [24, 27].

Indeed, the large number of templates in the semico-
herent bank leads to the following problem. The pa-
rameters describing the search setup – the number of
segments, the time span of each segment, and the max-
imum mismatches allowed in the coherent and semico-
herent template banks – may be optimized under fixed
constraints on computing cost and available input data
using the framework of [36]. Preliminary studies have
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found that, under computing cost and data constraints
similar to previous searches [e.g. 15] performed on the
distributed computing project Einstein@Home [37], the
number of templates in the semicoherent bank becomes
very large – typically 106–107 times the number of tem-
plates in a coherent bank – and the computing cost of
the semicoherent summation of coherent templates ex-
ceeds the computing cost constraint by a large factor. In
order to reduce the computing cost to that of its con-
straint, the maximum mismatch allowed in the semico-
herent bank must be increased, reducing the number of
templates and thereby the computing cost of the semico-
herent stage.

The parameter-space metric is, however, only an ap-
proximate model based on a Taylor expansion of the mis-
match, and hence has a limited range of validity. Pre-
vious work suggests that the metric accurately predicts
mismatch values less than ∼ 0.4 (see e.g. Fig. 10 of [35]
and Fig. 7 of [32]), and becomes increasingly inaccurate
at higher values. In order to satisfy the computing cost
constraint in the search optimization described above,
however, the maximum mismatch allowed in the semico-
herent bank must typically be much greater than ∼ 0.4,
i.e. beyond the range of validity of the metric.

It would appear therefore that, under reasonable com-
puting cost constraints, the parameter-space metric alone
cannot be used to reliably predict mismatch; independent
investigations into the performance of Einstein@Home
all-sky searches have reached a similar conclusion [38].
Note too that the sensitivity of a search is generally de-
graded as the maximum allowed mismatch is increased; it
is therefore unclear whether, at the large maximum semi-
coherent mismatch required to satisfy computing cost
constraints, the sensitivity of a metric-based search as
proposed by [22, 29, 32] would be competitive with other
semicoherent methods.

This situation motivates the work described in this pa-
per: a study of the relationship between the mismatches
of the coherent and semicoherent template banks pre-
dicted by the metric, and the actual mismatch of the
overall search as measured by searching for software-
generated signals in simulated data. After reviewing
background information in Section II, and the methodol-
ogy of the simulations used to measure actual mismatch
in Section III, the results of the study are presented in
Sections IV and V. The conclusions drawn from the study
are presented in Section VI.

II. BACKGROUND

This section reviews the theory of semicoherent
gravitational-wave pulsar searches, and the associated
parameter-space metrics. Further details can be found
in [29, 32] and references therein.

The signal template h(t,A, λ̃`) for a gravitational-
wave pulsar [39] is a function of time t at the detector, the
four parameters A which determine the amplitude mod-

ulation of the signal, and the vector of parameters λ̃`
which determine its phase evolution. The latter param-
eters, in the case of all-sky searches for isolated pulsars,
are the sky position of the pulsar, its initial frequency
f ≡ f (0) at some reference time t0, and its spindown
parameters f (s) ≡ dsf/dts|t=t0 of spindown order s.

The F-statistic [39, 40] performs matched filtering of
the input gravitational-wave data against the template

h(t,A, λ̃`), and analytically maximized over the param-

eters A. If the λ̃` are unknown (as is the case for all-sky
searches), a search is performed by computing the detec-

tion statistic 2F`(λ̃`) over a bank of templates whose

parameters {λ̃`} ∈ P are drawn from the search pa-
rameter space P of interest. (Here the subscript ` in-
dexes a single data segment, whose time span is de-

noted T̃ .) In the vicinity of a signal with parameters λs,

the value of 2F`(λ̃`) follows a noncentral χ2 distribution
with 4 degrees of freedom and noncentrality parameter

ρ2
`(A,λ

s; λ̃`); in Gaussian noise it follows a central χ2

distribution with 4 degrees of freedom.

The mismatch µ̃0
`(A,λ

s; λ̃`) determines what fraction
of the signal with parameters λs is not recovered when
computing the F-statistic using a template with param-

eters λ̃`. It is defined in terms of the noncentrality pa-
rameter by [e.g. 29, 36]:

µ̃0
`(A,λ

s; λ̃`) ≡ 1− ρ2
`(A,λ

s; λ̃`)

ρ2
`(A,λ

s;λs)
, (1)

where ρ2
`(A,λ

s;λs) is the noncentrality parameter when
the template is perfectly matched to the signal. A de-
gree of mismatch is unavoidable, as a signal will never
exactly match any template in the bank. Consequen-
tially, template banks are constructed [e.g. 22, 34, 41] so
as to minimize the potential mismatch to some maximum
µ̃max.

Mismatch can be modeled [33–35] as the distance be-

tween signal λs and template λ̃` parameters with respect
to the parameter-space metric g̃0

`(A,λ
s):

µ̃0
`(A,λ

s; λ̃`) ≈ ∆sλ̃` · g̃0
`(A,λ

s) ·∆sλ̃` . (2)

The metric arises from a second-order Taylor expansion

of Eq. (1) with respect to small parameter offsets ∆sλ̃` ≡
λ̃` − λs:

g̃0
`(A,λ

s) ≡ −1

2ρ2
`(A,λ

s;λs)

∂ρ2
`(A,λ

s; λ̃`)

∂λ̃`

∣∣∣∣∣
λ̃`=λs

. (3)

Note that whereas by construction the actual mismatch
of Eq. (1) may never exceed 1.0, the mismatch predicted

by Eq. (2) may become arbitrarily large as ‖∆sλ̃`‖ in-
creases.

The full metric of Eq. (3) is often approximated by a

simpler expression, the phase metric g̃φ` (λs), which dis-
cards the amplitude modulation parameterized by the A.
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The components of the matrix g̃φ` (λs) are

g̃φ` (λs
ij) ≡

〈
∂λi

φ∂λj
φ
〉
t
−
〈
∂λi

φ
〉
t

〈
∂λj

φ
〉
t
|λ=λs , (4)

where φ(t,λ) is the signal phase, ∂λi are the derivatives
with respect to the ith parameter in λ, and the 〈·〉t op-

erator denotes time-averaging over the time span T̃ .
It follows from Eq. (4) that, for any parameters in λs in

which the signal phase φ(t,λs) is linear, the correspond-

ing components of g̃φ` (λs) will be independent of λs; the
mismatch with respect to a signal λs will therefore not
depend on the parameters of that signal. This is partic-
ularly convenient for template placement since, for such
a metric, template banks can be constructed using regu-
lar lattices that minimize the number of templates, and
hence the number of matched filtering operations [e.g.
22, 41, 42]. The signal phase φ(t,λs) is linear in the
frequency f and spindown f (s) parameters [39], but not
in commonly-used parameterizations of the sky, e.g. by
right ascension α and declination δ.

The work of [32] developed an approximation to g̃φ` (λs)
which is independent of all parameters λs: the supersky

metric g̃`. The metric is arrived at by embedding g̃φ` (λs)
in a higher-dimensional space which includes an addi-

tional sky position parameter; in this space φ(t, λ̃`) is
linear in all parameters. Then, the vector in the now
3-dimensional sky parameter space is identified, along

which the mismatch µ̃` = ∆sλ̃` · g̃` · ∆sλ̃` is the least

sensitive to the parameter offsets ∆sλ̃`; this vector is
the eigenvector associated with the smallest eigenvalue
of the sky–sky components of the embedded phase met-
ric. Finally, the embedded phase metric is projected back
onto a subspace perpendicular to this vector, which re-
moves one sky position parameter and results in the met-
ric g̃`. Numerical simulations [32] found that g̃` generally
predicts mismatches measured by searching for software-
generated signals in simulated data with a relative error
. 30%, up to maximum mismatches of ∼ 0.6.

The metric g̃` applies only to a fully-coherent analysis
of a single data segment. In [29], the supersky metric
is generalized to a semicoherent analysis, in which the
coherent analyses of N data segments are combined to-

gether. For each semicoherent template λ̂ in the bank

{λ̂} ∈ P, appropriate F-statistic values 2F`(λ̃`) are
chosen from each segment and summed to give the F-

statistic as a function of λ̂:

2F
(
λ̂
)
≡

N∑

`=1

2F`
(
λ̃`
)
. (5)

Typically the 2F`(λ̃`) are chosen by nearest-neighbor in-

terpolation: in each segment, the chosen λ̃` are the pa-

rameters with the smallest mismatch to λ̂ with respect
to the metric g̃`.

The semicoherent supersky metric ĝ is used to con-

struct the semicoherent template bank {λ̂}, just as the
coherent metrics g̃` are used to construct the coherent

µ̂max µ̃max

0.1∗ 0.1∗ 0.5∗ 1.5 4.1 10.9 28.7 75.3

0.3∗ 0.3∗ 0.9 2.5 6.7 17.7 46.5

0.5∗ 0.1∗ 0.5∗ 1.5 4.1 10.9 28.7 75.3

0.9 0.3 0.9 2.5 6.7 17.7 46.5

1.5 0.1 0.5 1.5 4.1

2.5 0.3 0.9 2.5

4.1 0.1 0.5 1.5

6.7 0.3 0.9

10.9 0.1 0.5

17.7 0.3 0.9

28.7 0.1 0.5

46.5 0.3 0.9

75.3 0.1 0.5

TABLE I. Pairs of maximum semicoherent and coherent tem-
plate bank mismatches (µ̂max, µ̃max) used by the numerical
simulations described in Section III. The (µ̂max, µ̃max) pairs
used by the numerical simulations in [29] are asterisked.

template banks {λ̃`} in each segment. The metric ĝ is
derived following a similar procedure to that of g̃`; the
chief difference is that its starting point is the phase met-

ric summed over segments ĝφ(λs) =
∑N
`=1 g̃

φ
` (λs)/N [24].

Numerical simulations using a range of search setups –
parameterized by the number of segments N , the time

span T̃ of each segment, the total time T̂ spanned by all
segments, and the maximum mismatches µ̃max and µ̂max

of the coherent and semicoherent template banks respec-
tively – found ĝ to also be a useful predictor of actual
mismatch, with relative errors typically . 35%, up to
maximum mismatches of ∼ 0.5 [29].

III. NUMERICAL SIMULATIONS AT LARGE
METRIC MISMATCHES

In [29, 32] the supersky metric ĝ was validated by per-
forming numerical simulations which compare the mis-
match predictions of the metric to mismatches mea-
sured by searching simulated data for software-generated
signals. Those simulations limited the maximum mis-
matches of both the coherent and semicoherent tem-
plate banks to ≤ 0.6 [32] and ≤ 0.5 [29]. In this paper
we reperform the same simulations with a much wider
range of maximum mismatches ≤ 75.3. The simulation
procedure, which is otherwise very similar to that used
in [29, 32], is briefly described in this section.

A total of 48 pairs of maximum semicoherent and co-
herent mismatches (µ̂max, µ̃max) are used; these are listed
in Table I. The simulations used a variety of search se-

tups, parameterized by (T̂ , T̃ , η), where η = NT̃/T̂ is the
segment duty cycle, i.e. the fraction of the total time span

T̂ which falls within a segment. The chosen parameters

are T̂ ∈ {120, 240, 360} days, T̃ ∈ {1, 3, 5, 7} days, and
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η ∈ {50%, 75%, 100%}; these are a subset of the param-
eters used in [29].

Signal parameters λs = (α, δ, f, f (s)) are generated
with uniform sky positions and spindowns f (s), and fre-
quencies f ∈ {100, 1000} Hz. The nearest semicoher-

ent template λ̂ to the signal is determined assuming a
semicoherent template bank constructed from an A∗4 lat-
tice [43] using the metric ĝ with maximum mismatch
µ̂max chosen from one of the pairs in Table I. Similarly,

in each segment the nearest coherent template λ̃` to the
semicoherent template is determined assuming a coher-
ent template bank constructed from an A∗4 lattice using
the metric g̃` with maximum mismatch µ̃max chosen from
the same pair in Table I.

Metric mismatches between the signal λs and various
templates are then calculated [44]. The total metric mis-

match between λs and the nearest λ̃` in the coherent
template banks of each segment is

µ ≡ 1

N

N∑

`=1

∆sλ̃` · g̃` ·∆sλ̃` . (6)

The semicoherent metric mismatch between λs and the
nearest λ̂ in the semicoherent template bank is

µ̂ ≡ ∆sλ̂ · ĝ ·∆sλ̂ , (7)

with ∆sλ̂ ≡ λ̂−λs. Finally, the average coherent metric

mismatch between λ̂ and the nearest λ̃` in the coherent
template banks of each segment is

〈µ̃〉 ≡ 1

N

N∑

`=1

∆̂λ̃` · g̃` · ∆̂λ̃` , (8)

with ∆̂λ̃` ≡ λ̃` − λ̂.
The metric mismatches given above are then measured

using the F-statistic [45]. Simulated gravitational-wave
data from the LIGO Livingston detector [5] are generated

at times [t0 − T̂ /2, t0 + T̂ /2], where t0 ≡ UTC 2015-01-
01 00:00:00. The data comprise no noise and a simulated
signal with random amplitude parameters A and chosen
phase parameters λs. The F-statistic is computed in

each segment at λs, the nearest λ̂ to λs, and the nearest

λ̃` to λ̂, and the total F-statistic mismatch is computed
using

µ0 ≡ 1

N

N∑

`=1

2F`(λs)− 2F`(λ̃`)
2F`(λs)− 4

, (9)

where the denominator equals the noncentrality parame-
ter ρ2

`(A,λ
s;λs). The total F-statistic mismatch is also

computed assuming no nearest-neighbor interpolation,

i.e. that λ̃` = λ̂ in every segment:

µ0
ni ≡

1

N

N∑

`=1

2F`(λs)− 2F`(λ̃`)
2F`(λs)− 4

. (10)

Coefficients

n 1 2 3 4 5

afit
n 1.4813 1.2774 0.7994 0.7016 1.0318

bfit
n 0.651 1.0356 0.97756 1.1154 0.99694

cfit
n −1.7281 −0.34311 −0.54179 −0.41982 −0.62284

dfit
n −1.3531 −0.98319 −1.0903 −0.98934 −1.0375

efit
n 0.0028833 1.3869 0.093245 0.47769 0.74859

ffit
n 0.015045 0.66447 0.31791 0.48776 0.74612

TABLE II. Coefficients of fit for Equation (11).

Zn lattice A∗
n lattice

n 〈µ〉/µmax σµ/µmax 〈µ〉/µmax σµ/µmax

1 0.33 0.3 0.33 0.3

2 0.33 0.21 0.42 0.24

3 0.33 0.17 0.47 0.22

4 0.33 0.15 0.52 0.2

5 0.33 0.13 0.55 0.18

TABLE III. Means 〈µ〉 and standard deviations σµ of the
metric mismatch distributions expected from template place-
ment using Zn and A∗

n lattices in n dimensions.

This procedure is repeated 105 times for all 3456 com-

binations of (µ̂max, µ̃max), T̂ , T̃ , η, and f . A total of
7.8× 1010 coherent F-statistic values were computed.

IV. MEAN F-STATISTIC MISMATCH

In this section, the results of the simulations described
in Section III are used to investigate the relationship be-
tween predicted metric mismatch and actual F-statistic
mismatch, in the limit of large metric mismatches.

Figure 1 plots histograms of the mismatches µ0 mea-
sured using the F-statistic [via Eqs. (9)] as a function

of the search setup parameters T̃ , T̂ , µ̃max, and µ̂max.
As µ̂max increases, the means of the µ0 histograms also
increase, as expected, but at a much slower rate. For

example, for T̃ = 1 day, T̂ = 120 days, and µ̃max = 0.1
(left-most subplot in Fig. 1a), the mean of the µ0 his-
togram for which µ̂max = 0.5 is 0.17; for µ̂max = 1.5, the
mean is 0.29; and for µ̂max = 10.9, the mean is 0.53. This
suggests that the number of semicoherent templates can
be reduced significantly (by increasing µ̂max) while limit-
ing losses in signal-to-noise ratio (as measured by µ0) to
reasonable level. By increasing µ̂max from 0.5 to 10.9, for
example, one would save a factor of (10.9/0.5)4/2 ≈ 480
in number of semicoherent templates, while restricting
the maximum signal-to-noise ratio to . 0.52, an increase
of only a factor of 0.52/0.17 ≈ 3.1.

From Fig. 1 we see that the mean µ0 also increases with
µ̃max (compare the left, middle, and right columns), and

with T̃ (compare e.g. Figs. 1a and 1b), but is largely
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FIG. 1. Histograms of F-statistic mismatch µ0 for search setups with (a) T̃ = 1 day, T̂ = 120 days, (b) T̃ = 7 days,

T̂ = 120 days, (c) T̃ = 1 day, T̂ = 360 days, and (d) T̃ = 7 days, T̂ = 360 days. The plots are for maximum coherent
metric mismatches µ̃max of 0.1 (left column), 0.3 (middle column), and 0.5 (right column). Within each plot, the maximum
semicoherent metric mismatch µ̂max of each histogram is labelled.
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FIG. 2. Mean F-statistic mismatch 〈µ0〉 as a function of (µ̂max, µ̃max), for T̂ = 240 days and (a) T̃ = 1 day, (b) T̃ = 3 days

(c) T̃ = 5 day, and (d) T̃ = 7 days. In each plot, 〈µ0〉 is plotted as a function of µ̂max at a fixed value of µ̃max (crosses), labeled
on the left side of each plot. The value µ̃max = 0.0 denotes no nearest-neighbor interpolation, i.e. µ0 = µ0

ni. For the same µ̃max,
the empirical fit to 〈µ0〉 given by Eq. (11) is also plotted (lines).

independent of T̂ (compare e.g. Figs. 1a and 1c).

Figure 2 plots the mean F-statistic mismatch 〈µ0〉
as a function of the maximum metric mismatches
(µ̂max, µ̃max), for T̂ = 240 days and the 4 values of

T̃ ∈ {1, 3, 5, 7} days. In keeping with Fig. 1, one sees
that 〈µ0〉 increases with µ̂max, but at a slower rate, being
roughly constant per decade in µ̂max. For example, with

T̃ = 1 day (Fig. 2a) and µ̃max = 0.0 (i.e. µ0 = µ0
ni), 〈µ0〉

increases from 0.035 to 0.21 as µ̂max increases from 0.1
to 0.9, i.e. at a rate of ∼ 6.5 per decade in µ̂max; 〈µ0〉
then increases to 0.52 at µ̂max = 10.9, at a slower rate of
∼ 2 per decade in µ̂max.

The rate of increase of 〈µ0〉 is slightly lower at T̃ =

1 day (Fig. 2a) than for T̃ > 1 day (Figs. 2b– 2d); conse-
quentially, the mean F-statistic as µ̂max approaches 100

is lower at T̃ = 1 day (∼ 0.7 at µ̃max = 0.0) than for

T̃ > 1 day (∼ 0.83). As µ̃max is increased, the rate of
increase of 〈µ0〉 with µ̂max decreases still further, and be-
comes essentially zero for µ̃max & 4. The behavior of 〈µ0〉
is only weakly dependent on T̂ , and for this reason T̂ is
fixed to 240 days in Fig. 2.

We find the following empirical fit to 〈µ0〉 as a function

of T̃ , T̂ , 〈µ̃〉, and 〈µ̂〉:

〈µ0〉fit
(
T̃ , T̂ , 〈µ̂〉, 〈µ̃〉

)
= 1−

∑5
n=1 exp

(
− y2

n

)
/n

∑5
n=1 exp

(
− x2

n

)
/n

, (11)

where

xn = afit
n + exp

[
bfit
n + cfit

n

T̂

year
+ dfit

n

T̃

day

]
, (12)

yn = xn + efit
n 〈µ̂〉+ ffit

n 〈µ̃〉 , (13)
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and the fitted coefficients afit
n through ffit

n are listed in
Table II. Note that Equation (11) uses as parameters the
mean semicoherent and coherent metric mismatches 〈µ̂〉
and 〈µ̃〉, instead of the maxima µ̂max and µ̃max respec-
tively. For template banks generated using lattice tem-
plate placement [22], the ratios 〈µ̂〉/µ̂max and 〈µ̃〉/µ̃max

are given by the number of parameter-space dimensions
and the type of lattice employed; values for up to n = 5
dimensions and for Zn and A∗n lattices are listed in Ta-
ble III. An empirical fit to the standard deviations σµ0

of the F-statistic mismatch, i.e. the widths of the his-
tograms plotted in Fig. 1, is given in Appendix A.

Over the 576 values of 〈µ0〉 parameterized by

(T̃ , T̂ , 〈µ̂〉, 〈µ̃〉) used for fitting, the root-mean-square rel-
ative error to 〈µ0〉fit was minimized to . 2%. Each value
of 〈µ0〉 was weighted by the standard deviation of the
means of µ0 as a function of η and f , the two simulation
parameters (see Section III) not included in the fit; these
standard deviations are typically ∼ 10−3.

The empirical fit 〈µ0〉fit is plotted [46] alongside the
fitted data 〈µ0〉 in Fig. 2. The fit is worst for large µ̃max

at T̃ = 1 day, where 〈µ0〉fit overestimates 〈µ0〉 by up to

∼ 15%, but improves as µ̃max decreases and T̃ increases.

The weak dependence of Eq. (11) on T̂ can be seen in
Eq. (12); note that |bfit|, |cfit|, and |dfit| are of order unity,

and that while T̃ would typically be greater than 1 day,

T̂ is typically of order 1 year or less.

V. F-STATISTIC MISMATCH AS FUNCTION
OF SEARCH PARAMETERS

Equation (11), derived in the previous section, gives
us a tool 〈µ0〉fit for predicting, with reasonable confi-
dence, the mean F-statistic mismatch 〈µ0〉, as a function
of the mean metric mismatches (〈µ̂〉, 〈µ̃〉), out to large
〈µ0〉 ∼ 0.9. One might also use this tool to improve the
mismatch predicted of the metric between a signal λs and

its nearest semicoherent and coherent templates (λ̂, λ̃`),
by replacing µ [Eq. (6)] with

µfit
(
T̃ , T̂ ,λs, λ̂, λ̃`

)
≡

〈µ0〉fit
(
T̃ , T̂ , µ̂

(
∆sλ̂

)
, 〈µ̃〉

(
∆̂λ̃`

))
, (14)

where µ̂ is computed from ∆sλ̂ = λ̂−λs via Eq. (7), and

〈µ̃〉 is computed from the ∆̂λ̃` = λ̃`−λ̂ via Eq. (8). Here,
the empirical fit provides the absolute scaling of the F-
statistic mismatch, while the metric provides directional
information, i.e. how the F-statistic mismatch changes

in the direction of a vector ∆sλ̂ relative to some other
vector ∆sλ̂

′
. Of course, given that Eq. (11) is fitted to

the F-statistic mismatch averaged over signal and tem-

plate parameters (λs, λ̂, λ̃`), one would expect Eq.(14)
to not necessarily to be an accurate predictor of µ0 for a

particular (λs, λ̂, λ̃`).

In this section we examine the accuracy to which
Eq. (14) models the F-statistic mismatch as a function
of the search parameters of the semicoherent supersky
metric: the sky position (n̂a, n̂b), spindown ν̂(1) and fre-
quency ν̂. The supersky metric coordinates are detailed
in [32]; briefly, (n̂a, n̂b) are components of the sky po-
sition vector n̂ in a preferred reference frame (which
approaches the equatorial and ecliptic reference frames
in the limit of short and long observation times respec-

tively), and the ν̂(s) are equal to f̂ (s) plus a sky-position-
dependent offset. The numerical simulations described

in Section V recorded the signal λs and template (λ̂, λ̃`)
parameters for each computed µ0; from these parame-
ters the mismatch µfit predicted by the metric plus the
empirical fit may be computed via Eq. (14).

Figure 3 compares µ0 and µfit, at fixed T̂ = 120 days,

T̃ = 1 day, and µ̃max = 0.3, as a function of the param-

eter offsets between λs and λ̂, namely ∆sn̂a ≡ n̂a − ns
a,

∆sn̂b ≡ n̂b−ns
b, ∆sν̂(1) ≡ ν̂(1)− [ν(1)]s, and ∆sν̂ ≡ ν̂−νs.

Figure 3a plots mismatch as functions of distinct pairs
of parameter offsets, all other parameter offsets being
approximately zero [47]. For example, the top-right
subplot shows µ0 as a function of ∆sn̂a and ∆sν̂ with
∆sn̂b ∼ ∆sν̂(1) ∼ 0. Note that the plots of µ0 (above
the diagonal) are transposed images of the correspond-
ing plots of µfit (below the diagonal).

As expected, mismatches are zero (darkest color) when
signal and template are perfectly matched, and increase
monotonically (to lighter colors) in response to any offsets
between signal and template parameters. The behavior
of the F-statistic mismatch µ0 as a function of offsets is
generally well-modeled by µfit, as shown by the similarity
of the corresponding subplots in Fig. 3a. This indicates
that µfit is a reasonable model for µ0 even out to large
µ0 ∼ 0.9. It also implies that, while the derivation of the
parameter-space metric (see Section II) loses the correct
absolute scaling of the F-statistic mismatch at large µ0,
it does retain the correct directional information.

The one exception to the above, in Fig. 3a, is the mis-
match behavior with respect to offsets in the sky posi-
tion parameter n̂a. Comparing the first row of subplots
(above the diagonal) in Fig. 3a with the first column (be-
low the diagonal), we see that µ0 increases more quickly
as a function of ∆sn̂a than does µfit. This effect is more
readily apparent in Fig. 3b, where we plot µ0 and µfit as
functions of individual parameter offsets – namely ∆sn̂a,
∆sn̂b, ∆sν̂(1), and ∆sν̂ – and where the other 3 offsets
are allowed to vary over their simulated ranges. We see
that, as a function of ∆sn̂a (left-most subplot in Fig. 3b),
µ0 (gray shaded area) increases more rapidly that µfit

(black solid line); at ∆sn̂a ∼ ±3×10−2, µ0 ∼ 0.8 whereas
µfit ∼ 0.6.

The reason for this discrepancy is likely due to numer-
ical issues in computing the supersky metric, which re-
quires the eigenvalues of the sky–sky block of a precursor

metric [32]. At T̃ ∼ 1 day, however, the precursor metric
is highly ill-conditioned [32, 35], which may lead to inac-
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FIG. 3. F-statistic mismatch as a function of offsets, between injected signals and their nearest semicoherent template, in the

sky position (n̂a, n̂b), spindown ν̂(1) and frequency ν̂ parameters of the semicoherent metric, for T̃ = 1 day, T̂ = 120 days, and
µ̃max = 0.3. (a): F-statistic mismatch as a function of pairs of parameter offsets, all other offsets being ∼ 0. Above diagonal:
F-statistic mismatch µ0, given by Eq. (9). Below diagonal: mismatch µfit predicted by the metrics (ĝ, g̃`) and improved by
the empirical fit, given by Eq. (14). (b): F-statistic mismatch as a function of individual parameter offsets, all other offsets
being allowed to vary. Gray shaded area: variation of F-statistic mismatch. Black solid line: average over other offsets of the
mismatch µfit predicted by the metrics (ĝ, g̃`) and improved by the empirical fit. Black dashed line: the same µfit multiplied
by 0.8/0.6; see the text for details.
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FIG. 4. Same as Fig. 3, but for T̃ = 3 days and T̂ = 240 days.
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FIG. 5. Same as Fig. 3, but for T̃ = 5 days and T̂ = 360 days.
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curate computation of the eigenvalues. It is likely that,
in this instance, the n̂a–n̂a component of the supersky
metric, which is proportional to the largest eigenvalue,
has been inaccurately computed. To illustrate this, we
re-plot µfit re-scaled by 0.8/0.6, and see that the re-scaled
µfit now follows µ0 closely. This indicates a systematic
error in the supersky metric as a function of n̂a, which
we surmise is most likely due to inaccurate computation
of the largest eigenvalue.

Figures 4 and 5 compare µ0 and µfit in a similar manner

to Fig. 3, but at larger T̃ and T̂ . As T̃ increases to 3 days
(Fig. 4) and 5 days (Fig. 5), the discrepancy between µ0

and µfit as a function of ∆sn̂a largely disappears; com-
pare the left-most plots in Figs. 3b, 4b, and 5b. This
is expected, since the precursor metric becomes better-

conditioned as T̃ increases, and therefore the computa-
tion of the eigenvalues becomes more reliable.

Some discrepancies between µ0 and µfit as a function
of ∆sn̂b and (∆sν̂(1),∆sν̂) are evident in Figs. 4a and 5a.
Compare the second row of subplots (above the diago-
nal), which display banded and/or cross-shaped features,
with the second column of subplots (below the diagonal),
where those features are absent. This is likely due to
assumptions made in deriving the supersky metric [32].
Briefly, the metric tries to model the orbital motion of
the Earth by a second-order Taylor expansion, which can
then be absorbed into the frequency and spindown pa-
rameters; a small component of the residual orbital mo-
tion, i.e. that component which cannot be modeled by a
Taylor expansion, is then discarded. This introduces an
error into the supersky metric which is generally small,
but is also proportional to parameter offsets; hence at
large µ0, and hence ∆sn̂b and (∆sν̂(1),∆sν̂), the effect of
this error is magnified. Nevertheless, as can be seen from
Figs. 4b and 5b, µfit generally tracks the average µ0 as a
function of individual offsets.

Finally, note the small feature µ0 in the left-most sub-
plot in Fig. 4b at ∆sn̂a ∼ +3×10−4, which does not
appear at ∆sn̂a ∼ −3×10−4; one would expect µ0 to
be insensitive to the sign of ∆sn̂a. This is likely due to
a minor issue in the implementation of the transforma-
tion from supersky (n̂a, n̂b) to physical (α, δ) coordinates,

where for very small template banks [i.e. small (T̃ , T̂ ) and
high (µ̃max, µ̂max)] neighboring templates in (n̂a, n̂b) can
end up in opposite hemispheres when mapped to (α, δ).
This is not an issue for template banks of realistic densi-
ties.

VI. DISCUSSION

The study described in this paper was motivated by
the realization that, under realistic computing cost con-
straints, a semicoherent search based on the parameter-
space metric of [29] could not be performed with maxi-
mum semicoherent mismatches within the range of valid-
ity of the metric, i.e. . 0.4. This situation was not real-
ized by previous work of the semicoherent metric [24, 27]

since those works do not accurately predict the number

of semicoherent templates once T̂ & 20 days [29]. Other
semicoherent search methods [e.g. 25] do not use an ex-
plicit metric to describe the parameter space.

The key finding of this paper is that the mean
F-statistic mismatch increases only slowly with
(µ̃max, µ̂max); see Fig. 2. As discussed in the Intro-
duction, it appears likely that an all-sky semicoherent
search based on the metrics of [29, 32] would have to
operate at a high µ̂max, in order to satisfy reasonable
computing cost constraints. The results presented here
give us some confidence that, despite a high µ̂max, the
mean F-statistic mismatch of such a search, and hence
its sensitivity, would remain competitive. A thorough
examination of the sensitivity of such a search is planned
for future work.

Note, however, that the relationship between 〈µ0〉 and
(µ̃max, µ̂max) need not be known a priori in order to
implement a semicoherent search based on [22, 29, 32].
First, a semicoherent template bank can be constructed
for any µ̂max, however large; it is only when estimating
the sensitivity of such a search that one must correctly
translate between µ̂max and 〈µ0〉. Second, the nearest
coherent template in each segment, used to compute the
summed F-statistic of Eq. (5), are determined by the
coherent metrics in each segment; preliminary search op-
timization has found that, while µ̂max may be large, µ̃max

is likely to remain small, i.e. within the range of validity
of the coherent metric.

The search setup optimization method of [36] assumes
that the relationship between 〈µ0〉 and (µ̃max, µ̂max) is
strictly proportional; see Eq. (23) of that paper. A pos-
sible extension to the method of [36] could be to allow in-
stead an arbitrary functional relationship, e.g. that given
by Eq. (11). This could potentially lead to improved
optimal search setups, since the optimization would be
aware that increasing (µ̃max, µ̂max) do not increase 〈µ0〉,
and hence degrade sensitivity, as much as previously as-
sumed.
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Appendix A: Standard deviation of F-statistic
mismatch

We also find an empirical fit to the standard deviations
σµ0 of the F-statistic mismatch. The fit is a function of

T̃ , T̂ , and the standard deviations σµ̃ and σµ̂ of the coher-
ent and semicoherent metric mismatches; ratios of these
quantities to the maxima µ̂max and µ̃max respectively are
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Coefficients

n 1 2 3

Afit
n 0.88568 2.4022 2.0377

Bfit
n −0.35794 −0.38261 0.091035

Cfit
n −0.11033 −0.01705 0.059349

Dfit
n 2.0924 2.243 2.1754

Efit
n −0.0024717 0.29952 0.019583

F fit
n 0.01496 0.091887 0.90241

Gfit
n −1.1985 −2.1845 −7.3365

Hfit
n −0.094061 −2.6435 0

TABLE IV. Coefficients of fit for Equation (A1).

listed in Table III. The empirical fit is given by

σfit
µ0 = Nfit

3∑

n=1

1

n
exp

[
Afit
n +Bfit

n

T̂

year
+ Cfit

n

T̃

day

]

× exp
[
−
(
Dfit
n + Efit

n σµ̂ + F fit
n σµ̃

)2]

×
[
1− exp

(
Gfit
n σµ̂ +Hfit

n σµ̃
)]
,

(A1)

where the fitted coefficients Nfit = 2.9101, and Afit
n

through Hfit
n are listed in Table IV. Over the 576 val-

ues of σµ0 used for fitting, the root-mean-square relative

error to σfit
µ0 was minimized to . 9%.
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