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Abstract

Future interferometric gravitational-wave detectors are aimed at a conside-
rable sensitivity increase. This will be achieved by the implementation of
high finesse, narrow bandwidth arm cavities and high-power lasers leading
to Megawatts of circulating light power. Coupled optical resonators are then
necessary to improve the sensitivity at frequencies beyond the arm cavities’
bandwidth. Additionally, the injection of squeezed states of light will be used for
shot noise reduction. However, problems will occur due to an increased ther-
mal load in the optical components, strict requirements for laser stabilization
and demanding requirements for a broadband squeezed light enhancement.

In this thesis, complex optical resonator configurations were investigated
theoretically and proof of principle experiments were conducted accombined
by extensive numerical simulations. A four-mirror cavity enhanced Michelson
interferometer with reduced laser power inside the optics was analyzed. In
a comprehensive theoretical analysis it is shown that this topology, deemed
to be promising for a long time, is not preferable for the reduction of thermal
effects at adequate sensitivity levels. Instead, in this thesis, the Detuned Twin-
Signal-Recycling topology was proposed as advanced detector. Based on the
resonance doublet of two coupled resonators, this configuration enables the
simultaneous enhancement of upper and lower signal sidebands. As a specific
characteristic, the sensitivity in the entire shot noise limited detection band
can be improved by the less demanding injection of frequency independent
squeezed light. The proposed topology was experimentally demonstrated,
and a broadband shot-noise reduction of up to 4 dB was achieved. Another
experiment aimed at the passive power noise reduction of a continuous-wave
laser beam. A Kerr-type non-linear resonator was set up that yielded a power
noise reduction of a reflected laser beam by a great factor of more than a
thousend (32dB).
Keywords: Gravitational-wave detector, optical resonators, squeezed field
injection, optical Kerr effect
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Kurzfassung

Für zukünftige Gravitationswellendetektoren ist eine beträchtliche Sensiti-
vitätssteigerung anvisiert. Dies kann erreicht werden durch die Verwendung
optischer Armresonatoren hoher Güte und Hochleistungslasern, wodurch
umlaufende Lichtleistungen im Megawattbereich erzielt werden. Gekoppelte
optische Resonatoren sind dann nötig, um die Empfindlichkeit bei Frequen-
zen oberhalb der Bandbreite der Armresonatoren zu steigern. Jedoch werden
Schwierigkeiten durch die erhöhte thermische Last in optischen Komponenten,
höhere Anforderungen an die Laserstabilisierung sowie an die Realisierung
einer breitbandigen Schrotrauschreduzierung durch die Verwendung von
gequetschtem Licht auftreten.

In dieser Arbeit wurden komplexe Konfigurationen optischer Resona-
toren theortisch untersucht und Experimente begleitet von umfangreichen
numerischen Simulationen durchgeführt. Ein Michelsoninterferometer mit
Vier-Spiegel-Resonatoren in den Armen mit reduzierter Leistung innerhalb op-
tischer Komponenten wurde untersucht. In einer umfangreichen theoretischen
Analyse wird gezeigt, dass diese Topologie, die lange Zeit als vielversprechend
erachtet wurde, nicht geeignet ist für eine Reduzierung thermischer Effekte
bei einer gleichzeitig adequaten Empfindlichkeit. Stattdessen wurde in dieser
Arbeit die Detuned Twin-Signal-Recycling Topologie als fortschrittlicher Detek-
tor vorgeschlagen. Aufgrund einer Doppelresonanz gekoppelter Resonatoren
ermöglicht diese Konfiguration die gleichzeitige Überhöhung oberer und
unterer Signalseitenbänder. Diese Besonderheit erlaubt die Verwendung von
frequenzunabhängig gequetschtem Licht für eine breitbandige Steigerung der
schrotrauschlimitierten Empfindlichkeit. Die vorgeschlagene Topologie wurde
experimentell demonstriert, und eine breitbandige Schrotrauschreduzierung
um bis zu 4 dB konnte gezeigt werden. Ein zweites Experiment zielte auf die
passive Unterdrückung des Leistungsrauschen eines Dauerstrichlasers ab. Die
Verwendung eines auf dem optischen Kerreffekt basierenden Resonators er-
laubte eine starke Reduzierung des Laserleistungsrauschens um einen großen
Faktor von mehr als 1000 (32 dB).
Stichworte: Gravitationswellendetektor, gequetschtes Licht, optischer Kerref-
fekt
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CHAPTER 1
Introduction

1.1 Detection of gravitational-waves

The existence of gravitational-waves was predicted by Albert Einstein [1] as a
direct consequence of his theory of general relativity [2]. Gravitational waves
are perturbations of space-time which are caused by accelerated massive
objects. Exemplary astrophysical sources are supernovae, coalescing binary
systems (e.g. black hole – black hole, neutron star – neutron star) and pulsars.
The direct detection of their emitted gravitational wave signals will give
elementary new information about the nature of these objects. Furthermore,
the observation of the gravitational-waves stochastic background provides a
deep insight into the early Universe.

The expected gravitational wave amplitudes which are defined as a relative
length change

h =
2δL

L
(1.1)

are in the order of 10−21. Thus, the direct detection of gravitational-waves is
one of the most challenging tasks of todays experimental physics.

The first indirect observation of gravitational-waves was accomplished by
Russel Hulse [3] and Joseph Taylor [4]. Their longtime study of the binary
pulsar system PSR 1913+16 revealed that the observed orbit decay accords
precisely to the decay predicted by energy loss due to gravitational wave
emission. For this discovery, Hulse and Taylor were awarded the Nobel price
in 1993 .

The first attempt of a direct detection was made by Joseph Weber in the
1960’s. He pioneered the use of large metal cylinders – so-called resonant bar
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2 INTRODUCTION 1.2

detectors. These cylinders have a high mechanical Q-factor corresponding to
narrowband resonance frequencies. It is expected, that gravitational-waves
excite the bars at their eigenmodes. The resulting oscillation of the bar is
detected with a transducer converting displacement into an electronic signal.
Whereas the first bar detectors were operated at room temperature, todays
resonant bar detectors are cooled down to cryogenic temperatures to suppress
the internal thermal noise. An overview of todays bar detectors is given in [5].

1.2 Interferometric gravitational-wave detectors

In contrast to the very narrowband sensitivity of resonant bar detectors, in-
terferometric gravitational-wave detectors provide a comparatively broad
detection bandwidth. The spectrum of gravitational-waves is expected to
cover a wide frequency range. A low frequency detector covering the detec-
tion band in the mHz regime, which is not accessible by earth-bound detectors
due to seismic noise, will be realized in space with the LISA detector. Within a
collaboration of the European Space Agency (ESA) and the American National
Aeronautics and Space Administration (NASA) LISA will be launched after
2018 [6].

Currently, an international network of first generation earth-bound inter-
ferometric gravitational-wave detectors is in operation covering the detection
band from 50 Hz to a few kHz. These detectors are all based on improved
Michelson interferometers with arm lengths on the kilometer scale. The Laser
interferometer Gravitational wave Observatory (LIGO) built in the USA con-
sists of three single detectors. One long-base line interferometer (L1) with an
arm length of 4 km is located at Livingston. Another two (H1 and H2) with
arm lengths of 4 km and 2 km are operated at Hanford. In Europe there are
two interferometers, the British-German GEO 600 detector with an arm length
of 600 m located close to Hannover, and the French-Italian VIRGO detector
in Cascina near Pisa with 3 km long arms. In Japan the TAMA300 detector
with an arm length of 300 m is based close to Tokio. At present these detectors
are able to detect relative length changes in the order of 10−19 representing a
sensitivity of astrophysical interest.

The principle of these interferometric detectors operated at the dark fringe
is based on the readout of a differential arm length change caused by a
gravitational-wave. The differential modulation of the interferometer arm
length produces a signal in the detection port at the gravitational-wave fre-
quency. Since the amplitude of these signals is proportional to the light power
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End mirror
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Figure 1.1 — Topologies of current gravitational-wave detectors. Left: Michelson interferome-
ter with arm cavities and power recycling (PR). Right: Dual-recycled interferom-
eter as realized in the GEO 600 detector.

circulating in the interferometers, high laser powers are one essential require-
ment to achieve the targeted sensitivity. In the current detectors circulating
powers in the order of 10 kW are realized. Optical resonators in each interfer-
ometer arm are used to resonantly enhance the power emitted by the laser
source (refer to Fig. 1.1). To maintain a considerable detection bandwidth,
the linewidth of these cavities is in the order of 100 Hz. The light reflected
at these arm resonators is recycled using the so-called power-recycling (PR)
technique [7]. Here, an additional mirror – the so-called PR mirror (PRM) –
is placed in the interferometers input. The light leaving the interferometer at
its input port is back reflected and thus resonantly enhanced in the PR cavity.
Accordingly, the power build-up in the arm cavities is further increased.

The GEO 600 detector is realized as a dual-recycled Michelson interferome-
ter combining PR and the advanced signal-recycling (SR) technique [8]. Similar
to the PR technique, an additional mirror – the SR mirror (SRM) – is placed
in the detection port (refer to Fig. 1.1). Thus, the signal fields leaving the
interferometer towards the detection port are resonantly enhanced leading
to an improved sensitivity at the resonance frequency of the SR cavity. Here,
two operating modes are possible. A broadband mode can be realized with a
SR cavity tuned to the carrier frequency. In this case, both, upper and lower
signal sideband fields produced by a phase modulation are recycled within
the linewidth of the SR cavity. The detuned (narrowband) mode turns the
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interferometer into a resonant detector. Here, only the upper or the lower side-
band field is recycled whereas the counterpart is suppressed. Nevertheless,
in this mode high peak sensitivities at arbitrary frequencies beyond the SR
cavities linewidth are achievable.

1.2.1 Noise sources in interferometric gravitational-wave detectors

1.2.1.1 Seismic noise

At frequencies below approximately 40 Hz, the sensitivity of the earth-bound
interferometers is limited by the coupling of seismic noise to the interferome-
ters optics (test-masses) positions. Using multi-stage pendulum suspensions
for the mirrors in combination with active control systems, at higher frequen-
cies this coupling can be reduced. Each pendulum stage suppresses the noise
transfer with 1/ f 2 at frequencies above the pendulum resonance frequency.
Additionally, the location of the detectors are chosen under consideration of
the local seismic activity. The future gravitational-wave detector LCGT [9]
will be operated underground leading to an overall seismic noise reduction as
the coupling of seismic surface waves to the test-mass motion is suppressed.

1.2.1.2 Thermal noise

The limiting noise source in the mid-frequency detection band is the thermally
driven motion of the test-masses [10]. There are three dominant thermal noise
sources coupling to the interferometers signal: the coating thermal noise [11],
the substrate thermal noise [12] and the thermorefrative noise [13]. The first
two result in a displacement of the mirrors reflecting surfaces. The latter one
causes fluctuations of the refraction index of the optics substrates and thus
phase fluctuations of the transmitted fields. All three mechanisms cause a
phase modulation of the light competing with potential signals induced by
gravitational-waves. There are several possibilities to minimize the impact
of thermal noise. First, in test-masses made of substrate materials with high
mechanical Q-factors the thermal energy is stored in narrowband, high ampli-
tude vibration eigenmodes. By a proper design the corresponding resonance
frequencies can be shifted aside of the interferometers detection band. By
cooling the test-masses down to cryogenic temperatures a further reduction
of the thermal noise can be achieved. At present, the implementation issues
are investigated within the Japanese LCGT project [9]. Furthermore, as the
coating thermal noise is the limiting factor in the mid-frequency band, coating
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free mirrors based on optical gratings are investigated for the application in
gravitational-wave detectors [14].

1.2.1.3 Quantum noise

Besides the classical noise sources described above, the detector sensitivity is
ultimately limited by photon quantum noise, at high frequencies by shot noise
and at low frequencies by radiation pressure noise.

Considering a classical Michelson interferomter, the shot noise contributes
to the interferometers output according to

hSN(Ω) =
1
L

√
h̄cλ

πPcirc
. (1.2)

Here L is the interferometer arm length, λ the laser wavelength and Pcirc
the circulating light power. This equation demonstrates, that the shot noise
limited sensitivity can be improved by increasing both the circulating power
and the arm length. Note, that in the case of arm cavities or SR, the shot
noise limited sensitivity (given as noise to signal ratio) is not white due to the
frequency dependent transfer function of these detectors.

Whereas an increased circulating power improves the shot noise limited
sensitivity the radiation pressure noise originated from photon number (am-
plitude) fluctuations of the light field gets enhanced according to [15]

hRP(Ω) =
1

2mΩ2L

√
8πh̄Pcirc

cλ
. (1.3)

As this noise source falls with 1/Ω2 it is most significant at low frequencies.
A reduction of the radiation pressure for given circulating powers can be
achieved by using heavy interferometer test masses. Although in future
gravitational-wave detectors like Advanced LIGO [16] the test masses will
have an weight of about 50 kg, radiation pressure noise is expected to limit
the sensitivity at low frequencies.

1.3 The next generation of interferometric
gravitational-wave detectors

1.3.1 Realization of high circulating powers

In the next generation of interferometric gravitational-wave detectors the shot
noise limited sensitivity will be enhanced by a factor of about 10 by increasing
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the circulating laser power. Using high-power lasers together with high-
finesse arm cavities and PR, the circulating powers will reach the Megawatt
regime. The power in the PR cavity including the interferometer beam splitter
and the substrate of the arm-cavity coupling mirrors will be in the order of
a few kW. Here the maximum allowable power is limited by the non-zero
absorption of the used optics. The inevitable heating of the optics will pro-
duce thermal lensing [17, 18] and thermal expansions of the optics surfaces.
These effects lead to phase front distortions which result in a poor interference
quality at the interferometer beam splitter. Therefore higher optical powers in
higher order modes are leaving the interferometer towards the detection port
resulting in an increased shot noise. Accordingly, methods for active thermal
compensation [19, 20, 21, 22] and alternative substrate materials such as sap-
phire were investigated [23]. As well, alternative interferometer topologies
such as all-reflective interferometer topologies [24] came into consideration.

1.3.2 High power laser noise reduction

For the next generation of gravitational-wave detectors the use of high power
lasers with an output power of up to 200 W is aimed. The increased laser
power inside the interferometers results in an increased radiation pressure on
the suspended test-masses. Accordingly, fluctuations in the laser power lead
to a fluctuation of the mirrors positions therefore causing additional noise in
the interferometers signal. Passive noise filtering by the transmission through
optical resonators efficiently reduces the power noise, but only at frequencies
above the resonator linewidth. Hence, for the stabilization at low frequencies
active control schemes are required. Novel high-power photodetectors [25]
and detection schemes [26] were developed for error signal generation by
sensing the power fluctuations. Although the achieved stability is close to the
requirements, at low frequencies they are limited by the photodetectors inter-
nal noise. Within this context, the optical Kerr effect came into consideration
for passive filtering. From several theoretical investigations [27, 28, 29, 30]
it can be deduced that a Kerr non-linear resonator can be used to efficiently
reduce the noise in the laser fields amplitude quadrature. The noise reduction
can be achieved within the linewidth of these resonators and does not require
high-power photodetectors. Thus, Kerr non-linear resonators represent a
promising alternative to the methods used so far.
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Figure 1.2 — Left: Illustration of the RSE topology. The extraction cavity is built by the mir-
ror MRSE and the arm cavities coupling mirrors. This cavity has a frequency
dependent reflection which is lower than that of the coupling mirrors. Accord-
ingly, for signal sidebands resonating in the RSE cavity the effective arm cavities
linewidth is increased. Right: Shot noise limited sensitivities of the Advanced
LIGO optical configuration [16] achieved with RSE optimized for 300 Hz and
tuned (broadband) RSE. In comparison the sensitivity without RSE are shown.
For visualization purposes the effect of radiation pressure noise was not consid-
ered in these cases.

1.3.3 The RSE topology

As high-finesse arm cavities will be used to achieve the required power build-
up, the detection bandwidth would be limited by the cavities linewidth. To
broaden the effective linewidth for signal sidebands, the Resonant-Sideband-
Extraction technique (RSE) [31] will be realized in future detectors. Similar
to the SR technique, an additional mirror is placed in the detection port.
Compared with the arm-cavity coupling mirrors, the RSE cavity has a re-
duced effective reflectivity around its resonance. Accordingly, sidebands at
frequencies above the arm-cavities linewidth can be extracted if the resonance
frequency of the RSE cavity is chosen properly. Figure 1.2 illustrates the RSE
topology and compares the shot noise limited sensitivities achieved with and
without RSE.

1.3.4 Injection of squeezed states of light

The improvement of the quantum noise limit sensitivities of gravitational-
wave detectors by using squeezed states of light was first proposed by Caves [32].
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He showed, that the injection of a broadband squeezed field into the inter-
ferometers detection port can be used either to relax the high-power require-
ments or to further improve the sensitivity for a given circulating power.
Recently, squeezed fields covering the entire detection band of earth bound
gravitational-wave detectors were demonstrated [33]. Here a squeezing level
of about 6.5 dB was achieved. Moreover, in the MHz regime impressive
squeezing values of 10 dB could be realized [34]. Based on these results, a
squeezed light source is currently developed for the application at GEO 600
in the very near future. The shot noise reduction of a suspended interfer-
ometer by squeezed field injection was already demonstrated at the Caltech
40 m-prototype [35].

Compared to the vacuum state, a squeezed state yields a reduced uncer-
tainty in one of the field quadrature – the squeezed quadrature. In the orthogonal
quadrature – the anti-squeezed quadrature – the uncertainty is increased by the
same amount. Accordingly, the reduction of quantum noise can be achieved
by replacing the vacuum state that enters the interferometer through the detec-
tion port by a squeezed state. Considering a simple Michelson interferometer,
the shot noise level can be reduced by injection of a state squeezed in the phase
quadrature. Unfortunately, the increased noise in the anti-squeezed amplitude
quadrature enhances the radiation pressure noise by the same amount. It was
revealed by Unruh [36] and others [37, 27, 38] that the quantum noise can
be reduced in the entire detection band by a squeezed state with a frequency
dependent squeezed quadrature. Based on these results, the use of so-called
filter cavities was proposed by Kimble et al. [39]. By reflecting the squeezed
field at these cavities, the squeezed quadrature can be rotated optimally in a
frequency dependent manner.

1.4 Structure of the thesis

Within the framework of this thesis new interferometer topologies based on
coupled optical resonators were investigated theoretically and experimentally.
Motivated by the problem of thermal lensing in future gravitational-wave
detectors, the four-mirror cavity enhanced Michelson interferometer presented
in Chapter 3 was analyzed as a possible alternative to the RSE topology.
This topology consists of three linearly coupled optical resonators in each
interferometer arm. Since the analytical expressions of the shot-noise limited
sensitivities depend on 11 free parameters, applicable configurations are not
obvious. To allow a systematic analysis a detailed investigation of coupled
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resonators was necessary. This required analysis is presented in Chapter 2.
In Chapter 4 a novel interferometer technique is proposed for the use as

squeezed light enhanced gravitational-wave detector. This topology termed
Detuned Twin-Signal-Recycling (TSR) efficiently exploit the resonance doublet
of a linearly coupled three-mirror cavity at a particular operating point. As a
specific characteristic the sensitivity in the entire shot noise limited detection
band can be improved by the injection of frequency independent squeezing. A de-
tailed comparison with the GEO 600 topology for technical design parameters
is presented. It will be shown, that TSR is favorable compared to single side-
band recycling techniques like signal recycling as it provides an broadband
improved sensitivity. Furthermore, the possible shaping of the sensitivity
curve with respect to an exemplary target frequency will be demonstrated.
In the final part of this Chapter possible parameters for an application in the
future GEO-HF detector [40] are reviewed. As well, the improvement from
a conversion of RSE to Twin-RSE by an elongation of the extraction cavity is
exemplary demonstrated for the optical configuration of the Advanced LIGO
detector.

The first experimental realization of a table-top squeezing enhanced TSR
interferometer is presented in Chapter 5. Accompanied by extensive numeri-
cal simulations an upgrade of an existing table-top dual-recycled Michelson
interferometer [41] was possible. A broadband reduction of the TSR inter-
ferometers shot noise of up to 4 dB was achieved whereby the experimental
results were in good agreement with numerical simulations.

In Chapter 6 the experimental investigation of a Kerr non-linear resonator
is reported. In this experiment the cascaded Kerr-effect [42] was exploited
for passive laser power noise reduction. Several measurement results are
presented demonstrating together with numerical simulations the presence
of a strong effective third-order non-linearity. It is shown that the power
noise of a 750 mW continuous-wave laser beam can be reduced by means of a
Kerr non-linear resonator. A maximum reduction of 32 dB was achieved at a
frequency of about 1 MHz corresponding to about one fifth of the resonators
linewidth. Finally, a tomographic analysis including the reconstruction of the
Wigner function of the manipulated noise distribution is presented.
In Chapter 7 a summary and an outlook are given.

In the Appendix source codes used for numerical simulations are provided.





CHAPTER 2
Optical resonators

In this thesis Fabry-Pérot resonators play an essential roll. Especially coupled
Fabry-Pérot resonators yield a variety of possible applications in interferomet-
ric gravitational wave detectors. Hence, in Section 2.1 the simplest resonator
consisting of only two mirrors is described in detail. The analytical expres-
sions for the light fields and the frequency response (transfer function) are
derived. In Section 2.2 the results are transferred to the case of linearly coupled
resonators .

2.1 Analytical description of a two-mirror cavity

Generally, a Fabry-Pérot resonator is built by at least two, spatially separated
mirrors (or reflecting surfaces in the case of an etalon) which are oriented
such that the light propagates on one path between these mirrors. This can be
realized as a linear resonator in which the reflecting surfaces are orientated
orthogonal to the light path. In this Chapter the description is constricted to
the case of linear Fabry-Pérot resonators consisting of two mirrors (denoted as
two-mirror cavity in the following) . The obtained expressions for the carrier
fields and transfer functions can be easily adapted to the case of so-called ring
resonators.
To derive the analytic description of a two-mirror cavity, several assumptions
are made for simplicity. First, it is assumed that the incident light matches
perfectly the eigenmode defined by the resonator [43]. Second, it is assumed
that the resonator is in equilibrium whereby effects of the resonator’s dynamic
can be neglected. Third, the resonator is assumed to be optical loss-free. Af-
terwards the gained analytical expressions are transferred to lossy resonators.

11
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Figure 2.1 — Illustration of the labeling used throughout this Section for the quantities at a two-
mirror cavity. L: macroscopic resonator length, Φ: microscopic resonator length
(referred to as tuning of the resonator), Mi: Mirror, ρi: amplitude reflectance,
τi: amplitude transmittance, aj fields in forward propagation and bj field in
backward propagation.

Additionally, the dynamics of a resonator will be discussed. Here, the ringing
effect [44] is considered occurring at a resonator crossing its resonance within
a short time .

2.1.1 Carrier fields

In this Section the expressions describing the resonance feature of a light
field with the angular frequency ω0 = 2π/λ · c inside a two-mirror cavity
are derived. In the following this light field will be called carrier based on
the sideband picture used for describing the modulation of light fields. An
illustration of the classical sideband picture can be found in [45].

Figure 2.1 shows the labeling of the used quantities. Here aj and a′j denotes
the fields in forward propagation and bj and b′j those in backward propagation.
The macroscopic length L separating the cavity mirrors Mi is assumed to be an
integer multiple of the carrier light’s wavelength λ. Accordingly, the resonance
of the two-mirror cavity needs to be determined by a tuning Φ = ΩL/c. Here
the frequency Ω is added to the carrier frequency ω0. Note, that ω0L/c
corresponds to the tuning Φ0 = N · 2π.
To describe the coupling of the four light fields at a mirror M the matrix

M =
(

ρ iτ
iτ ρ

)
(2.1)

is used. Considering a single light field (in) impinging on a mirror M, the
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resulting fields in reflection (refl) and transmission (trans) of this mirror can
be obtained by solving the equation(

refl
trans

)
=

(
ρ iτ
iτ ρ

) (
in
0

)
. (2.2)

One obtains

refl = ρ · in and (2.3)
trans = iτ · in . (2.4)

In this formalism the transmitted field gains a phase shift of i = exp(iπ/2)
whereas the reflected field has no additional phase shift. Since it was assumed
that the two-mirror cavity is in equilibrium, the light fields at the two-mirror
cavity are given by the self-consistent equations (refer to Fig. 2.1)

a′1 = iτ1a1 + ρ1b1 (2.5)
b1 = a′1ρ2e2iΦ (2.6)
b′1 = iτ1b1 + ρ1a1 . (2.7)

The phase factor e2iΦ in Eq. (2.6) accounts for the light’s phase delay occurring
while traveling twice the geometric cavity length L + λΦ/(2π). Inserting
Eq. (2.6) into Eq. (2.5) leads to the expression for the enhancement of the
carrier field inside of the resonator

CF = a′1 =
iτ1

1− ρ1ρ2e2iΦ · a1 . (2.8)

From this equation the carrier field τ2MC transmitted through the two-mirror
cavity can be derived to

τ2MC = iτ2 · a′1eiΦ = − τ1τ2eiΦ

1− ρ1ρ2e2iΦ · a1 . (2.9)

Inserting Eq. (2.8) into Eq. (2.6) leads together with Eq. (2.7) to the carrier field
ρ2MC in reflection of the two-mirror cavity

ρ2MC = b′1 =
−τ2

1 ρ2e2iΦ

1− ρ1ρ2e2iΦ · a1 + ρ1 · a1

=
−τ2

1 ρ2e2iΦ

1− ρ1ρ2e2iΦ · a1 +
ρ1

(
1− ρ1ρ2e2iΦ)

1− ρ1ρ2e2iΦ · a1

=
ρ1 −

(
τ2

1 + ρ2
1

)
ρ2e2iΦ

1− ρ1ρ2e2iΦ · a1 . (2.10)
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Since the two-mirror cavity is assumed to be loss-free, τ2
1 + ρ2

1 = 1 is valid
and Eq. (2.10) can be simplified to

ρ2MC =
ρ1 − ρ2e2iΦ

1− ρ1ρ2e2iΦ · a1 . (2.11)

2.1.2 Characteristic quantities

The expressions for the reflectance Eq. (2.11), the internal field Eq. (2.8) and
the transmittance Eq. (2.9) of a two-mirror cavity have the common factor

d(Φ) =
1

1− ρ1ρ2e2iΦ (2.12)

which describes the periodic resonance condition of the resonator. Its squared
absolute value

D(Φ) = |d(Φ)|2 =
1

1 + ρ2
1ρ2

2 − 2ρ1ρ2 cos 2Φ
(2.13)

becomes maximum if Φ = 0 mod(π). Thus, the resonance frequencies are
determined by the relation

2
(ω0 + ∆Ωres j) L

c
= 2π j . (2.14)

The so-called free spectral range (FSR) of a two-mirror cavity is defined as the
distance between two sequent resonances leading to

FSR = ∆Ωres = Ωres
j+1 −Ωres

j =
c

2L
, (2.15)

where Φ0 = ω0L/c = N · 2π was used.
Furthermore, from Eq. (2.13) the full width at half maximum (FWHM) can

be derived. With
Dmax =

1

(1− ρ1ρ2)
2 for Φ = 0 (2.16)

one has to solve the equation

1
2

Dmax = D(ΦHM) (2.17)

leading to

ΦHM = ±1
2

arccos
(

1− (1− ρ1ρ2)2

2ρ1ρ2

)
. (2.18)



2.1 ANALYTICAL DESCRIPTION OF A TWO-MIRROR CAVITY 15

 0

 0.25

 0.5

 0.75

 1

-1 -0.5  0  0.5  1

-1 -0.5  0  0.5  1

P
ow

er
 tr

an
sm

itt
an

ce

Tuning Φ [π]

Frequency [FSR]

Figure 2.2 — The figure shows the power transmittance of a two-mirror cavity while it is tuned
over two free spectral ranges (FSRs).

With ΦHM the full width at half maximum can be expressed in Fourier fre-
quencies f = Ω/2π according to

FWHM =
2 ·ΦHM · c

2πL
. (2.19)

The third characteristic quantity of a Fabry-Pérot resonator is the so-called
finesse which is defined as

F =
FSR

FWHM
. (2.20)

This definition resembles the so-called Q-factor of mechanical and electrical
LC-oscillators, respectively.

2.1.3 Description of a lossy two-mirror cavity

If optical losses are considered as well, all equations derived in the previous
sections can simply be adapted. If one accounts for losses of the mirrors
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themselves, the relations

ρ2
1 + τ2

1 + A2
1 = 1 and (2.21)

ρ2
2 + τ2

2 + A2
2 = 1 (2.22)

are valid. The attenuation of the light field occurring while propagating
between the cavity mirrors is described as

Ap =
√

1− l2
p . (2.23)

Here lp is the amplitude attenuation per half round trip. Thus, by replacing
the term ρ2e2iΦ describing the round trip in the loss-free case by ρ2A2

pe2iΦ

the light fields ρ2MC in reflection, τ2MC in transmission and the carrier field
enhancement CF inside of the two-mirror cavity can be written as

ρ2MC =
ρ1 −

(
ρ2

1 + τ2
1

)
ρ2A2

pe2iΦ

1− ρ1ρ2A2
pe2iΦ · a1 , (2.24)

CF =
iτ1

1− ρ1ρ2A2
pe2iΦ · a1 and (2.25)

τ2MC =
−τ1τ2ApeiΦ

1− ρ1ρ2A2
pe2iΦ · a1 . (2.26)

The FWHM and the finesse F can be calculated by replacing ρ2 by ρ2A2
p

according to the derivation of Eq. (2.19) and Eq. (2.20), respectively.
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mirror cavity with a fixed round-trip loss (here given by the transmittance T2 = τ2

2
of the end-mirror) but different couplings determined by T1 = τ2

1 .

2.1.4 Coupling to a two-mirror cavity

For a given reflectivity ρ2 of the commonly called end-mirror M2 (refer to
Fig. 2.1) the power build-up in the two-mirror cavity becomes maximum if
the transmittance τ1 of mirror M1 (commonly called coupling mirror) matches
the light fields attenuation (loss) per round trip according to

τ1 = A2
pτ2 . (2.27)

In this so called impedance-matched case the power reflectance of a two-
mirror cavity becomes zero on resonance. Either increasing or decreasing the
transmittance τ1 leads to a power reflectance of the cavity greater than zero
and a lower build-up of the intra cavity field. This behavior is shown in Fig. 2.4
assuming Ap = 0. One distinguishes between the so-called over-coupled case
where τ1 is greater than the round-trip loss according to

τ1 > A2
pτ2 (2.28)

and the so-called under-coupled case with

τ1 < A2
pτ2 . (2.29)

To demonstrate the difference between these three cases, it is useful to
utilize the phasor diagram of the light field reflected from the two-mirror
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cavity. For simplicity Ap was set to zero so that the round-trip loss of the
cavity is given by the transmittance of the end-mirror. Furthermore, rewriting
the expression for the reflected field given in Eq. (2.25) as

ρ2MC = ρ1 − ρ2
τ2

1 A2
pe2iΦ

1− ρ1ρ2A2
pe2iΦ = ρ1 + cout . (2.30)

allows to distinguish between the part of the field directly reflected from the
coupling mirror M1 (first term in Eq. (2.30)) and the out-coupling cout of the
internal light field (second term). Here the input field a1 was set to unity.
Whereas as the first term is constant, the second one depends on the tuning
Φ of the resonator. It should be mentioned that this term can also be derived
from the geometric series

s = −τ2
1 ρ2A2

pe2iΦ ·
∞

∑
n=0

ρn
1 ρn

2 A2n
p e2inφ (2.31)

which illustrates the build-up of the internal carrier field until it reaches an
equilibrium.

In Figures 2.5- 2.7 the reflectance of a two-mirror cavity is illustrated for
two different tunings (red and blue phasors). The left circle of each figure
corresponds to the second term (cout) of Eq. (2.30) represented by a rotating
phasor depending on the cavity tuning Φ. The right circle of each figure
describes the cavity reflectance given by the sum of cout and the black phasor
that represents the direct reflected part which is proportional to ρ1. The
red colored phasors show the fields for a two-mirror cavity tuned close to
resonance. The gained phase shift per round-trip is close to zero, which is
illustrated with the arrow sequence (light-red) corresponding to Eq. (2.31).
These phasors add up to the red phasor pointing on the circle representing the
field coupled out of the resonator if the internal field has reached equilibrium.
The sum of this phasor and the black phasor add up to the reflectance of the
two-mirror cavity illustrated with the dark-red phasor. In the same manner,
the blue phasors represents the fields for an arbitrary cavity tuning. One
can deduce from these phasor diagrams that on resonance the field coupled
out of the resonator is phase-shifted by π (180◦) against the direct reflected
field. Thus, on resonance, these two parts interfere destructively clarifying
the minimum reflectance of a tuned two-mirror cavity. On the other hand, on
anti-resonance both phasors point in the same direction leading to maximum
reflectance.
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Figure 2.5 — Phasor diagram of the light field reflected by an over-coupled cavity.

In Fig. 2.5 the phasor diagram of an over-coupled cavity is shown. At
resonance the phasor representing the field cout is longer than the fixed one
corresponding to the direct reflection at M1. Thus, the sum of these phasors
representing the cavity reflection points in opposite direction of the fixed one.
That means that on resonance the reflected field has a phase shift of π or 180◦,
respectively. In contrast to this, in the case of an under-coupled cavity (see
Fig. 2.6) the rotating phasor is smaller than the fixed one for all cavity tunings.
Thus, the phasor representing the reflection of the resonant cavity points in the
same direction as the fixed phasor. Here, the phase-shift of the field reflected
by the cavity is zero. Note, that the length of the phasors describing the cavity
reflection is equal in both cases, because the exemplary chosen values for the
reflectance of the coupling- and end-mirror were simply inverted for the two
cases.

Fig. 2.7 shows the phasor diagram of an impedance-matched cavity. Here
the phasor describing the field coupled out of the cavity matches exactly
the length of the fixed one. Consequently, the reflectance of an impedance-
matched cavity tuned to resonance is zero. Since there is no field reflected,
the phase is not defined. Considering the dark-red phasor shown in Fig. 2.7 it
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Figure 2.6 — Phasor diagram of the light field reflected by an under-coupled cavity.

Figure 2.7 — Phasor diagram of the light field reflected by an impedance-matched cavity.
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Figure 2.8 — Power reflectance of an a) over-coupled, b) under-coupled and c) impedance-
matched cavity. The power reflectance is R1 = 0.8 for the coupling-mirror and
R2 = 0.9 for the end-mirror in the over-coupled case. For the under-coupled
cavity these reflectivities were simply inverted. In the case of the impedance-
matched cavity the power reflectance of both mirrors is R =

√
0.8 · 0.9 leading to

the same bandwidth for all three cases. Also the phase-shifts are shown for the d)
over-coupled , e) impedance-matched and f) under-coupled case.

becomes clear, that the phase of the field reflected at an impedance-matched
cavity shows a real phase jump (from π/2 (90◦) to −π/2 (−90◦) or vice versa)
when crossing the resonance.

To demonstrate the difference of the three cases again – especially with
respect to the phase – Fig. 2.8 shows the cavity reflectance in dependence on
the tuning Φ.

2.1.5 Resonator dynamics

For the previous description of a static two-mirror cavity the intra cavity
field was assumed to be in equilibrium. That means, that the discussed
dependencies of the resonator tuning Φ are only valid in the static case. In this
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Section the light fields of a two-mirror cavity with a time dependent tuning
Φ(t) will be discussed. If the tuning is changed such that the resonance is
crossed within a short time in the order of the cavities’ storage time

ts =
L

c(1− ρ1ρ2)
, (2.32)

the ringing effect occurs [44]. It was shown by Matone et al. [46] that the
characteristics of the ringing effect allows an evaluation of a resonator’s
finesse and expansion rate on the basis of a fit of numerical simulations to
the measured data. Within the experimental investigations of a Kerr non-
linear resonator the presence of an effective third order non-linearity was
demonstrated by hysteresis measurements as described in Chapter 6. Here,
the resonance of the Kerr non-linear resonator needed to be crossed in a
very short time to reduce the influence of thermal effects. Accordingly, the
resonator dynamics needs to be considered for an interpretation of these
measurements.

In section 2.1.4 the resonator light fields were explained inter alia by the
aid of phasor diagrams. The build-up of the internal resonator field was
illustrated using the geometric series (Eq. 2.31). Now the light fields are
considered for a certain constant expansion rate ν of the cavity. The length of
the cavity at the time t is then given by

L(t) = L(0) + νt , (2.33)

which corresponds to the time dependent tuning

Φ(t) = Φ(0) +
2π

λ
νt . (2.34)

Thus, using the geometric series again the internal field at a time n · trt can
be written as

CF(n · trt) = iτ1a1(0)
n

∑
k=0

(ρ2ρ1)n exp

[
2i

k−1

∑
l=0

Φn−1−k

]
(2.35)

with the resonators round-trip time trt = 2L/c and

Φn = Φ(0) +
2π

λ
· ν · n · trt . (2.36)

Unfortunately, the internal circulating power |CF(t)|2 can not be calculated an-
alytically with Eq. (2.35). But when starting the expansion of a static resonator
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Figure 2.9 — The figure shows the ringing effect of a two-mirror cavity. Top: Transmitted
power. Bottom: Reflected power. With increasing expansion rates ν the maximum
transmission decreases (the minimum reflection increases, respectively) and is
shifted towards stronger detunings Φ(t). Also the oscillatory behavior becomes
more considerable at high expansion rates. It is interesting to note, that for some
tunings Φ(t) the reflected power is higher than the incident power.

(whose internal field is in equilibrium) at the time t = −trt and assuming that
the effect of the length change of the resonator can be neglected within the
round-trip time trt = 2L/c, the internal field after each time step dt = trt can
be written as

CF(n · dt) = iτ1a1 + ρ2ρ1e2iφ((n−1)·dt) × CF ((n− 1)dt) with n > 0 . (2.37)

Based on this equation a numerical evaluation of the evolving field is possible.
Fig. 2.9 shows the power transmittance and reflectance of a resonator with a
finesse of approximately 10500 for three different expansion rates ν = 5λ/s,
ν = 15λ/s and ν = 25λ/s. These three cases are shown in comparison to
the static Airy peak. One can observe, that with a rising expansion rate ν the
maximum of the transmission decreases. This phenomenon can be explained
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Figure 2.10 — Transmission of a static two-mirror cavity during the build-up time for the
tuned (Φ = 0◦) and detuned (Φ = 0.08◦) case, respectively. The internal field
evolves until it tends to converge after approximately 25000 round-trips. At
the time t = 30000 · trt the input field is switched off. In the tuned case no
ringing occurs within the build-up time whereas the detuned case shows a clear
oscillation. After the input field is switched off, both cases show the pure decay
of the internal field. The grey curve shows the real part of the phasing e2inΦ for
the detuned case to illustrate the origin of the ringing-effect (see text).

by considering the storage time (build-up time) of a two-mirror cavity. At
high expansion rates ν the resonance of the resonator is crossed in a very short
time in the order of the storage time. Accordingly, the internal build-up does
not reach the value expected from the static resonator. Also the origin of the
oscillatory behavior in the transmitted and reflected fields can be related to
the fact, that at high expansion rates the fields do not reach an equilibrium at
a certain tuning Φ(t). To comprehend this behavior it is convenient to consult
the time evolution of the internal resonator field of the considered two-mirror
cavity in the static case and the corresponding phasor diagram (as already
shown in Figs. 2.5- 2.7 for a low-finesse cavity).
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Figure 2.11 — Phasor diagram of the field build-up for various static tunings Φ of the resonator.
The inset shows a close-up view for Φ = 0.08◦ to emphasize the spiral form
described by the phasors.

When looking at the evolving power transmission shown in Fig. 2.10 one
can observe that in the tuned case no ringing occurs. From the corresponding
phasor diagram shown in Fig. 2.11 one can deduce that for the tuned resonator
the phasors add up constructively. The accumulated phase shift is zero within
the build-up time. In contrast to this in the detuned case a phase factor of e2iΦ

per round-trip is accumulated. Hence, the time evolution of the phasors shows
an inspiral behavior until the equilibrium is reached. With greater detunings
Φ the number of cycles increases (refer to the inset of Fig. 2.11). Thus, at
some times these phasors point in the direction of the phasor describing
the direct reflection (black phasor in Fig. 2.11) and at other times they point
in the opposite direction. For illustration in Fig. 2.10 the real part of the
accumulated phase factor e2inΦ at a certain time t is shown. In fact, the
oscillation of the time evolving transmitted power and the term <(e2inΦ)
shows the same period. The period of this oscillation can be deduced to
T = π/Φ · trt. In this time the phase of the internal field gains a factor of



26 OPTICAL RESONATORS 2.1

π leading to constructive or destructive interference, respectively, clarifying
the oscillation in the transmitted as well as in the reflected power. Also the
fact, that at some times the reflected power is greater than the input power
can be understood by consulting the phasor diagram. At some times the
phasor describing the field coupled out of the cavity lies outside of the circle
describing the intra-cavity fields when the equilibrium is reached (refer to
Sec. 2.1.4). Accordingly, at these times the sum of the direct reflection and the
leakage of the internal field is greater than one.

Now, the case of a dynamic resonator is considered again taking the above
findings into account. If the time needed for crossing the resonance is in the
order of the build-up time, the situation is similar to that shown for a certain
fixed tuning in Fig. 2.10. Additionally, since the tuning changes with the time,
the period of the ringing – which were found to be reciprocal proportional to
the tuning in the static case - shows a time dependence. As the tuning Φ(t)
increases with time it becomes clear that the period of the ringing decreases
correspondingly (refer to Fig. 2.9).

2.1.6 Transfer function

In this Section the analytical expressions describing the transfer function of
a two-mirror cavity are derived. For an exemplary set of parameters the
properties of the transfer function is analyzed for the tuned and detuned case,
respectively. In Section 2.1.1 the carrier fields in a two-mirror cavity were
described using the tuning Φ = ΩL/c. If one wants to consider the frequency
dependent transfer function of a two-mirror cavity set to a certain tuning Φ
(related to the carrier frequency) one has to replace

Φ by Φ +
ΩL

c
(2.38)

in Eqs. (2.8), (2.9) and (2.11). Figure 2.12 a) and b) show the transmittance
of a carrier-tuned two-mirror cavity for light frequencies counted as offset
from the carrier frequency ω0 = 2π f0. Here the transfer function is symmetric
around f0 in its amplitude and phase. In contrast to this, Fig. 2.12 c) and d)
show the transmittance of a carrier-detuned cavity. In this example the cavity
is tuned to 10 kHz. Accordingly the transfer function is not symmetric around
f0 but f = 10 kHz.

Now the transfer function for phase modulation signal sidebands gener-
ated inside the cavity due to a periodic change of the optical cavity length
(caused i.e. by a moving end-mirror or a gravitational wave) is considered. A
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Figure 2.12 — Frequency dependent power transmittance of a two-mirror cavity. The length
of the cavity was chosen to 1 km leading to a FSR of approximately 150 kHz. a)
Power transmittance |τ2MC|2 and b) phase arg (τ2MC) of the transmitted field
of the tuned cavity according to Eq. (2.9). c) Transmission and d) phase for the
detuned case.

modulation at the frequency Ω produces upper and lower sideband fields at
ω0 ±Ω. Thus, the transfer function is composed of two parts, each describing
the transfer of the lower and upper sidebands, respectively. For simplicity
the strength of this modulation and the resulting sideband amplitudes are
normalized to unity. It is assumed, that the signal fields are detected in the
reflection port (in front of the coupling mirror) of the cavity. Then, the fre-
quency dependent enhancement of upper and lower signal sidebands inside
the cavity and the transfer out of the cavity to the detection port are given by

SF±(Ω) =
iτ1ei(Φ±ΩL/c)

1− ρ1ρ2e2i(Φ±ΩL/c) . (2.39)

This expression equals Eq. (2.9) describing the transmittance τ2MC except
for the fact that the transmittance τ2 of the end-mirror does not appear in
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Figure 2.13 — Transfer function of phase modulation induced sidebands. a) Magnitude and b)
phase for the tuned case. c) Magnitude and d) phase for the detuned case. The
red curves correspond to the transfer function of upper sidebands, whereas the
blue curves correspond to the lower sidebands.

the numerator. Since the sidebands are generated inside the cavity and are
transmitted through the coupling mirror towards the detection port, only the
transmittance τ1 needs to be considered.

Fig. 2.13 shows the transfer functions SF+ for upper sidebands (red curves)
and SF− for the lower sidebands (blue lines) in the tuned and detuned case.
Note, that the exemplary sets of parameters are the same as used for Fig. 2.12.
Again, in the tuned case the transfer function is symmetric around ω0. Con-
sidering the phase of upper and lower sidebands reveals that the transfer
function SF(Ω) of phase modulation signal sidebands is maximum in the
carrier light’s phase quadrature according to

SF(Ω) = SF+(Ω) + SF∗−(−Ω) . (2.40)

In contrast to this, in the detuned case SF(Ω) is maximum in the carrier
light’s phase quadrature only at frequencies above the resonance frequency
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fres = 10 kHz. Below fres the transfer function is maximum in the amplitude
quadrature according to

SF(Ω) = i (SF+(Ω)− SF∗−(−Ω)) . (2.41)

2.2 Coupled optical resonators

Linear coupled resonators yield a variety of possible applications in interfero-
metric gravitational-wave detectors. One example is the combination of the
power recycling technique with a Michelson interferometer containing a two-
mirror cavity in each arm. Another application of linear coupled resonators
in gravitational-wave detectors is the Resonant-Sideband-Extraction topology
first proposed in [47]. Here a comprehensive description of a linear coupled
three-mirror cavity and its frequency response was already presented. How-
ever, the strategy of explaining the resonance feature and deriving analytical
expressions differs in some essential points from the explanation provided
within this thesis. Furthermore, in this Section some continuative relations
will be derived that were used for the analysis of a four-mirror cavity enhanced
Michelson interferometer and the Twin-Signal-Recycling topology.

2.2.1 Carrier field in a three-mirror cavity

In this Section the analytical expression for the carrier field with the angular
frequency ω0 in a three-mirror cavity will be derived similar to the discussion
of the two-mirror cavity in Sec. 2.1. Again, for simplicity the three-mirror
cavity is assumed to be loss-free and to be in equilibrium. The used labeling
is illustrated in Fig. 2.14.

‘ ‘ ‘

‘ ‘ ‘

first cavity second cavity

Figure 2.14 — Notation of a three-mirror cavity.



30 OPTICAL RESONATORS 2.2

It is convenient to start with the derivation of the expression describing
the carrier fields in the second cavity. Just as in the case of a single two-mirror
cavity these expressions can be obtained from solving the equations

a′2 = iτ2a2 + ρ2b2 (2.42)
b2 = a′2ρ3e2iΦ2 (2.43)
b′2 = iτ2b2 + ρ2a2 . (2.44)

Inserting Eq. (2.43) into Eq. (2.42) leads to the result for the carrier field CF2 in
the second cavity given by

CF2 (Φ1, Φ2) =
iτ2

1− ρ2ρ3e2iΦ2
· a2 . (2.45)

This expression is identical to the case of a two-mirror cavity (refer to Eq. (2.8)).
The only difference is that the input field a2 = CF1 (Φ1, Φ2) eiΦ1 is not a
constant anymore, because the internal carrier field of the first cavity also
depends on Φ2 and thus on the resonance state of the second cavity. Inserting
Eq (2.45) into Eq. (2.42) leads under consideration of Eq. (2.44) to the expression
for the field reflected at the second cavity given by

b′2 =
ρ2 − ρ3e2iΦ2

1− ρ2ρ3e2iΦ2︸ ︷︷ ︸
ρ23

·CF1 (Φ1, Φ2) eiΦ1 . (2.46)

Here the abbreviation ρ23 was introduced describing the reflection coefficient
of the second cavity for a given tuning Φ2.

In an analogous manner one can derive the expression for the internal
carrier field CF1 (Φ1, Φ2) in the first cavity by solving the equations

a′1 = iτ1a1 + ρ1b1 (2.47)
b1 = a′1ρ23e2iΦ (2.48)
b′1 = iτ1b1 + ρ1a1 . (2.49)

One obtains
CF1 (Φ1, Φ2) =

iτ1

1− ρ1ρ23e2iΦ1
· a1 . (2.50)

With the above results one can derive the field reflected by a three-mirror
cavity to

ρ3MC =
ρ1 − ρ23e2iΦ1

1− ρ1ρ23e2iΦ1
· a1 . (2.51)
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The field transmitted by a three-mirror cavity is given by iτ3 ·CF2 (Φ1, Φ2) eiΦ2

leading to

τ3MC = − τ2τ3eiΦ2

1− ρ2ρ3e2iΦ2
· CF1 (Φ1, Φ2) eiΦ1 . (2.52)

In Eq. (2.46) the abbreviation ρ23 for the reflexion coefficient of the second
cavity was introduced to maintain the appearance of a simple two-mirror
cavity in the above equations. Note, that ρ23 is a complex number depending
on the tuning Φ2. Furthermore, the input field of the second cavity is given by
the internal carrier field in the first cavity depending in turn on the state of the
second cavity. Nevertheless, writing the analytical expressions for the carrier
fields at a three-mirror cavity similar to the two-mirror cavity case offers an
easier understanding of these complex expressions.

In [47] a similar expression for the transmission of a three-mirror cavity
was derived. Certainly, the abbreviation for ρ21 describing the field in reflexion
of the first cavity (with M2 as coupling mirror and M1 as end mirror) was
used. Furthermore, the analysis was restricted to the transfer function of a RSE
topology. However, for the investigation of a four-mirror cavity presented in
Section 3 the power build-up and the transfer function of signal sidebands
generated in the first resonator needs to be considered as well. Accordingly,
for this case it is necessary to use the expression containing the field CF1.

2.2.2 Explaining the resonance feature

In this Section the resonance feature of a three-mirror cavity is explained
and visualized using the exemplary values of ρ1 =

√
0.7, ρ2 =

√
0.8 and

ρ3 =
√

0.9 for the mirrors’ amplitude reflectance factors. These parameters
were chosen almost arbitrarily and not with respect to a possible application
in a gravitational-wave detector but with respect to visualization purposes.
First, the following discussion is restricted to the determination of resonance
states of the carrier field. Its resonance is determined by the tunings Φ1 and Φ2
whereby the investigation can be performed independently of the resonator
lengths. The actual lengths are solely relevant for the characteristic of the
transfer function of a three-mirror cavity set to a certain operating point (OP)
as discussed in Section 2.2.4).

From Eqs. (2.45) and (2.50) it can be deduced, that the resonance pattern of
a three-mirror cavity is periodic in Φ1 mod(π) as well as in Φ2 mod(π). Fig-
ure 2.15 shows the enhancement of the carrier light power in the first (left) and
second cavity (right), respectively. Looking for example at the enhancement in
the first cavity, one can recognize that it behaves exactly like an ordinary two
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Figure 2.15 — The figure shows the carrier light enhancement |CF1 (Φ1, Φ2)|2 in the first cavity
(left) and the enhancement |CF2 (Φ1, Φ2)|2 in the second cavity (right) in depen-
dence of the tunings Φ1 and Φ2. The resonance patterns are shown as a surface
plot and the corresponding color coded projection on the Φ1–Φ2–plane. In the
following only the latter one will be used for the visualization of resonance
features of a three-mirror cavity.

mirror cavity if the second cavity is on anti-resonance (e.g. Φ2 = −0.5π). The
cross-section through the surface plot along the Φ1-axes (keeping Φ2 fixed)
gives the scan over one FSR of the first cavity similar to Fig. 2.3. Likewise,
for a fixed tuning Φ1 = 1.5π corresponding to the anti-resonance of the first
cavity, the cross section along the Φ2-axis shows the FSR of the second cavity.
In contrast to this, if the tunings are changed simultaneously (dΦ1 = dΦ2)
one obtains the transmission shown in Fig. 2.16 which demonstrates one key
feature of coupled optical resonators: The presence of a resonance doublet.
Already this special cases show the manifoldness of possible resonance states
of a three-mirror cavity. The resonance feature of a three-mirror cavity is ex-
ploited e.g. in the Resonant-Sideband-Extraction topology which will be realized
in the Advanced LIGO, Advanced VIRGO and the LCGT gravitational wave
detectors. Also the four-mirror cavity enhanced Michelson interferometer topology
(refer to Chapter 3) and the Twin-Signal-Recycling interferometer topology (refer
to Chapter 4) are based on the resonance doublet of linearly coupled optical
resonators.

Considering a two-mirror cavity the resonance condition is determined
by the corresponding tuning Φ. Here the enhancement of the carrier field
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Figure 2.16 — Power transmittance of a three-mirror cavity if the tunings Φ1 and Φ2 are
changed simultaneously.

inside the resonator and thus the transmission (as long as the end mirror has a
finite transmittance) are maximum. In analogy to this, the resonance condition
of the three-mirror cavity corresponds to local maxima in the transmitted
field. Remember, that the tuning Φ is a measure for the phase delay occurring
while traveling the length of the resonator given by L + λΦ/(2π), where
L is assumed to be an integer multiple of the wavelength λ. Concerning a
two-mirror cavity the incident carrier light resonates if the accumulated phase
delay per round-trip equals 0 mod(2π). In the case of the three-mirror cavity,
the phase delay per round-trip in the first resonator is composed of the part
accumulated while traveling twice the resonator length L1 + λΦ1/(2π) and
the phase shift arg [ρ23 (Φ2)] occurring at the reflexion on the second cavity.
Thus, for an arbitrarily chosen OP of the second cavity the resonance condition
of the carrier field in the first cavity can be determined according to

Φres
1 = −1

2
arg

[
ρ23

(
Φop

2

)]
. (2.53)

This equation demonstrates that on resonance the tuning Φres
1 (adjustable

e.g. by the microscopic mirror position of mirror M1) compensates the phase
shift occurring when reflecting off the second cavity. Since the tuning Φ1 is
accumulated twice per round-trip, the factor 1/2 needs to appear on the right
hand side of Eq. (2.53).
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The fact that the internal carrier field resonates in the first cavity and
becomes maximum at Φres

1 can be clarified by rewriting Eq. (2.50) according to

CF1
(
Φ1, Φop

2

)
=

iτ1

1− ρ1
∣∣ρ23

(
Φop

2

)∣∣ ei arg[ρ23(Φop
2 )]e2iΦ1

· a1 . (2.54)

Inserting Φ1 = Φres
1 leads to

CFres
1 =

iτ1

1− ρ1
∣∣ρ23

(
Φop

2

)∣∣ · a1 . (2.55)

This equation is identical to the case of a resonant two-mirror cavity (re-
fer to Eq. (2.8) for Φ = 0). Furthermore, looking at Eq. (2.52) makes clear
that for a fixed tuning Φop

2 a local maximum of the field in the first cavity
(CF1(Φres

1 , Φop
2 )) gives a local maximum in transmission of the three-mirror

cavity. Since ΦOP
2 is fixed, these local maxima are related to cross-sections of

the resonance pattern parallel to the Φ1–axis.
Consistently, for the case of a fixed tuning Φop

1 the resonance condition for
the carrier in the second cavity can be determined considering the phase shift
when reflecting off the first cavity. One obtains

Φres
2 = −1

2
arg

[
ρ21

(
Φop

1

)]
. (2.56)

Here it is important to account for the phase shift of the field that gets reflected
on the backside of the first cavity (b2 in Fig. 2.14). Accordingly, in Eq. (2.56)
the term ρ21

(
Φop

1

)
needs to appear. Since the transmission of the three-mirror

cavity is given by iτ3 · CF2 it is evident that a maximal field in the second
cavity corresponds to a maximum in transmission. These maxima determined
by Eq. (2.56) are related to cross sections of the resonance pattern parallel to
the Φ2–axis.

The above results are visualized in Fig. 2.17. The main graph shows a
color coded map of the transmission (resonance pattern). The horizontal axis
shows the tuning Φ2 of the second cavity and on the vertical axis the tuning
Φ1, respectively. It can be seen that the resonance pattern is dominated by two
resonance branches which are identified by the phase shifts in reflexion of the
first and second cavity. In the following, the lower left resonance branch is
referred to as lower resonance branch whereas the upper right is referred to as
upper resonance branch. These resonance branches are point symmetric around
the origin because the arg-function is point symmetric. The left graph shows
the transmission in dependence of Φ1 for two exemplary values of Φop

2 (refer
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Figure 2.17 — The main graph shows a color coded map of the transmission (resonance pattern)
of the exemplary three-mirror cavity. Here, bright colors indicate high values,
dark colors low values. The point symmetry around the origin is emphasized by
the white cross. The resonance branches are identified with the phase shifts in
reflexion of the first (pink curve) and the second cavity (cyan curve), respectively.
The left and lower graphs show the transmission for two exemplary values for
Φop

1 and Φop
2 , respectively (see text).
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to the labeling in the graph) . The red and green curves correspond to the cross
sections of the resonance pattern parallel to the Φ1–axis marked by the red
and green vertical solid lines. The intersections of these lines with the lower
resonance branch are highlighted by the red and green cross, respectively.
Furthermore, to illustrate the meaning of Eq. (2.53) the horizontal dashed-
dotted red and green curves connect these intersection points with the maxima
in the transmission shown in the left graph. In the same manner, the meaning
of Eq. (2.56) is demonstrated by the lower graph and the corresponding dark-
yellow and blue curves or lines, respectively.

The above discussion revealed, that the resonance condition of the carrier
field in a three-mirror cavity is clearly determined by Eq. (2.53) and Eq. (2.56).
Besides the tunings Φ1 and Φ2 these equations depend only on the reflectance
factors. Accordingly, the qualitative shape of the resonance pattern changes
if another combination for the reflectance factors is chosen. In Section 2.2.3.2
this dependence on the reflectance factors and the resulting coupling of the
three-mirror cavity will be discussed in more detail.

2.2.3 Coupling of a three-mirror cavity

2.2.3.1 Coupling of the impinging carrier light to the three-mirror cavity

In contrast to a two-mirror cavity whose coupling is solely determined by the
reflectance factors of the coupling and end-mirror (refer to Section 2.1.4), a
three-mirror cavity with given power reflectance factors R1, R2 and R3 can
be over-coupled, under-coupled or impedance matched. Here, the actual
coupling depends on the resonance state of the carrier light. In this Section,
this behavior is illustrated for three exemplary configurations. For simplicity,
it is assumed, that the tuning of the first cavity is constant and the resonance
feature is analyzed in dependence of the tuning of the second resonator. It
should be noted, that in general this condition can not be fulfilled. Especially
concerning the investigation of the frequency response at a certain operation
point, where both tunings change with the frequency according to ∆Φi =
∆Ω/Li this assumption is only meaningful for configurations with one cavity
length much smaller compared to the other (for details refer to Section 2.2.4).
However, from the demonstration of these special configurations an intuitive
understanding can be gained.

If the tuning Φ1 is kept constant and thus the first cavity is interpreted
as a compound mirror, one can understand the three-mirror cavity as a two-
mirror cavity built by an end-mirror M3 and a coupling mirror M12 that has
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Figure 2.18 — The lower graph shows the reflectance of a three-mirror cavity in dependence
of Φ2 while Φ1 is constant. The three exemplary values of Φ1 were chosen
according to Eq. (2.58) leading to |ρ12|2 = 0.7 for the over-coupled case (curve
a) and d)), |ρ12|2 = 0.95 for the under-coupled case (curve b) and e)) and
|ρ12|2 = 0.9 for the impedance matched case (curve c) and f)). The upper graph
shows the corresponding resonance branch of the three-mirror cavity. Also the
cross-sections through the Φ2 −Φ1–plane according to the curves shown in the
lower graph and the resonance branch determined by Φres

2 = −1/2 arg[ρ21(Φ1)]
are displayed.
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the reflectance |ρ12|. In analogy to a loss-free two-mirror cavity this three-
mirror cavity is over-coupled if |ρ12| < ρ3, under-coupled if |ρ12| > ρ3 and
impedance matched if |ρ12| = ρ3. The tuning of the first cavity leading to a
certain power reflectance Rc = |ρ12|2 can be obtained from solving

Rc =
∣∣∣∣ ρ1 − ρ2e2iΦc

1

1− ρ1ρ2e2iΦc
1

∣∣∣∣2

(2.57)

for Φc
1 leading to

Φc
1 = ±1

2
arccos

(
Rc − ρ2

1 − ρ2
2 + Rcρ2

1ρ2
2

2ρ1ρ2(1− Rc)

)
. (2.58)

Fig. 2.18 shows the power reflectance of the considered three-mirror cavity
for the three cases of coupling. Φ1 was chosen according to Eq. (2.58) giving
|ρ12|2 = 0.7 for the over-coupled case, |ρ12|2 = 0.95 for the under-coupled
case and |ρ12|2 = 0.9 for the impedance-matched case.

One can see, that the qualitative behavior is essentially the same as in the
two-mirror cavity case. Certainly, the resonances are not located at Φ2 = 0
but at

Φres
2 = −1

2
arg [ρ21(Φc

1)] . (2.59)

Furthermore, compared with a two-mirror cavity where the phase-shift on
resonance is exactly 180◦ (refer to Section 2.1.4) the phase in reflexion of the
three-mirror cavity has an offset. Here a constant additional part is gained
which is caused by the constant phase-shift φoff in reflexion of the compound-
mirror M12 given by

φoff = arg [ρ12(Φc
1)] . (2.60)

These facts are visualized in Fig. 2.19.
Please remember, that for the above discussion it was assumed, that only

Φ2 is changed while Φ1 is fixed. It is worth mentioning that in the case of the
Advanced LIGO optical configuration the transfer function can be estimated
by that of a two-mirror cavity. Since the arm-cavities will have a length of
4 km each while the length of the extraction cavity will be about 8 m, the
deviation of the extraction cavities tuning is negligible compared with that of
the arm cavities. Thus, the situation is very similar to the situation shown in
Fig. 2.18.
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Figure 2.19 — The figure shows the reflexion of an over-coupled three-mirror cavity in com-
parison with a two-mirror cavity of the same bandwidth and coupling to the
impinging carrier light. The red curve shows the power reflectance of the
three-mirror cavity in dependence of the tuning Φ2 while Φ1 is fixed accord-
ing to Eq. (2.58). The green curve shows the corresponding phase. The black
curve shows the power reflexion and the grey curve the phase of the equiva-
lent two-mirror cavity. It can be seen that the characteristic is the same for the
three-mirror cavity and the two-mirror cavity. In the case of the three-mirror
cavity solely the locus of resonance differs by Φres

2 and the corresponding phase
is shifted by arg

[
ρ12(Φc

1)
]
.

2.2.3.2 Coupling of both resonators in a three-mirror cavity

In Section 2.2.2 the resonance feature was explained considering the phase
shifts occurring due to the reflexion at the first and second resonator, respec-
tively. It was shown, that the three-mirror cavity is resonant for the impinging
carrier light if the phase delay corresponding to the tuning of one resonator
compensates the phase shift in reflexion of the other resonator. Accordingly,
since the characteristic of the phase shift in reflexion of a two-mirror cavity de-
pends on the coupling (see Fig. 2.8) the qualitative behavior of the resonance
feature of a three-mirror cavity differs according to the chosen reflectance
factors and the resulting coupling of the resonators. Thus, in this Section the
resonance of the carrier light in the three-mirror cavity will be analyzed in
dependence of the mirror reflectance factors. For exemplification purposes,
the discussion will be related to the case of gravitational-wave detectors with
arm cavities and power-recycling. In the following, the second resonator built
by M2 and M3 will be associated with the arm-cavity and the first cavity with
the power-recycling cavity with M1 as the power-recycling mirror.

From the visualization of the resonance feature shown in Fig. 2.17 one can
deduce a general property of a three-mirror cavity: For all chosen tunings
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Figure 2.20 — The figure shows the effect of the coupling of the carrier field in the first cavity
to the second cavity. Top: On the y-axis the tuning Φ2 is shown determining the
tuning Φres

1 = −1/2 arg [ρ23(Φ2)] (here shown on the x-axis for visualization
purposes). The red curve shows Φres

1 in dependence of Φ2 for the under-coupled
case, the green curve for the impedance-matched case and the blue curve for the
over-coupled case. Bottom: The power transmission of the three-mirror cavity
in dependence of Φ1 for the three cases of coupling. The tuning Φ2 was set to
zero.

Φ2 there exists a tuning Φ1 leading to resonance. Since this tuning is given
by Eq. (2.53) based on the phase shift in reflection of the second cavity, it is
obvious that the shape of the resonance pattern changes with the coupling to
the second resonator. Figure 2.20 demonstrates the influence of the coupling
to the location of the resonance branches. It can be seen that the difference
between the three cases of coupling is most significant for tunings Φ2 ≈ 0.
Hence, in the bottom graph the power transmittance of the three-mirror cavity
is shown in dependence of Φ1 while the tuning of the second cavity is set
to zero. For an over-coupled second cavity (R3 > R2) the tuning Φ1 of the
first cavity must be ±π/2 to fulfill the resonance condition (blue curves in
Fig. 2.20). In contrast to this, for an under-coupled second cavity with R3 < R2
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the tuning Φ1 needs to be 0 (red curves). In the case of an impedance-matched
second cavity (R3 = R2) its reflectance is zero. Thus, the field in the first
cavity is given by the input field attenuated by the reflectance of M1. The
enhancement of the input field in the impedance-matched second cavity is
attenuated by the same amount. Accordingly, the power transmittance of the
three-mirror cavity is that of the mirror M1 (R1 = 0.3).

Since the PR technique targets on a maximum power build-up in the
second cavity, for a given set of mirror reflectance factors the OP of the three-
mirror cavity needs to be chosen accordingly. The maximum power build-up
in the second cavity corresponds to the global maximum of the resonance
pattern shown in Fig. 2.17. In analogy to a two-mirror cavity the transmission
and thus the build-up is maximum if the three-mirror cavity is impedance
matched for the carrier light. Together with Eq. (2.58) for almost any con-
figuration of a three-mirror cavity the OP corresponding to the impedance
matched case can be deduced from the equations

∣∣∣ρ12(ΦIMP
1 )

∣∣∣ = ρ3 (2.61)

∧
∣∣∣ρ23(ΦIMP

2 )
∣∣∣ = ρ1 . (2.62)

This fact is visualized in Fig. 2.21 for the exemplary configuration of a three-
mirror cavity used throughout this Section.

In the case of a loss-free single ended arm-cavity (i.e. the reflectance of
the end-mirror is unity) the three-mirror cavity will be always over-coupled
and no impedance matching is possible. Here the power build-up in the
second cavity increases with the reflectance R1. The optimum OP is given
by Φ1 = ±π/2 and Φ2 = 0 according to the blue curves in Fig. 2.20. This
situation is similar to that in gravitational-wave detectors where the end-
mirrors reflectance is close to unity. Here, the reflectance of the arm-cavity
coupling mirror is chosen to give a desired bandwidth. Additionally, the arm-
cavities are tuned to the carrier light whereby the OP fulfilling the resonance
condition is already given. Since the field present in the PRC is optimally
enhanced in tuned arm-cavities, the required power build-up inside the PRC
leading to the impedance-matching of the three-mirror cavity is minimized
at this OP. Accordingly, tuned arm-cavities are favorable in view of thermal
lensing in the beam splitters and arm cavities coupling mirror substrates. Thus,
the impedance matching is only realizable by a proper choice of RPRM under
consideration of the internal interferometer loss. The required reflectance can
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2 ).

be obtained from the condition

R1 =
∣∣∣ρ23

(
ΦOP

2

)∣∣∣2
. (2.63)

In some cases it might be suitable to operate the arm-cavities detuned with
a certain ΦOP

2 (see for example [48]). For this situation the optimum parameter
configuration can be deduced from Eqs. (2.53) and (2.56) giving the required
OP and Eqs. (2.61) and (2.62) giving the power reflectance of the PRM leading
to the impedance matching.

The equations obtained from the above discussion allow a deterministic
parameter study and the modeling of any required three-mirror cavity con-
figuration with respect to the carrier build-up inside the cavities. Basing on
these relations it was e.g. possible to analyze the carrier enhancement in a
four-mirror cavity as described in Chapter 3.
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2.2.4 Transfer function of a three-mirror cavity

To comprehend the characteristic of the frequency dependence in a three-
mirror cavity set to a certain OP it is very useful to consult the visualization of
the transmission as shown in Fig. 2.17 again. Please remember that the tuning
Φ of a resonator with the macroscopic length L changes with the frequency
according to

∆Φ =
∆ΩL

c
. (2.64)

Hence, the frequency dependent transmission (or transfer function) of a three-
mirror cavity is given by a cross-section through the resonance pattern (as
shown in Fig. 2.17) along a line u(Ω) determined by the OP (related to the
carrier frequency ω0) and the ratio of the resonator lengths. This line deter-
mining the tunings in the Φ2 −Φ1–plane corresponding to the frequency Ω is
thus given by

u(Ω) =
L1

L2

ΩL2

c︸︷︷︸
Φ2

−ΦOP
2

 + ΦOP
1 . (2.65)

Accordingly, resonances in the transfer function of a three-mirror cavity are
indicated by the intersections of u(Ω) with the resonance branches determined
by Eq. (2.53) or Eq. (2.56), respectively.

Fig. 2.22 illustrates the facts discussed above for some special cases. The
left column of Fig. 2.22 demonstrates the influence of the resonator length
ratio L1/L2 . L2 was arbitrarily set to 1 m whereas L1 was set to various values
L1 ≤ L2 (refer to the labels in graph b) of Fig. 2.22). In graph a) the resonance
pattern of the transmission is shown. The OP (marked with the white square)
was chosen such that ΦOP

2 = ΦOP
1 = 0 corresponding to the symmetry point.

Furthermore, the resonance branches determined by Eq. (2.53) and Eq. (2.56)
as well as u(Ω) are shown for the various ratios of L1/L2. Graph b) shows the
frequency response corresponding to these cross-sections along u(Ω). It can
be seen that for given reflectance factors the resonance frequencies and the
corresponding bandwidth depends on the ratio of L1/L2. Since these transfer
functions are symmetric around the carrier frequency, they are interesting for
applications with respect to the injection of squeezed light. In particular the
main feature of the Twin-Signal-Recycling interferometer topology discussed
in Chapter 4 is based on this symmetry in the transfer function.

In the same manner, the right column shows the dependence on the chosen
OP for equal resonator lengths (L1 and L2 were both set to 1 m). Here, three
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Figure 2.22 — The figure illustrates the transfer functions of the three-mirror cavity for exem-
plary OPs. The upper graphs show the resonance pattern of the three-mirror
cavity and the cross-sections related to the transfer functions shown in the lower
graphs. The left graphs illustrates the transfer function for various length ratios
L1/L2. The OP is set to ΦOP

1 = ΦOP
2 = 0. The right graphs shows the transfer

function for equal resonator length, but various OPs.

exemplary configurations are demonstrated showing essential features of a
three-mirror cavities’ transfer function. OP1 was chosen such that the carrier
fulfills the resonance condition of the lower resonance branch. Accordingly,
a certain frequency Ω > ω0 determined by the frequency splitting which
will be further discussed in Section 2.2.5 fulfills the resonance condition of
the upper resonance branch. Additionally, OP1 was chosen such that the
corresponding cross-section u(Ω) intersects the origin and thus the symmetry
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point of the resonance pattern. Accordingly, the red curve in graph d) of
Fig. 2.22 shows the same characteristic as the red curve in graph b). The
resonance doublet is just shifted by the corresponding frequency splitting.
These types of OPs are interesting for the analysis of a four-mirror cavity
enhanced Michelson interferometer (refer to Chapter3), because they allow a
simultaneous enhancement of the carrier field (e.g. on the lower resonance
branch) and of signal sidebands resonating at the upper resonance branch.

The transfer functions obtained at OP2 and OP3 demonstrate the mani-
foldness of possibilities to ’shape’ the transfer function of a three-mirror cavity.
It can be seen in graph d) that the bandwidth and the optical gain of the
resonances depends on the OP. Hence, the sensitivity curve (e.g. in the Twin-
Signal-Recycling topology as discussed in Section 4.4) can be designed by a
proper choice of the OP with respect to a known gravitational-wave source.
Additionally, to demonstrate the influence of the OP on the coupling for the
sideband fields, OP2 was chosen such that the resonance characteristic on the
lower resonance branch is that of an impedance-matched cavity, whereas the
resonance on the upper resonance branch corresponds to the over-coupled
case. In contrast to this, for OP3 the resonance on the upper resonance branch
is under-coupled but on the lower resonance branch over-coupled. For fur-
ther illustration of these facts Fig. 2.23 emphasizes the phase of the transfer
functions obtained at OP1, OP2 and OP3. Especially to comprehend the charac-
teristic of squeezing spectra in reflexion of a three-mirror cavity, the different
possible types of coupling for the sideband fields need to be considered.

2.2.5 Determination of characteristic quantities

In Section 2.1.2 the characteristic quantities yielding a well-defined description
of the basic properties of a two-mirror cavity were derived. However, the
properties of coupled Fabry-Pérot resonators (e.g. the resonance frequency
and the bandwidth) depend on all parameters – especially on the choice of the
OP. Thus, a general simple analytical description for all of the characteristic
quantities is not possible. Accordingly, if one wants to find a parameter
setup giving desired properties of the optical system one is always reliant on
parameter studies. The intention of this Section is to derive analytical relations
which predict some of the basic properties (e.g. the resonances in the transfer
function) allowing a deterministic analysis of linearly coupled resonators.
The discussion is restricted to possible configurations as gravitational-wave
detector giving some boundary conditions for the parameter choice.
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Figure 2.23 — The figure shows the transfer function of the three-mirror cavity obtained at
exemplary OPs. These OPs were chosen to demonstrate the phasing around
the resonances of a three-mirror cavity which can show the characteristics of an
over-coupled, under-coupled and impedance matched cavity.

2.2.5.1 Periodicity of frequency response

The periodicity of a two-mirror cavities’ resonance feature –the FSR– depends
solely on the macroscopic resonator length L. But in the case of linearly
coupled Fabry-Pérot resonators the ratio of both resonator lengths needs to
be considered. Figure 2.16 shows the frequency response for various ratios
of L2/L1. It can be seen, that the periodicity of the response is given as
L2/L1 · π mod(L2/L1 · π).

In the context of earth bound gravitational-wave detectors where the
macroscopic resonator lengths are on the kilometer scale, the periodic fre-
quency response is in the order of 100 kHz. Since one aims for an optimized
signal transfer function in the frequency band between 10 Hz and 10 kHz one
can not profit by the resonances occurring at a frequency of one FSR. Accord-
ingly, the following discussion does not need to account for the periodicity
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Figure 2.24 — The figure shows the periodicity of the frequency response for the length ratios
L2/L1 = 1, 2, 3 and 4.

and it is sufficient to limit the investigations of the three-mirror cavity to the
range of one FSR.

2.2.5.2 Resonance frequencies and frequency splitting

The discussion in Section 2.2.4 revealed, that the resonance frequencies in
the transfer function of a three-mirror cavity depend on the ratio of the res-
onator lengths. In consideration of the infra-structure of existing earth bound
gravitational-wave detectors and possible upgrades of these topologies two
obvious configurations arise: The first is the Resonant-Sideband-Extraction
topology first proposed by Mizuno [31]. This topology will be realized e.g.
in the Advanced LIGO detectors [16]. Here, the length of the extraction-
cavity will be in the order of 10 m whereas the length of the arm-cavities
will be 4 km. Accordingly, the ratio of the resonators can be approximated
to LRSE/LARM ≈ 0. In Section 2.2.3 it was already stated that in this case the
transfer function can be reduced to that of an ordinary two-mirror cavity.
The second obvious case is a three-mirror cavity configuration with equal
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lengths of both cavities, respectively. In the framework of this Thesis such a
configuration was investigated for the four-mirror cavity (refer to Chapter 3)
and TSR topology (refer to Chapter 4). In the following formulas are presented
for these two special three-mirror cavity configurations allowing a calculation
of the resonance frequencies in the respective transfer functions.

RSE with a short extraction cavity

For the Advanced LIGO optical configuration the first boundary condition
for the investigation of the frequency response arises from the necessity to
achieve a high power build-up in the arm-cavities. Accordingly, these cavities
need to be resonant for the carrier light whereby the tuning can be set to zero.
In the following the arm-cavity will be associated with the second resonator of
the three-mirror cavity giving Φ2 = 0 (refer to the labeling shown in Fig. 2.14).
Furthermore, the reflectance factors of the arm-cavities mirrors (associated
with ρ2 and ρ3) are fixed as well. These values demonstrate a compromise
between a considerable high bandwidth of the arm-cavities and a moderate
PR factor. Here, the effect of thermal lensing [17, 18] limits the amount of the
allowable power in the PRC. Hence, the shape of the transfer function can
only be affected and optimized by the tuning of the extraction cavity and the
reflectance of the extraction mirror. The extraction cavity is associated with
the first resonator and the extraction mirror with M1. Within these boundaries,
the resonance frequency in the transfer function for a certain tuning Φres

1 and a
certain reflectance ρ1 are given by Eq. (2.59). Expressed in Fourier frequencies
one obtains

fres =
1

2π

c
L2

Φres
2 = −FSR2

π
arg [ρ21(Φ1)] . (2.66)

The bandwidth γ of the resonance at fres can be calculated according to
Eq. (2.18). Since the dispersion ∆Φ1 = ∆ΩL1/c is insignificant compared with
that of the arm-cavities, the first resonator can be considered as a compound
mirror having a fixed reflectance |ρ21| leading to

γ = arccos
(

1− (1− |ρ21|ρ3)2

2|ρ21|ρ2

)
FSR2

π
(2.67)

with

ρ21 =
ρ2 − ρ1e2iΦres

1

1− ρ2ρ1e2iΦres
1

. (2.68)

Two operating modes are likely for the RSE topology, the tuned mode
with Φ1 = 0 giving a broadband response, and the detuned case with Φ1 6= 0
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leading to narrowband resonances at a certain target frequency ftar. In the
latter case, the tuning Φtar

1 leading to a dedicated resonance frequency needs
to be deduced from Eq. (2.66). Unfortunately, this equation can not be solved
analytically for Φ1. However, in Sec. 2.2.3.2 it was shown that the difference
in the location of the resonance branches determined by Eqs. (2.53) or (2.56),
respectively, is most significant for tunings Φ2 ≈ 0. Accordingly, using not
Eq. (2.66) but

Φtar
1 = −1

2
arg

[
ρ23

(
2π ftarL2

c

)]
(2.69)

allows a precise estimation of the required tuning Φtar
1 .

The broadband operating mode is aimed at a flat transfer function from
DC to a considerable high corner frequency. From Fig. 2.20 which shows
the dependency of the resonance branches on the mirror reflectance factors,
one boundary for the choice of ρ1 can be deduced. Only if ρ1 < ρ2 a three-
mirror cavity operated at ΦOP

1 = ΦOP
2 = 0 is resonant for the carrier frequency

whereby the desired characteristic of the transfer function can be achieved.
Figure 2.25 compares transfer functions calculated based on the reduc-

tion to a two-mirror cavity (i.e. taking L = 4000 m and a coupling mirror
reflectance of ρ = |ρ21(Φtar

1 )|) with the three-mirror cavity transfer function cal-
culated for L1 = 8.3 m and L2 = 4000 m. In both cases the mirror reflectance
factors were chosen in accordance with [16] as ρ1 =

√
0.93, ρ2 =

√
0.995

and ρ3 =
√

0.999925. The vertical lines according to the target frequencies
ftar = 50 Hz, ftar = 100 Hz of the narrowband mode are in very good agree-
ment with the actual resonance frequencies in the transfer function. For
ftar = 300 Hz the tuning Φtar

1 ≈ 2.85◦ is already close to zero explaining the
slight deviation of the actual resonance of the three-mirror cavity. However,
in all cases the according two-mirror cavity model as well as the calculation
of the tunings with Eq. (2.69) allow a good prediction.

Equal resonator length

If a three-mirror cavity configuration with equal or comparable resonator
lengths is considered, the deduction of its characteristic properties is more
complicated. In this case, the tunings of the cavities changes simultaneously
according to

∆Φ1 =
∆ΩL1

c
and ∆Φ2 =

∆ΩL2

c
, (2.70)

whereby the treatment as compound mirror of these cavities is not possible.
However, as shown in Sec. 2.2.4 resonances in the transfer function can be
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Figure 2.25 — Exemplary phase modulation signal transfer functions of the Advanced LIGO
optical configuration. The transfer functions displayed by the colored dashed-
dotted lines were calculated for a two-mirror cavity with a coupling mirror
reflectance of ρ =

∣∣ρ21(Φtar
1 )

∣∣ and a tuning Φ = 2π ftar/L2. In comparison
the transfer function of the three-mirror cavity calculated with the parameters
presented in [16] are displayed by the solid black curves. The vertical lines
highlight the respective narrowband target frequencies ftar. The corresponding
tunings Φtar

1 for the three-mirror cavity were calculated with Eq. (2.69). For the
broadband mode the tunings Φ and Φ1 were set to zero.

estimated by the intersection of the line u(Ω) with the resonance branches.
This fact allows the determination of one characteristic quantity, the frequency
splitting fsp. Within this thesis, fsp is related to the symmetry point of the
resonance pattern. In the case of equal resonator length L the equation

− 1
2

arg
[

ρ23

(
ΩspL2

c

)]
=

ΩspL1

c
(2.71)

can be solved easily for Ωsp = 2π fsp leading to

fsp = arccos
(

1 + ρ2
3

2ρ2
3

ρ2
2

)
1

2π

c
2L

. (2.72)

Also the transmittance Tc (determining the coupling of both resonators) can
be calculated to give a dedicated frequency splitting. One obtains

Tc = 1− ρ2
2 = 1−

4 cos2
(

2 ΩspL2
c

)
ρ2

3

(1 + ρ2
3)2︸ ︷︷ ︸

Rc

. (2.73)
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Figure 2.26 — Exemplary resonance doublets of a three-mirror cavity. The vertical grid lines
correspond to the targeted frequency splittings achieved by a proper choice of
Tc according to Eq. (2.73).

Accordingly, the location of the resonance branches and thus the reso-
nance frequencies of a three-mirror cavity can be predetermined by the above
equations.

Figure. 2.26 shows exemplary resonance doublets of a three-mirror cav-
ity with equal resonator lengths L = L1 = L2 = 2000 m. The OP was set to
ΦOP

1 = ΦOP
2 = 0 showing a symmetric response for upper and lower sideband

frequencies. The mirror reflectance factors of the coupling- and end-mirror
were set to ρ1 =

√
0.99 and ρ3 =

√
0.999925. The reflectance ρ2 of the center

mirror M2 was calculated with Eq. (2.73) to give various frequency splittings.
Firstly, it can be seen that the actual resonances in the transfer function can be
precisely predicted from Eq. (2.72). Secondly, in the considered special case
the gain and bandwidth of the respective resonances are nearly unaffected
by the chosen value for Tc. Obviously, the bandwidth of the resonances is
only determined by the reflectance factors of the coupling- and end-mirror.
It was shown by van de Stadt et al. [49] and Mizuno [47] that it is possible to
approximate the transfer function of a three-mirror cavity by that of a two-
pole low-pass filter allowing an estimation of the bandwidth. However, in
the special case considered here, the bandwidth is well approximated by that
of a two-mirror cavity with a macroscopic length of L′ = 2 · L and identical
coupling- and end-mirror reflectance factors (i.e. ρ′1 = ρ1 and ρ′2 = ρ3). This is
demonstrated in Fig. 2.27.
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Figure 2.27 — Upper resonances of a three-mirror cavities doublet in comparison with the
resonance of a accordingly detuned two-mirror cavity. The overall macroscopic
length (4000 m in this example) and the reflectance factors of the respective
coupling- and end-mirrors are the same in both cases. The agreement is very
good especially for high frequency splittings.

2.3 Summary

The presented investigations of optical resonators led to important analytical
expressions required for a systematical analysis of the complex four-mirror
cavity enhanced Michelson topology as presented in Chapter 3. Furthermore,
the parameters of the TSR topology proposed in Chapter 4 and the correspond-
ing table-top experiment (Chapter 5) could be determined and optimized by
using the results shown in this Chapter.



CHAPTER 3
Analysis of a four-mirror cavity

enhanced Michelson
interferometer

In this Chapter the shot-noise-limited sensitivity of a four-mirror-cavity en-
hanced Michelson interferometer is presented. The intention of this interfer-
ometer topology is the reduction of thermal lensing and its impact on the
interferometers contrast although transmissive optics are used with high cir-
culating powers. The analytical expressions describing the light fields and the
frequency response are derived. It will be shown that the transfer function of
a four-mirror cavity that is applicable as a gravitational-wave detector can be
reduced to that of a three-mirror cavity. Thus, although the parameter space
has 11 dimensions, the detailed analysis of the three-mirror cavities’ resonance
feature presented in Sec. 2.2 gives boundary conditions allowing systematic
parameter studies.

The investigations discussed in this Chapter were published in

• “Analysis of a four-mirror-cavity enhanced Michelson interferometer”
André Thüring, Harald Lück, and Karsten Danzmann
Physical Review E, 72, 066615 (2005).
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3.1 Introduction

To improve the strain sensitivity of interferometric gravitational wave de-
tectors advanced interferometer topologies such as Resonant Sideband Ex-
traction [31] will be realized in the next generation. The sensitivity in the
shot noise limited region will be increased by a factor of about 10 over the
current detectors by increasing the circulating laser power. Using the Power
Recycling technique together with high finesse arm cavities in each interfer-
ometer arm and high power lasers, the circulating light power will almost
reach the Megawatt regime. But the performance and sensitivity of these
topologies strongly depend on the interferometers contrast. In this context,
in the framework of this thesis the four-mirror cavity enhanced Michelson
topology was investigated . This topology has the potential to minimize the
influence of imperfections in the interferometers contrast on the signal transfer
functions. As the interferometers beam splitter is not embedded in a cavity
the optical loss corresponding to the mode mismatch at the beam splitter is
less significant when compared to the RSE topology. Additionally, the effect
of thermal lensing can be reduced although transmissive optics are used with
high circulating powers.

In this Chapter the investigation of the four-mirror cavity with respect
to the shot noise limited sensitivity is presented. In Section 3.2 the analytic
expressions for the carrier field and the frequency response of the four-mirror
cavity will be derived. Again, the calculation will be accomplished in analogy
to a two-mirror cavity offering an intuitive understanding of the whole cou-
pled system. Because of the huge parameter range, configurations yielding
satisfactory sensitivities are not obvious. Thus, to analyze the four-mirror
cavity systematically some basic assumptions and boundary conditions are
necessary. In Section 3.3 such boundary conditions will be derived from a
detailed analysis and visualization of the resonance feature. This analysis
reduces the number of free parameters from 11 to 6. Furthermore, it will be
shown that the parameters for the second cavity can be chosen to give peak
sensitivities at selectable frequencies. These parameters serve as a starting
point for all other parameters which drastically reduces the number of steps
in numerical parameter studies. In Section 3.4 the dependence on the free
parameters is demonstrated for special cases and exemplary shot noise limited
sensitivities and properties of the four-mirror cavity are shown in comparison
to Advanced LIGO [16].

The intention of the future interferometric gravitational wave detectors
is the enhancement of the shot noise limited sensitivity by increasing the



3.1 INTRODUCTION 55

circulating light powers inside the interferometer. Here, the available laser
input field would be ideally exploited if no power is reflected to the inter-
ferometers input. This can be realized using impedance matched cavities in
each interferometer arm. Using high finesse resonators would also provide
desirable high circulating powers. But the bandwidths of these resonators
are very small leading to an unsatisfactory sensitivity in the detection band
beyond the arm resonators’ bandwidth. To broaden the bandwidth for signal
sidebands the RSE topology was proposed. Here, an additional mirror is
placed in the interferometer output forming together with the arm cavities’
coupling mirrors the extraction cavity. Since this cavity includes the beam
splitter, the performance of the sideband extraction strongly depends on the
interferometers contrast. If the intra cavity loss (mainly caused by an imperfect
interferometer contrast) becomes comparable to the transmission of the arm
cavities’ coupling mirrors, the sideband extraction collapses. To overcome this
problem, the power-recycling technique [7] is used. This technique allows the
increasing of the coupling mirrors transmission so that the intra cavity loss in
the extraction cavity become less significant. To maintain the effective power
build-up in the arm cavities, the wasted power (now reflected from the over-
coupled arm cavities) is recycled in the power recycling cavity (also including
the beam splitter) in such a way, that the complete optical configuration is
still impedance matched. However, the power recycling leads to relative high
optical powers in the recycling cavity. Here the amount of allowable power is
limited by the non-zero absorption of the used transmissive optics and their
coatings. Due to the effects of thermal lensing [17, 18] and thermal expansion
of the optics surfaces the heating by optical absorption causes phase front
distortions leading to poor interference quality (critical for the RSE-scheme)
at the dark port operating point. This causes higher optical power on the
photo detector and therefore higher shot noise. Furthermore, the thermal
lensing in the substrates of the arm cavities’ coupling mirrors leads to an
unstable cavity for the RF-modulation sidebands needed for controlling the
interferometers [50].

The strong dependence on the contrast and the effect of thermal lens-
ing in these advanced interferometers were the motivation for investigating
techniques and alternative interferometer topologies to solve these problems.
The use of alternative substrate materials, for example sapphire, is one so-
lution [23]. Active thermal compensation provides a further opportunity to
reduce thermally induced phase front distortions [19, 20, 21, 22]. Basically dif-
ferent and promising is the use of all-reflective interferometer topologies [24].
Recently the application of gratings in future detector topologies and im-
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Figure 3.1 — Two configurations of a four-mirror cavity enhanced Michelson interferometer:
The left shows the unfolded realization. The right setup includes an angle of
ninety degrees between the first and third resonators exploiting the quadrupole
nature of gravitational waves. Here the sidebands are generated differentially in
the first and third resonators.

plementation issues were investigated [51, 52]. However, the fabrication of
appropriate reflection gratings with the dimensions and quality needed for
the application in interferometric gravitational wave detectors still poses a
problem. Additionally, it was shown by Freise et al. [53] that interferometers
based on gratings suffers from a strong coupling of alignment into phase
noise. This coupling leads to challenging requirements for the isolation and
suspension of the optics.

In the topology investigated here additional mirrors in each interferometer
arm and not in the input and output are used. If an additional mirror is placed
in each interferometer arm the power-build up and the extraction of signal
sidebands could be performed without including the beam splitter in a cavity.
Thus, the loss at the beam splitter would not limit the performance of the
interferometer. But with a three-mirror cavity the effect of thermal lensing
could not be avoided because at least one optical substrate is embedded in
a resonator with high circulating power. Also, the resonance condition of
carrier and sidebands would not be decoupled. Thus, with a three-mirror
arm cavity there would be no way to tune the resonators for carrier and
sidebands independently. But if a fourth mirror is placed in the arms, a second
long resonator is formed (Figure 3.1). This configuration yields resonance
states where the circulating light power in the second cavity embedding the
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‘ ‘ ‘ ‘

‘ ‘ ‘ ‘

first cavity second cavity third cavity

Figure 3.2 — Illustration of the used notation.

optical substrates is small compared to those of the first and third resonators.
In this configuration, the resonance conditions of carrier and sidebands are
also coupled. However, the coupling between the first and third resonator
can be varied with the effective transmission of the second resonator. Thus,
the frequencies of the corresponding resonance doublet of these coupled
resonators are tunable. In fact the four-mirror cavity has a resonance triplet.
But the length of the second resonator is chosen to be small (see Section 3.3)
leading to a high resonance frequency with no effect in the frequency range of
interest.

3.2 Analytical description

3.2.1 Carrier fields

Since the reason for increasing the circulating light power in advanced topolo-
gies is the improvement of the sensitivity in the shot noise limited frequency
region, initially the impact of radiation pressure noise is not considered. More-
over, taking radiation pressure noise into account would expand the parameter
range as the masses of the mirrors and the input power also influence the
frequency response. Thus, it is suitable to select parameter configurations at
first with respect to satisfying shot noise limited sensitivities. After that the
selected configurations can be tested for the effect of radiation pressure.

If the mirrors are assumed to be ideal (loss-free) the carrier fields CFk in
the four-mirror cavity can be calculated in analogy to a two-mirror cavity. The
enhancement of the input fields ak inside the corresponding cavities is given
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by (the notation refers to Figure 3.2)

CF3 = a′3 =
iτ3

1− ρ3ρ4 e2iΦ3
a3, (3.1a)

CF2 = a′2 =
iτ2

1− ρ2ρ34 e2iΦ2
a2, (3.1b)

CF1 = a′1 =
iτ1

1− ρ1ρ234 e2iΦ1
a1. (3.1c)

The derivation of these equations were accomplished as presented in Sec-
tion 2.2.1 for a three-mirror cavity. Likewise, in Eq. (3.1b) and Eq. (3.1c) the
abbreviations ρ34 and ρ234 are used to maintain the appearance of a simple
two-mirror cavity. They stand for the reflection of the third cavity (M34) given
by

ρ34 (Φ3) =
ρ3 − ρ4e2iΦ3

1− ρ3ρ4e2iΦ3
(3.2)

and the reflection of the three-mirror cavity containing M2, M3 and M4 (labeled
M234 in the following) given by

ρ234 (Φ2, Φ3) =
ρ2 − ρ34e2iΦ2

1− ρ2ρ34e2iΦ2
. (3.3)

Note, that these complex expressions are frequency dependent values. Fur-
thermore, the input field of the third resonator is a3 = CF2eiΦ2 and that of
the second one is a2 = CF1eiΦ1 . However, as already presented for the three-
mirror cavity, writing CFk similar to the two-mirror cavity case and thinking
of M34 and M234 as compound mirrors offers an easier understanding of these
expressions.

3.2.2 Signal sidebands

The basics of the response to gravitational waves are described for example
in [54] for a Michelson interferometer with ordinary two-mirror arm cavities.
In this section we transfer these results to the four-mirror cavity case.
The normalized transfer function G(Ω) to the detection port for signal side-
bands generated in the four-mirror cavity by gravitational waves (called
GW-transfer function in the following) is composed of three parts correspond-
ing to the three resonators formed by the four-mirror cavity. Each of the three
parts is the sum of the transfer function for the upper sidebands (ω0 + Ω) and
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the lower sidebands (ω0 −Ω). One obtains

G (Ω) = ∑
k=1,2,3

Gk (Ω) + G∗
k (−Ω) (3.4)

for the readout of the carrier lights phase quadrature and

G (Ω) = ∑
k=1,2,3

−i
(
Gk (Ω)− G∗

k (−Ω)
)

(3.5)

for the readout of the amplitude quadrature. For an arbitrary operating point
ΦOP

k the terms Gk(Ω) have the form

Gk(Ω) = CFk(ΦOP
k )︸ ︷︷ ︸

carrier amplitude

× Gδφ
k (Ω)︸ ︷︷ ︸

modulation per round-trip︸ ︷︷ ︸
sideband generation in the cavity

. . .

× SFk

(
ΦOP

k + ΩLk/c
)

︸ ︷︷ ︸
sideband enhancement and

transfer to detection port

.
(3.6)

Since sidebands generated by a traversing gravitational wave are impressed
due to a modulation process, their amplitudes are proportional to the carrier
field. Accordingly the expression for the corresponding carrier field CFk (first
term of Equation (3.6)) is contained in Gk(Ω). Note that here the input field a1
is assumed to be unity because Gk represents a normalized transfer function.

The expression describing the transfer from a gravitational wave to phase
shift (modulation depth) is given by [54]

X
h→φ

=
ω0

2
1− eiΩl/c

−iΩ
, (3.7)

where l is the optical path length. Each sideband impressed on the carrier CFk
by this weak phase modulation has the amplitude CFk J1(X) = CkX/2, where
J1 is the first order Bessel function. To obtain the magnitude of the sidebands
generated per round-trip in the respective cavity (second term in Eq. (3.6)),
the amplitude attenuation (per round-trip) of this cavity needs to be taken
into account. In the case of the first and second cavity the reflecting mirror Mr
and thus the attenuation is frequency dependent. Accordingly, the first half
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and the second half round-trip needs to be considered independently. One
obtains

Gδφ
k (Ω) =

(
ρr

k(Ω)eiΦk + ρr
k(ω0)eiΦOP

k

) ω0

4
1− ei ΩLk

c

−iΩ
(3.8)

where ρr
k is the reflection of the respective reflecting mirror Mr (i.e. in the

case of the first cavity ρr
k is ρ234). The first term in the parentheses describes

the attenuation of the sidebands generated on the first half round-trip. These
sidebands are reflected at M234 with ρ234(Ω). The phase Φk = ΦOP

k + ΩLk/c
accounts for the delay incurring on the second half round-trip. The second
term in the parentheses describes the sidebands generated on the second half
round-trip. The amplitude of these sidebands is proportional to the reflected
carrier field. Thus, in this case the attenuation ρr

k(ω0) is that of the carrier
amplitude. Here the phase factor eiΦOP

k describes the carriers phase delay
incurred on the first half round-trip.

In addition the phase relation between the signal sidebands induced in
different cavities needs to be included. Thus, the geometric layout of the
resonators (refer to Figure 3.1) needs to be taken into account as well. If the
four-mirror cavity is not folded, signal sidebands of gravitational waves are
impressed in common mode. But if for example the first and third resonator
are orientated orthogonally to each other, the corresponding sidebands are
impressed differentially (due to the quadrupole nature of gravitational waves).
Thus, in the differential mode Gδφ

1 and Gδφ
3 have different signs.

Whereas the first two terms of Eq. (3.6) principally describe the sideband
generation in the respective cavities, the frequency response is mainly de-
termined by the third term. The frequency dependent enhancement of the
sidebands inside the cavities and the transfer out of the cavities to the detection
port can be obtained from CFk by substituting

CFk (Φk) → CFk

(
ΦOP

k +
ΩLk

c

)
= SFk(Ω) (3.9)

where ΩLk/c describes the phase delay incurring while propagating over the
length Lk. This becomes clear considering for example the first cavity. The
expression CF1 describes the enhancement of the amplitude a1 injected at
M1 into the first cavity (refer to Figure 3.2). The signal sidebands are gener-
ated inside the cavities, get resonantly enhanced, and are then transmitted
through M1 to the detection port. Hence one does not need to multiply the
sideband amplitudes by τ1 upon injection but during the extraction (transmis-
sion through M1) of the cavity and Eqs. (3.1a)-(3.1c) are valid not only for the
externally injected carrier but also for the internally generated sidebands.
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The shot noise limited sensitivity is given by the noise to signal ratio of
the signal G (Ω) and the phase fluctuation equivalent to shot noise [55]

δφ̃ =

√
2h̄ω0

P0
(3.10)

leading to

h̃(Ω) =
1

2 |G(Ω)|

√
2h̄ω0

P0
, (3.11)

where P0 is the power of the incident carrier light. Note, that G(Ω) is calcu-
lated for a single interferometer arm. This results in an additional factor of
1/2 for the sensitivity of the whole interferometer [47]. Since this sensitivity
depends on eleven parameters (3 macroscopic lengths, 3 tunings, 4 reflectivi-
ties and the geometric layout), a qualitative and intuitive understanding of the
resonance feature is necessary to find some basic assumptions and boundary
conditions which allow a systematic analysis of the configuration.

3.3 Reduction of parameter space

3.3.1 Basic assumptions

Since the four-mirror cavity is meant as an alternative to RSE-topologies,
some basic boundary conditions for the comparison with the Advanced LIGO
optical configuration needs to be derived [16]. Consequently, the maximum
interferometer arm length is set to 4 km. The calculated strain sensitivities are
related to an input power of 125 W. The transmission of the end mirror M4 is
set to 50 ppm. In addition, to avoid thermal effects in the optical substrates
embedded in the second cavity, the power in this cavity needs to be relatively
small. Thus, signal sidebands induced in this cavity are small compared to
those induced in the first and third one. Accordingly, the length L2 does not
need to be long to enhance the sensitivity for gravitational waves. It can be
shown that even the shape of the GW-transfer functions is not significantly
affected by L2. Thus, L2 is arbitrarily set to 10 m for all calculations. Hence,
the second cavity can be understood as an etalon whose transmission Tc
determines the coupling of the first and third cavity and thus the frequency
splitting Ωsp of the corresponding resonance doublet. This is one key feature
of the topology. The four-mirror cavity behaves like a three-mirror cavity with
variable coupling. The properties of the second cavity solely determine the
frequency splitting.
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3.3.2 Resonance feature

The resonance feature of the four-mirror cavity can be analyzed just as in the
case of the three-mirror cavity (Sec. 2.2.2). Likewise, the resonance branches
are determined by the equations

Φres
1 = −1

2
arg (ρ234 (Φ2, Φ3)) and (3.12)

Φres
3 = −1

2
arg (ρ321 (Φ1, Φ2)) . (3.13)

This relations drastically reduces the parameter range for the resonances
of the four-mirror cavity.

3.3.3 Power in substrates

Another boundary condition can be derived from the point symmetry of the
resonance branches. Concerning the pattern of the internal fields in the Φ3-
Φ1-plane, those of the first and third resonator are point symmetric whereas
that of the second one is not (refer to Figure 3.3). Considering the absolute
values of the carrier fields CFk (Eqs. (3.1a)-(3.1c)) reveals that these are point
symmetric in the tunings Φk. Due to the fact that all tunings in Ck appear with
the factor i the relation

|CFk (Φk)| = |CF∗k (Φk)| = |CFk (−Φk)| (3.14)

is valid explaining the point symmetry around the origin (Φk = 0). Since in
general Φ2 is not zero but tuned (Φc

2) to give a certain frequency splitting, the
relation of Eq. (3.14) is not fulfilled. In this case

|CFk(Φ1, Φc
2, Φ3)| 6= |CFk(−Φ1, Φc

2,−Φ3)| . (3.15)

Figure 3.3 (following page) — Resonance pattern of a four-mirror cavity. The upper three
graphs show the intra-cavity powers |CFk|2 in dependence of Φ3 and Φ1. The tuning of the
second cavity is fixed. The cyan curve highlights the resonance branches determined by
Eq. (3.12). The function u( f ) is displayed by the green lines. Here L1 and L3 are 2 km each.
The point symmetry of the resonance condition is illustrated with the yellow crosses. The red
crosses mark the intersections of u( f ) with the resonance branches.
The lower graphs show the frequency response in magnitude (green curves) and phase (blue
curves) along the green line u( f ) in the upper graphs. The frequency scale is calculated as
f = (Φsym

3 − Φ3)c/L3. Thus, f = 0 Hz is related to the symmetry point. The frequency
splitting ωsp = 2π fsp is defined with respect to this symmetry point.
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showing that |CF2|2 is not point symmetric in the Φ3-Φ1-plane. The symmetry
still existent in the pattern of |CF1|2 and |CF3|2 comes from the point sym-
metric phase shift arg(ρ234) in reflection around the resonance in M234. Here,
M234 is considered as a two-mirror cavity with M23 as the coupling mirror.
Accordingly the phase shift in reflection of M234 must correspond to the point
symmetric two-mirror cavity case. From this phase shift the coordinates of the
symmetry point can be determined in analogy to the derivation of Eq. (2.60)
as

Φsym
3 = −1

2
arg (ρ32(Φc

2)) and (3.16)

Φsym
1 = −1

2
arg

(
ρ234(Φc

2, Φsym
3 )

)
. (3.17)

To fulfill the condition of low power in the second resonator, only those
operating points lying on the lower left resonance branch are suitable (refer to
the optical gain of the second cavity shown in the middle of Figure 3.3).

3.3.4 Frequency response

Similar to the three-mirror cavity the frequency response of the four-mirror
cavity is represented by a cut through the Φ3-Φ1-plane (upper graphs in
Figure 3.3) along an oblique line given by

u(Ω) =
L1

L3

(
Φ3 −ΦOP

3

)
+ ΦOP

1 , (3.18)

where ΦOP
3 and ΦOP

1 corresponds to the operating point of the carrier light. As
the transmission

Tc = 1−
4 cos2(2 ωspL3

c )ρ2
4(

1 + ρ2
4

)2 (3.19)

of the second cavity determines the coupling between the first and third
resonator and thus the frequency splitting Ωsp, an expression can be derived
giving the tuning Φc

2 as a function of Tc. For fixed reflectivities ρ2 and ρ3 one
obtains

Φc
2 =

1
2

arccos
(

Rc − ρ2
2 − ρ2

3 + Rcρ2
2ρ2

3
2ρ2ρ3Tc

)
. (3.20)

Since the effective transmission Tc of the second cavity is the decisive pa-
rameter for the frequency splitting, ρ2 and ρ3 initially can be chosen almost
arbitrarily. Only the coordinates of the symmetry point depend on ρ2 and
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ρ3. The pattern of |CF1|2 and |CF3|2 related to this symmetry point stay the
same. Later the optimal values are determinable by the boundary condition
of low power in the second cavity. Accordingly, for a certain Tc the enhance-
ment of the carrier light only depends on Φ1, Φ3 and τ1 (τ4 is 50 ppm). The
GW-transfer function additionally depends on L1 and L3. Thus, the parameter
space for the sensitivity of the investigated topology is reduced to a six dimen-
sional one. Additionally, Φ2 can be chosen from Eq. (3.20) to give a certain
frequency splitting. Then, the symmetry point from Eqs. (3.16) and (3.17)
serves as starting point for Φ3 and Φ1 leading to a reduction of the parameter
range for the tunings.

3.4 Parameter studies

3.4.1 Special cases

The analysis of the resonance feature in Section 3.3 revealed that the resonance
of the carrier light does not depend on the macroscopic lengths Lk, because the
resonance is determined by the microscopic lengths (tunings). Furthermore, it
was stated that the sensitivity for gravitational waves is proportional to the
carrier amplitudes in the cavities. Thus, operating points yielding satisfying
sensitivities are restricted to states where the carrier is on resonance (or close
to resonance). For given reflectivities these states are determined by Eq. (3.12).
First, the power build-up (optical gain) in the first and third cavity was
investigated in dependence of the frequency splitting induced by the tuning
Φc

2 of the second cavity. Here, the reflectivities ρ2
2 and ρ2

3 were set to 0.999
each and ρ2

1 was set to 0.993. This value of ρ1 was chosen to obtain moderate
circulating powers in the first and third resonator, respectively. The frequency
splitting fsp = Ωsp/2π was investigated in a range from 50 Hz to 1 kHz
corresponding to the detection band of terrestrial gravitational-wave detectors.
Furthermore, the respective operating points were chosen as the intersection
point of u(Ω) with the lower left resonance branch. Note, that the carrier is
resonant on these states (refer to Figure 3.3). Then the upper sidebands are
expected to be resonant at frequencies Ω = 2Ωsp. The corresponding tuning
Φc

2 was determined by Eqs. (3.19) and (3.20). The cavity lengths L1 and L3
were set to 2 km each. Figure 3.4 shows the shot noise limited sensitivities for
various tunings Φc

2.
Since for these states the tunings and the cavity lengths were determined

with respect to certain frequency splittings and resonances in the frequency
response, ρ1 is the only remaining free parameter affecting the optical gains.
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Figure 3.4 — Linear noise spectral density (NSD) of the four-mirror cavity for various fre-
quency splittings induced by the tuning Φc

2. The graphs a) and b) show the
sensitivities in the carrier lights phase and amplitude quadrature for a folded
geometry (differential mode). Graphs c) and d) correspond to the unfolded setup
(common mode). It can be seen that the best sensitivities can be achieved in the
differential mode.

Accordingly, these states are investigated for the dependence on ρ1. The
results are shown in Figure 3.5. For low ρ1 the frequency response becomes
maximum on the symmetry point (refer to Fig. 2.20) explaining the peak
sensitivity around 50 Hz for ρ1 = 0.95 (solid curve in Figure 3.5). Furthermore
it can be seen, that the impedance matched case optimally exploiting the laser
input field yields a better sensitivity compared to Advanced LIGO only in a
very narrow region.

Figure 3.6 shows the sensitivity for different ratios L1/L3. This ratio
determines the slope of the oblique line u( f ) in Figure 3.3 representing the
frequency response. Accordingly, the intersection points of this line with the
resonance branches vary with this ratio (refer to Fig. 2.22). Also the magnitude
of the signal sidebands induced in a cavity scale with its length according to
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Figure 3.5 — Sensitivity in the amplitude quadrature for the differential mode with different
values for R1 = ρ2

1. Here the tuning Φc
2 corresponds to a splitting of 50 Hz.

Eq. (3.7). Hence, if L1 is greater than L3 the GW-transfer function is dominated
by the sidebands induced in the first cavity (if the powers in the first and third
cavity are similar).

The optical gain |CF1|2 is very low around the symmetry point as it can
be seen in Figure 3.3. This low optical gain corresponds to the bad sensitivity
around 50 Hz for L1/L3 = 2.5 km/1.5 km (red curve in Figure 3.6). This fact
indicates, that satisfying sensitivities in a broad frequency range are only
achievable for configurations with L1/L3 ≤ 1. Also configurations with
very short L1 (or L3) yield no satisfying sensitivities. In these cases, the four-
mirror cavity behaves like an ordinary two-mirror cavity with the resonance
frequencies determined by the corresponding FSRs c/2L3 (or c/2L1).

All other non-special cases were investigated with a numerical code de-
veloped for this purpose. With this code, the parameters were systematically
varied considering all relations and dependencies obtained in Sec. 2.2 and
Sec. 3.3. The frequency splitting fsp was varied between 50 Hz and 1000 Hz.
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The tunings Φ3 and Φ1 were scanned around the lower left resonance branch.
Various ratios of L1/L3 were investigated. As already expected from the in-
vestigation of the special cases described above, there were no impedance
matched configurations found having sensitivities comparable in a wide fre-
quency range to the Advanced LIGO optical configuration. Thus, also for the
four-mirror cavity the Power Recycling technique comes in consideration to
broaden the bandwidth for signal sidebands.

3.4.2 Exemplary configuration

In this Section the properties of one exemplary configuration which yields sen-
sitivities typical for a four-mirror cavity enhanced Michelson interferometer
are presented. Figure 3.7 shows the envelope of the tunable peak sensitivity
and exemplary sensitivity curves for different frequency splittings, whereas
the reflectivities are fixed. The reflectivities ρ2 = ρ3 = 0.999 were chosen to
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Figure 3.7 — Comparison of the envelopes of the tunable peak sensitivity in the phase quadra-
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are shown.

ensure low powers in the second cavity embedding optical substrates. The
reflectivity ρ1 = 0.996 was chosen as compromise between a high peak sen-
sitivity and a broad bandwidth. With this setup, the power in the first and
third cavity are identical (approximately 61 kW with 125 W input power) and
independent of the frequency splitting. The power in the second cavity is
P2 ≈ 16 W. Thus, the boundary condition of low powers in optical substrates
can be fulfilled with remarkable low powers in the second cavity. The sensi-
tivity of this configuration is as good as the Advanced LIGO ones, if identical
powers at the beam splitter are assumed. It should be mentioned, that the
four-mirror cavity can be tuned to high frequencies with a constant peak
sensitivity in contrast to the Advanced LIGO optical configuration. Also the
detection bandwidth is not limited by the arm cavities’ finesse (refer to the
envelopes shown in figure 3.7), because the effective finesse is adjustable by
the transmission of the second cavity. This fact also implies that the intra
cavity loss in the second cavity caused by the AR-coatings and absorption
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in the optics’ substrates are not limiting the performance of the four-mirror
cavity.

3.5 Conclusion

The expressions describing the shot noise limited sensitivity of a four-mirror
cavity enhanced Michelson interferometer were derived. The detailed analysis
of the resonance feature using expressions similar to the ordinary two-mirror
cavity case offers a qualitative and intuitive understanding of this complex
configuration. With this understanding it was possible to systematically in-
vestigate the configuration for shot noise limited sensitivities throughout the
whole 11-dimensional parameter space. Despite the huge parameter space
giving a variety of possibilities to adapt the shape of the sensitivity curve to
the requirements, contrary to expectations there are no parameter configu-
rations optimally exploiting both the frequency splitting and the laser input
field yielding better sensitivities compared to Advanced LIGO in a wide fre-
quency range. Only if identical powers at the beam splitter are assumed, the
four-mirror cavity provides sensitivities comparable to the Advanced LIGO
ones. However, these powers at the beam splitter would still be restricted by
the problem of thermal lensing. Moreover, only in the differential mode of the
four-mirror cavity enhanced Michelson interferometer reasonable sensitivities
can be achieved. This setup is hardly to implement in the infra-structure of
existing gravitational-wave detectors. Thus, the results of the above inves-
tigations confirm the choice of RSE-topologies for the second generation of
interferometric gravitational detectors.



CHAPTER 4
Detuned

Twin-Signal-Recycling

4.1 Introduction

In this Chapter the Twin-Signal-Recycling (TSR) interferometer technique
for gravitational-wave detection is proposed. This technique bases on the
coupling of two optical resonators leading to a frequency splitting as described
in Chapter (2.2). There exists an operating point (referred to as optimum
operating point in the following) providing symmetrical resonance conditions
for upper and lower phase modulation signal sidebands. On the one hand this
symmetry allows a broadband sensitivity enhancement of a factor of up to 2
compared to single sideband recycling techniques (such as Signal-Recycling
and Resonant-Sideband-Extraction) [56]. On the other hand the injection of
squeezed states of light is less demanding and enables a broadband quantum
noise reduction in the shot noise limited frequency regime without the need
for additional filter cavities. Furthermore there is a variety of possibilities to
shape the sensitivity curve with respect to known gravitational-wave sources
by properly adjusting the tunings of the TSR-resonators.

The advantages of TSR will be discussed in comparison to the sensitivity of
GEO 600 assuming technical design parameters. The noise spectral densities
(sensitivities) were calculated utilizing the Caves-Schumaker two photon
formalism (TP) [57]. For further details of the TP and the input-output relation
of an interferometer please refer to [58, 59]. An introduction to the theory of
non-classical light can be found e.g. in [60]. The MATLAB-scripts used here
are atteched in the Appendices A.1 and A.2.

71
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Since the potential of a broadband quantum noise reduction by means of
squeezed states is a main feature of the TSR technique, first a brief review on
the history of squeezed field injection at interferometric gravitational-wave
detectors is given in the next section.

The main results of the investigation discussed in this chapter were published
in

• “Detuned Twin-Signal-Recycling for ultrahigh-precision interferometer”
André Thüring, Roman Schnabel, Harald Lück, and Karsten Danzmann
Optics Letters, 32, 985 (2007).

4.1.1 History of squeezed field injection for gravitational-wave
detectors

The use of squeezed states of light for improving the sensitivity of gravitational-
wave detectors was first proposed in 1981 by Caves [32]. He showed that the
quantum noise limited sensitivity in a shot noise dominated interferometer
can be enhanced by the injection of a broadband (frequency independent)
squeezed field into the interferometers signal port. Furthermore he stated that
“[. . . ]the greatest potential usefulness of squeezed states lies in its ability to in-
crease the sensitivity without increasing the circulating laser light power[. . . ]”.
Accordingly at a point, where the interferometer performance will be limited
by the thermal load in its optics and the resulting wavefront distortion (refer
to Sec. 3.1) squeezed field injection can be used to either relax the high power
requirement or increase the sensitivity further. The reduction of shot noise by
the aid of squeezing was later experimentally shown in [61, 62, 63].
However, at first view the enhancement of a interferometers sensitivity with
frequency independent squeezing (squeezed light with a fixed quadrature
angle) can only be achieved in a certain frequency range. This is a direct
consequence of the Heisenberg uncertainty principle. Considering a simple
Michelson interferometer the quantum noise in its phase quadrature (shot
noise) can be reduced by the amount of squeezing. Unfortunately, the quan-
tum noise in the amplitude quadrature (radiation pressure noise) will be
increased by the same amount enhancing the noise at low frequencies. Later it
was revealed by Unruh [36] and others [37, 27, 38] that squeezed field injection
with frequency dependent squeezing angle allows an overall quantum noise
reduction including the radiation pressure noise thereby beating the standard
quantum limit (SQL).
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Motivated by the work of Unruh and Jackel & Reynaud the use of addi-
tional input and output optics — namely filter cavities — was proposed by
Kimble et al. [39]. Applying these filters (commonly referred to as KLMTV
filters) converts a conventional interferometer into a broadband quantum
non-demolition (QND) interferometer. The filters allows the preparation
of squeezed states providing a frequency dependent squeezed quadrature
which is adapted to the interferometers quadrature rotation. The injection
of such a prepared squeezed state leads to a quantum noise reduction over
the complete detection band. Furthermore, a so-called squeezed variational
homodyne readout of the interferometers output can be performed with a
frequency dependent optimal detection quadrature.

The investigation of Kimble et al. was restricted to broadband tuned detec-
tors (e.g. Ini.LIGO) without SR or RSE, respectively. It was shown by Harms et
al. [58] that such filters applied in a detuned SR topology (e.g. GEO 600) also
allows a broadband quantum noise reduction by squeezed light and a opti-
mization of the detection angle. Unfortunately, quite generally two or more
low-loss, narrow-linewidth, and therefore long-baseline optical filter cavities
are necessary to prepare the squeezed states in an optimum way to achieve
this goal. Thus an implementation in the infrastructure of existing and future
gravitational-wave detectors poses a problem. But taking into account that the
quantum noise at low frequencies, especially in the radiation pressure noise
dominated regime is covered by other noise sources such as seismic and ther-
mal noise, an improvement within this frequency regime from the squeezed
field injection can not be achieved anyway. Consistently, Schnabel et al. [64]
found that in the case of GEO 600 just one additional filter cavity preparing the
squeezed light is sufficient to improve the whole shot noise limited frequency
range. Correspondingly, the generation of frequency dependent squeezing
utilizing one filter cavity was experimentally characterized by Chelkowski et
al. [65] followed by the shot noise reduction of a table-top Dual-Recycled
Michelson interferometer demonstrated by Vahlbruch et al. [41].

Another way to avoid the use of multiple long base line filter cavities but
achieving still an enhancement in the high frequency range without drastically
worsen the low frequency sensitivity was proposed by Corbitt et al. [66].
Here, the use of Fabry-Perot cavities was suggested acting has high-pass
filters (termed amplitude filters within this context) for the squeezed field. In
reflection of these filter cavities the squeezing at sideband frequencies beyond
the filter cavities bandwidth is preserved whereas at low frequencies the
squeezing is lost and replaced by ordinary vacuum noise. Since any optical
loss of the filters mainly affect the transmitted part the baseline of the filters
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Figure 4.1 — Top left (shaded): Topology of the current gravitational-wave detector GEO 600.
The mirror PRM in the laser input port realizes so-called power-recycling. The
signal-recycling mirror (SRM) in the output port establishes a carrier light de-
tuned single-sideband signal recycling cavity. Bottom left: Extension for a broad-
band shot-noise reduction utilizing squeezed states. Right: Topology, proposed
here. Two optically coupled cavities are formed with the help of an additional
mirror TSRM. Their resonance doublet enables detuned twin-signal-recycling
resulting in lower shot noise. Squeezed states can be used without additional
filter cavity.

can be chosen comparatively small. However, this technique seems only to be
useful for broadband tuned detectors. In the case of single sideband recycling
detectors the rotation of the squeezing ellipse around the optical resonance
could not be compensated by these filters leading to a deceased sensitivity
even below that of the un-squeezed interferometer.

Within this context, the TSR interferometer technique was analyted and
proposed. Here, a quantum noise reduction in the shot noise limited sensitivity
can be achieved by the injection of frequency independent squeezing without
the need for an additional long base line filter cavity.

4.2 The Twin-Signal-Recycling topology

A schematic illustration of the TSR topology is shown in Fig. 4.1 in comparison
to the GEO 600 topology extended by a single long baseline filter cavity for
broadband shot noise reduction.
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The shaded upper left-hand part of Fig. 4.1 shows a Michelson interfer-
ometer topology with the techniques of PR and SR as used in the GEO 600
detector. Such an interferometer is operated close to a dark fringe, which is
a requirement for recycling techniques. To form a detuned SR cavity, mirror
SRM is positioned such that not carrier laser light but signal light is resonating.
A modulation signal at the frequency Ω produces an upper sideband field at
ω0 + Ω and a lower sideband field at ω0 −Ω where ω0 is the carrier lights
angular frequency. Thus, if the recycling frequency (target frequency) is higher
than the bandwidth of the SR cavity, only the upper or the lower sideband
field can be enhanced whereas the counterpart is suppressed, thereby loosing
half of the maximum signal. Nevertheless, the recycling of one of these signal
sideband fields still leads to an enhanced sensitivity compared to an ordinary
Michelson interferometer. The lower left-hand part of Fig. 4.1 shows the ex-
tension to employ squeezed states of light. A source of a broadband squeezed
field (SQZ), a long-baseline filter cavity, and a Faraday rotator for coupling to
the signal modes [63] is required for a broadband sensitivity improvement as
proposed in [64] and experimentally demonstrated in [41].

The right-hand part of Fig. 4.1 shows the topology proposed here. Starting
from the standard SR topology, an additional mirror (TSRM) is placed in the
signal output port of the interferometer. This mirror forms a new long-baseline
cavity that is optically coupled with the initial SR cavity. Similar to two cou-
pled mechanical oscillators, two coupled optical cavities feature a resonance
doublet (refer to Section 2.2 in Chapter 2). The frequency splitting fsp of this
resonance doublet is determined by the coupling of the two resonators, i.e.,
the transmission of the center mirror (SRM). The transmission Tc of the mirror
SRM corresponding to this coupling can be obtained from Eq. (2.72) giving

Tc = 1−
4 cos2

(
2 ωspLTSR1

c

)
ρ2

end(
1 + ρ2

end

)2 . (4.1)

For ideal interferometer end mirrors with a reflectance of ρend = 1, Eq. (4.1)
further reduces to

Tc = 1− cos2
(

2
ωspLTSR1

c

)
. (4.2)

Thus, the transmission Tc of the mirror SRM has to be chosen with re-
spect to the required frequency splitting ωsp = 2π fsp. Then the resonances’
bandwidth of the doublet can be determined by the reflectivity of the mirror
TSRM. Fig. 4.2 shows the resonance doublet for LTSR1 = LTSR2 = 1200 m,
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Figure 4.2 — The resonance doublet of the TSR interferometer for technical design parameters
allowing a direct comparison with GEO 600.

ρ2
end = 0.99995 and ρ2

TSRM = 0.963 (note, that the choice of these parame-
ters originates from the comparison with the extended GEO 600 topology as
discussed in the next section). The resonance doublet is symmetric around
the carrier frequency f0 in magnitude and phase, respectively. Thus, if the
three-mirror coupled cavity is tuned to f0, upper and lower signal sidebands
have identical resonance conditions.

4.3 Comparison of TSR with GEO 600

4.3.1 The quantum noise limited sensitivities

The following discussion assumes technical design parameters for both in-
terferometer topologies (refer to Table 4.1). These parameters were chosen
according to the comprehensive investigation of the possible squeezing en-
hanced sensitivity of GEO 600 presented in [58]. The length of the TSR cavities
were set to 1200 m each accounting for an realizable implementation in the
infrastructure of the GEO 600 facility. Then, the reflectivity of TSRM was
chosen to reach the peak sensitivity of GEO 600. In the case of GEO 600 the
recycling frequency frec (where the best sensitivity is obtained) is adjustable
by the SR cavity detuning according to ΦSR = 2π frecLSR/c. On the contrary
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Table 4.1 — The parameters for the comparison of GEO 600 and TSR.

Symbol Physical meaning GEO600 TSR
m Mirror masses (each) 5.6 kg 5.6 kg

Larm Effective arm length 1200 m 1200 m
the LSR Length of SR-cavity 1200 m -

LTSR1,TSR2 Length of TSR cavities - 1200 m
P Circulating light power 10 kW 10 kW

ρSRM Reflectivity of MSRM
√

0.99 Eq. (4.1)
ρTSRM Reflectivity of MTSRM -

√
0.963

ρend Reflectivity end mirrors
√

0.99995
√

0.99995
Φ detuning ΦSR ≈ 0.0252 rad ΦTSR1,TSR2 = 0

the peak sensitivity of TSR topology is reached at f = fsp determined by Tc
thereby inhibiting the tunability. However, if one wants to realize a tunable
TSR one have to replace the SRM by an etalon. This aspect is treated briefly in
Section 4.4.3.

Fig.4.3 compares the quantum noise limited sensitivities (without squeezed
input) of SR and TSR for various SR cavity detunings and the according cou-
plings of the TSR resonators. In the shot-noise dominated regime below the
recycling frequency the TSR technique proposed here provides an improved
noise spectral density. Above the resonance, the sensitivity of TSR decreases
with higher frequency compared with SR. For lower frequencies, quantum
radiation pressure noise dominates shot noise and the detuned SR topology
with resonating lower signal sideband shows a further resonance dip. This is
the so-called optical spring resonance [67]. Such a resonance does not appear
in the TSR topology proposed here, because the resonances of upper and
lower sidebands are symmetrically arranged around the carrier frequency
ω0. Note, that also for that reason a phase modulation as introduced by
gravitational-waves only appears in the carrier lights phase quadrature as it is
expected from a simple Michelson interferometer. This contrasts with detuned
SR where signal sidebands appear in phase and amplitude quadratures and
in any linear combination of both whereby the optimum detection quadrature
gets frequency dependent. In Fig. 4.3 for instance the optimum case of a
variational readout is shown for GEO 600.

For further investigations the recycling frequency (splitting frequency)
was set to 1 kHz for two reasons. First, in the lower frequency regime the
sensitivity of GEO 600 and TSR will be limited by thermal noise so that the
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Figure 4.3 — Quantum noise limited sensitivities of GEO 600 and TSR. Left: The curves shows
the sensitivity of GEO 600 tuned to 250 Hz, 500 Hz, 1000 Hz and 2000 Hz assuming
an optimal frequency dependent detection. Right: Sensitivity of detuned TSR for
fsp =250 Hz, 500 Hz, 1000 Hz and 2000 Hz achieved with a readout of the phase
quadrature.

use of squeezed states can not lead to an improvement. Second, in the TSR
case the transmission of SRM determining the frequency splitting decreases
with the required splitting frequency (e.g. fsp = 250 Hz requires Tc ≈ 80 ppm).
Thus, for small a fsp the performance of TSR might be limited by the internal
interferometers losses. For the frequency splitting of 1 kHz a transmission of
greater than 1000 ppm is necessary which is not that critical.

Fig. 4.4 shows the quantum noise limited sensitivities of GEO 600 and
TSR for the recycling frequency frec = 1 kHz. For GEO 600 the sensitivity
curves corresponding to a variational readout, a readout of the phase and
amplitude quadrature respectively are shown. The detection of the phase
quadrature yields a better sensitivity in the frequency regime beyond the
recycling frequency whereas at low frequency the sensitivity in the amplitude
quadrature is much better (upto one order of magnitude). These sensitivity
are optimally combined in the variational readout case. For TSR the readout
of the phase quadrature is displayed. It can be seen, that — except of the
optical spring resonance — TSR yields a better sensitivity over the entire
frequency band below approximately 1500 Hz. Note, that the detection of the
phase quadrature already yields the optimum sensitivity without the need for
further input-output optics.

Fig. 4.5 compares the optimum detection angles of a homodyne readout
as well as the optimum (frequency dependent) squeezing angles which are
required to allow a broadband quantum noise reduction. It can be seen, that
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Figure 4.4 — The figure shows the quantum noise limited sensitivities for a recycling frequency
of 1 kHz. For GEO 600 the cases of a variational readout, a detection of the ampli-
tude and phase quadrature respectively are shown. In the TSR case the optimum
sensitivity is achieved with a readout of the carrier lights phase quadrature.

for TSR the intrinsic optimum detection angle ζopt corresponds to the readout
of the carrier lights phase quadrature. As well, the optimal squeezing angle
λopt in the shot noise limited region corresponds to the squeezing of the phase
quadrature.

In contrast to TSR, for GEO 600 the optimum detection angle as well as
the optimum squeezing angle are frequency dependent even in the pure shot
noise limited region around the optical resonance. That means, that — if a
homodyne readout is considered — for GEO 600 additional output optics are
required to achieve the optimum frequency dependent readout. In addition,
at least a single filter cavity will be necessary to prepare the squeezed states
optimal leading to a quantum noise reduction in shot noise limited detection
band.

Please note the following: In the case of a heterodyne readout scheme an
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Figure 4.5 — The figure compares the optimal detection angle ζopt and the optimal squeezing
angle λopt for GEO 600 (red curves) and TSR (blue curves).

optimal, frequency dependent linear combination of amplitude and phase
quadrature can be achieved as currently performed at GEO 600 [68] without
additional output optics. Here, the electronic signal of the photo detector is
demodulated at the heterodyne frequency. Similar to the homodyne readout,
for single sideband SR the gravitational-wave signal is contained in both de-
modulation quadratures (inphase and quadrature demodulation) and any linear
combination of them. Accordingly, by splitting the photo detectors signal
and demodulating the two parts inphase and in quadrature allows an optimal
frequency dependent combination. However, in general a homodyne readout
provides a better signal to noise ratio compared with the corresponding hetero-
dyne readout in which an additional quantum noise contribution is induced
due to the demodulation process (for further details refer to [69, 70, 71, 72]).
In addition, the presence of the RF sidebands applied for the heterodyne
readout in the detection port can lead to an increased technical noise distribu-
tion. As well, phase noise of the RF-modulation and a potentially imperfect
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spatial overlap of the gravitational-wave signal fields with the RF-sideband
fields would probably limit the sensitivity. An investigation of these facts
related to GEO 600 can be found in [73]. Moreover, especially in view of the
injection of squeezed states the homodyne readout has advantages over a het-
erodyne readout. It was shown by Gea-Banacloche and Leuchs [69] and later
by Chickarmane et al. [74] that for a heterodyne readout a broad squeezing
spectrum within the detection bandwidth and around twice the heterodyne
frequency is required to achieve an optimal sensitivity enhancement. This
requirement leads to further restrictions regarding the implementation of
squeezed field injection (see for example [75]).

Owing to the circumstances discussed above, for the next advanced genera-
tion of interferometric gravitational-wave detectors as well as for the upgrades
of current detectors the decision was made to perform a homodyne readout.
More precisely, a so-called DC-readout (also referred to as self-homodyning)
will be realized by operating the interferometers slightly offset from the ideal
dark fringe condition. As a result a small fraction of the carrier light is trans-
ferred to the detection port and serves as local oscillator. Note, that in this
special case of homodyning the detection quadrature is fixed since there exists
no possibility to change the relative phase between LO (carrier) and signal
sidebands baring an optimization. Recently, a DC-readout was performed
and analyzed at GEO 600 [76] and at the Caltech 40m-prototype [77].

Within this context, the advantages of TSR over detuned single sideband
SR as currently established in GEO 600 and proposed for Advanced LIGO [16,
78], Advanced VIRGO [79] and LCGT [9] are inherent in the fact that the
simultaneous recycling of both signal sidebands leads not only to a sensitivity
enhancement of up to a factor of two but also to an intrinsic optimal sensitivity
achievable by a frequency independent detection of the carrier lights phase
quadrature.

4.3.2 Broadband shot noise reduction by squeezed field injection

This section compares detuned SR (GEO 600) with the detuned TSR technique
in combination with the injection of squeezed fields, as shown in Fig 4.1. Here
a broadband squeezed field is assumed with a squeezing parameter r = 1,
which corresponds to about 8 dB squeezing of noise variance. For GEO 600 just
on additional filter cavity for generation of frequency dependent squeezing
is considered as proposed in [64]. Furthermore, a variational readout is not
taken into account. From Fig. 4.5 can be deduced that an optimization of the
detection angle in the pure shot noise limited would require one further long
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baseline output filter cavity hardly to implement in the existing infrastructure
besides the required squeezing filter cavity.
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Figure 4.6 — Squeezed light enhanced sensitivities of GEO 600 and TSR.

Figure 4.6 shows the squeezing enhanced sensitivities of detuned SR
(GEO 600) and TSR. Again, for frequencies between 40 Hz and approximately
1500 Hz, TSR achieves a lower noise spectral density than detuned SR. Com-
paring TSR with and without squeezed-state input shows that the TSR tech-
nique provides quantum noise reduction from squeezed states over a wide
band without an additional filter cavity. Please note, that the detection of
the phase quadrature of GEO 600 which provides slightly better sensitivities
in the detection band beyond the recycling frequency, is not accessible with
an appropriate DC-readout (refer to [76]). Also, the slightly increased noise
spectral density at frequencies below 40 Hz in TSR will not be significant as
long as this frequency regime is not limited by quantum but by classical noise
(thermal and seismic noise).

In conclusion, detuned TSR operated at its optimum operating point is
favorable compared with detuned SR as it solves three problems at the same
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time. First, a simultaneous recycling of upper and lower signal sidebands is
achieved leading to an increased signal-to-shot-noise ratio. Second, similar to
an simple Michelson interferometer (or carrier tuned broadband topologies)
detuned TSR facilitates an optimal readout without the need for further output
filter optics even accessible with a DC-readout. Third, the injection of frequency-
independent squeezing leads to an improvement in the complete shot noise
limited detection band.

4.4 Further possibilities of shaping the sensitivity
curve

The investigation in Sec. 4.3.1 and Sec. 4.3.2 was limited to the optimum OP
with a resonance doublet arranged symmetrical around the carrier. However,
besides this OP that is distinguished by its potential for an easy implementa-
tion of squeezed field injection, there exists further suitable OPs allowing a
shaping of the sensitivity curve. In this section two further operating modes
of the TSR technique will be presented assuming the same parameters (except
of the tunings) as before. Compared with the sensitivity achieved at the opti-
mum OP the one modus allows an improved peak sensitivity at a dedicated
frequency by altering the bandwidth of the resonance. Simultaneously, an
improvement in the upper frequency regime can be achieved. In the second
modus, a combination of the broadband (tuned) SR modus and the narrow-
band (detuned) SR is possible leading to an improved sensitivity in the low
frequency regime when compared with GEO 600. Note, that in these cases the
sensitivity enhancement due to injection of squeezed fields are secondary.

Fig. 4.7 shows the resonance pattern of the coupled TSR resonators. Since
the tunings of these resonators can be adjusted by the microscopic mirror
positions of SRM and TSRM (refer to Fig. 4.1) without affecting the resonance
condition of the PR cavity and thereby the amount of laser light power cir-
culating in the interferometer, any desired OP of the TSR resonators can be
chosen to alter the signal sidebands transfer function. Two obvious types of
OPs will be analyzed. First the OPs i)-iii) along the red line in Fig. 4.7 allows a
tuning of the recycling frequency fres similar to detuned SR. Additionally, a
second resonance in the transfer function appears whereby the combination
of tuned (broadband) SR and detuned SR (narrowband) becomes possible.
The sensitivity achieved at these OPs is discussed in Sec. 4.4.1. Second, the
potential to vary the peak sensitivity (and so the bandwidth) at a certain
frequency (here 3 kHz) will be discussed in Sec. 4.4.2. The considered OPs are
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Figure 4.7 — The figure shows the resonance pattern of the TSR resonators for the technical
design parameters used throughout this Chapter. Note, that the optical gain is
logarithmic color coded for visualization purposes. The origin corresponding
to the optimum OP is highlighted by the white square. Additionally, the line
u(ω) (refer to Eq. (2.65) in Sec. 2.2.4) related to the optimum OP as well as to
the OPs i)-iii) is shown. The yellow curve is separated by -3 kHz from the lower
resonance branch. Accordingly, for the OPs 1)-5) a resonance at 3 kHz with
different bandwidths each appears in the transfer function.

labeled from 1)–5) in Fig. 4.7.

4.4.1 Combination of tuned and detuned SR

By leaving the optimum OP of the TSR topology the resonance condition for
upper and lower sidebands became asymmetric whereby two resonances ap-
pear in the transfer function at different frequencies. Note, that in general the
optical gain of each single resonance is lowered by a factor of two compared
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to the symmetric case. The OPs i)-iii) considered here yield two resonances
of identical gain and bandwidth since the transfer function corresponds to a
cross-section along a line u(ω) (red line in Fig. 4.7) running through the sym-
metry point (for details refer to Sec. 2.2.4). In general, the smallest realizable
distance of two resonances in the transfer function of a three-mirror cavity
is exactly the splitting frequency fsp. This case is demonstrated with OP i).
Here, the tunings were chosen to obtain a resonance for the upper sidebands
at 500 Hz and for the lower sidebands at -1500 Hz (both related to the carrier
frequency). Accordingly, the sensitivity curve features peak sensitivities at
500 Hz and 1500 Hz. The other OPs lead to resonances separated by exactly
2 fsp. One special case is considered with OP ii). Here the tunings were cho-
sen such that the carrier is resonant on the upper resonance branch. Thus,
lower and upper sidebands are recycled within the respective bandwidth.
Additionally, the lower sideband field is resonant at −2 fsp. This special case
represents the combination of tuned SR, where both sidebands are recycled,
and detuned single sideband SR here performed simultaneously leading to a
further sensitivity enhancement at frec = 2 fc.

Fig. 4.8 compares TSR operated at the OPs i)-iii) with GEO 600 tuned to
2500 Hz. At low frequencies OP ii) achieves a sensitivity improved by one
order of magnitude and provides additionaly an enhancement at 2000 Hz.
However, since at low frequencies the quantum noise limited sensitivity is
expected to be covered by thermal noise, configurations yielding an increased
sensitivity in the mid-frequency region are exemplary considered with OP i)
and OP iii). Here a peak at 500 Hz is realized for both OPs. A further en-
hancement resulting from the second resonance is achieved at 1500 Hz for
OP i) and at 2500 Hz for OP iii). Considering the direct comparison of OP iii)
with GEO 600 reveals, that this modus of TSR represents a compromise of the
tuned and detuned SR since at low frequency the improvement is consider-
ably (shaded area in Fig. 4.8) whereas at the second recycling frequency (here
2500 Hz) GEO 600 yields a better peak sensitivity. Nevertheless, the decreas-
ing sensitivity of TSR above approximately 2000 Hz is not that significant if
compared to the gained improvment in the mid-frequency range. Accordingly,
this mode of TSR might find application where both, a satisfactory sensitivity
at mid frequencies and a high narrowband senitivity at high frequencies are
requiered.



86 DETUNED TWIN-SIGNAL-RECYCLING 4.4

10-23

10-22

10-21

10-20

 100  1000

Li
ne

ar
 n

oi
se

 s
pe

ct
ra

l d
en

si
ty

 [1
/√

H
z]

Frequency [Hz]

GEO600 amplitude quadrature

OP i)
OP ii)
OP iii)

Figure 4.8 — The figure shows the sensitivities (assuming a readout of the amplitude quadra-
ture) achieved at the OPs i)-iii) illustrated in Fig. 4.7. The red curve demonstrates
the combination of tuned and detuned SR. In comparison the sensitivity of
GEO 600 (tuned to 2500 Hz) is displayed by the grey curve. The shaded area
emphasize the improvement at OP iii) in the lower frequency band.

4.4.2 Tunable bandwidth

The use of mirrors with a controllable reflectivity to simply adapt the finesse
of an optical resonator were proposed for interferometric gravitational-wave
detectors years ago by Strain and Hough [80]. Here, two potential applications
were suggested. First, to use such a controllable mirror as arm cavity end
mirror providing a balancing of the laser power stored in the arms. This appli-
cation realizable with an etalon used as end mirror was recently investigated
for the use in Advanced VIRGO [81].

Second with respect to SR and RSE Strain and Hough stated that “[. . . ]
if a variable reflectivity mirror can be used as the signal recycling or signal
extraction mirror then a range of frequency responses can be obtained by
simple electronic control of the mirror. The response could even be altered
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dynamically to follow the development of a signal with a predictable evo-
lution, e.g., that expected from coalescing binary neutron stars [82][. . . ]”. In
subsequent experiments the flexibility gained from a mirror with variable
reflectivity (in form of a two-mirror cavity or a Michelson interferometer) was
demonstrated by G. de Vine [83, 84]. A thermal tunable etalon used as SRM
in a dual-recycled Michelson interferometer was demonstrated in [85, 86].

The investigation of a three-mirror cavity presented in Sec. 2.2 showed inter
alia that the coupling depends on the chosen OP. Consistently, the bandwidth
of resonances appearing in the transfer function of a three-mirror cavity can be
adapted by a proper choice of the OP. Here, serving as a pattern a resonance
at 3 kHz is considered. The yellow curve shown in Fig. 4.7 is separated by
-3 kHz from the lower resonance branch. Thus, by shifting the OPs along this
curve the bandwidth of the resonance can be varied. This can be understood
by considering the TSR-resonator build by SRM and TSRM (refer to Fig. 4.1)
as compound mirror whose effective reflectivity depends on its tuning which
accords to the suggestion of Strain and Hough for a mirror with variable
reflectance .

Fig. 4.9 a) shows the shot noise limited sensitivities of TSR operated in
the narrowband modus optimized for 3 kHz. It can be seen that the peak
sensitivity is continuously increased by going from OP 1) to OP 5). The maxi-
mum peak sensitivity is achieved at a detuning ΦTSR2 = ±π/2. Compared
with the optimum OP (grey curve), the sensitivity at 3 kHz can be improved
by two order of magnitudes. Also, a broadband enhancement in the upper
frequency band can be achieved. The shaded grey area highlights the enhance-
ment gained at OP 2) where also at 5000 Hz a considerably high sensitivity is
realized.

Fig. 4.9 b) compares the noise spectral densities for the optimum OP and
OPs 1)-5) in combination with squeezed field injection. Although for OP 1)-5)
no optimization of the squeezing angle is performed, the injection of frequency
independent squeezing still leads to a relatively broadband enhancement as
exemplary highlighted for OP 2.

Generally, with this modus of TSR high peak sensitivities can be achieved
at any recycling frequency. The characteristics of the senitivity curves (peak
sensitivity, bandwidth and distances between both appearing resoncances)
shown in Fig. 4.9 can be moved to higher (lower) frequencies by shifting
the OPs (yellow curve in Fig. 4.7) off (towards) the lower resonance branch.
Therefore, in view of the static frequeny splitting which forbidds a tuning
of the peak senitivity when TSR is operated at the optimum OP, the modus
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Figure 4.9 — Comparison of the sensitivities of TSR optimized for 3 kHz and TSR at the optimal
OP without (a) squeezed input and (b) with squeezed input .Here, the readout of
the phase quadrature as well as a frequency independent squeezing (r = 1) of
the phase quadrature are assumed.
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of TSR discussed above provides a suitable method to adapt the sensitivity
curve to signals of possible gravitational-wave sources.

4.4.3 Tunable frequency splitting

The frequency splitting of the TSR resonators is detemined by the fixed trans-
mission Tc of the center mirror (SRM). Accordingly, an in situ tuning of the
frequency becomes possible if SRM is replaced by an mirror with varaible
reflectivity. Here, it is preferable to use a monolithic etalon instead of a short
three-mirror cavity. Since a cavity requieres additional length control and auto
alignement servo loops, an realization is challenging. In contrast to this, if an
etalon is used, no additional angular degrees of freedom needs to be realized.
Furthermore, the lenght control and thus the effective transmission can be
adjusted by the etalons substrate temperature [86]. Thus, in an independent
measurement the transmission in dependence of the temperature could be
determined.

The resonance feature of the etalon enhanced TSR resonators is that of
an four-mirror cavity. Accordingly, the optimum operating point needs to
be determined according to the Eqs. 3.16 and 3.17 obtained in Sec. 3. Except
of this, the resonance feature is still that of an three-mirror cavity. Thus,
for example the sensitivity curves shown in the right graph of Fig. 4.3 for
different values of Tc can be realized by an proper adjustment of the etalons
temperature.

4.5 Parameters for a possible application in GEO-HF

Exemplary parameters and requirements for the implementation of TSR in
the existing infra structure of GEO 600 were already presented in [87]. The
main emphasize was to shape the squeezing enhanced sensitivity curves of
SR and TSR with respect to the expected thermal noise limiting the sensitivity
of the enhanced GEO-HF detector [40]. It was shown, that a broadband tuned
SR yields satisfactory sensitivites and allows the implementation of squeezed
field injection without the need for filter cavities. For the sake of completeness,
in this Section examplary sensitivity curves of GEO-HF and TSR are shown.
Here, the parameters for the TSR configuration were reviewed leading to a
slightly improved sensitivity compared to those shown in [87].

Figure 4.10 shows the squeezing enhanced sensitivity curves in the detec-
tion band from 1 kHz to 10 kHz for various parameters of the interferometers.
The circulating laser power is set to 70 kW and the a squeezing value of about
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Figure 4.10 — The figure compares the squeezing enhanced sensitivities of tuned SR for three
values of RSR and detuned TSR optimized to the expected coating thermal noise.

8 dB (r = 1) was assumed. For tuned (broadband) GEO-HF three values of
RSRM are considered. The green curve was calculated with RSRM = 98.1 %
wich corresponds to the reflectance of the SRM currently used in GEO 600. In
the near future GEO 600 will be operated in the tuned mode with squeezed
field injection. Once the thermal noise level is reached, a change of the SRM
reflectivity (with respect to the thermal noise) will be considered. Accordingly,
the blue and yellow curves show the sensitivity for increased bandwidths
realized with RSRM = 90 % and RSRM = 70 %, respectively.

In comparsion a TSR configuration with RTSRM = 80 % is shown assuming
a frequency splitting of 3500 Hz (red curve). It can be seen that the response
of the TSR configuration is almost perfectly adapted to the thermal noise.
Compared to the SR configuration with RSRM = 70 % an improved sensitivity
in the detection band up to 5 kHz can be realized. Additionaly, TSR might
find application when high peak sensitivities are required in the detection
band at even higher frequencies which could not be covered with the tuned
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Figure 4.11 — Sensitivity curves of RSE and TRSE. The parameters of the RSE topology accords
to the Advanced LIGO optical configuration. In the TRSE configuration the
extraction cavity length was set to 4 km.

SR configuration.

4.6 Application in Advanced LIGO: Conversion of
RSE to TRSE

As the RSE toplogy is based on a coupled linear three-mirror cavity as well, it
is evident that the elongation of the extraction cavity can lead to a simultane-
ous enhancement of upper and lower signal sidebands at a certain frequency
and a broadband shot noise reduction by injection of frequency independent
squeezing. Here, an exemplary configuration is presented under consideration
of the parameters targeted for the Advanced LIGO optical configuration [16].
Figure 4.11 compares the squeezing enhanced sensitivities of the tuned (broad-
band) RSE and detuned TRSE configurations. In both cases, the arm cavities
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where considered with L = 4 km, Rc = 0.995 and Rend = 1.0. The reflectance
of the extraction mirror was set to RRSE = 0.96. In the case of TRSE the extrac-
tion cavity length was set to 4 km. The shown sensitivity curves are related
to an input power of 125 W and a squeezing factor of r = 1 corresponding to
about 8 dB squeezing of the noise variance. It can be seen, that the sole elon-
gation of the extraction cavity leads to an improvement in peak sensitivity by
more than a factor of two at 300 Hz. Accordingly, a TRSE configuration should
be considered for future detector topologies aimed at an optimal sensitivity in
the mid-frequency detection band.



CHAPTER 5
Experimental realization of

Twin-Signal-Recycling

In this Chapter the first experimental realization of a Twin-Signal-Recycling
(TSR) Michelson interferometer and also its enhancement by squeezed light in-
jection is reported. All longitudinal degrees of freedom were stably controlled,
and a broadband quantum noise reduction of the interferometers shot noise
by a factor of up to 4 dB was demonstrated. The system was characterized by
measuring its quantum noise spectra for several tunings of the TSR cavities. A
good agreement between the experimental results and numerical simulations
was found.

The main results of the experimental realization of TSR were published in

• “Broadband squeezing of quantum noise in a Michelson interferometer with
Twin-Signal-Recycling ”
André Thüring, Christian Gräf, Henning Vahlbruch, Moritz Mehmet,
Karsten Danzmann, and Roman Schnabel
Optics Letters, 34, 824 (2009)

5.1 Parameter choice

There was the opportunity to reuse and upgrade the experimental setup de-
veloped for the foregone demonstration of a squeezed-light-enhanced Power-
and Signal-Recycled Michelson interferometer [41]. Accordingly, by means
of comprehensive parameter studies and FINESSE [88] simulations it was re-

93
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viewed to what extent the demonstration of a Michelson interferometer with
Twin-Signal-Recycling could be realized within the given infrastructure.

5.1.1 TSR resonator length

At first, possible geometries of the TSR resonator (built by the SRM and the
TSRM) were investigated. Here, the choice of the resonator length was subjet
to several boundary conditions:

1 | The realizable frequency splittings of the coupled TSR resonators had to
be within a frequency range from 5 MHz to 15 MHz. The lower boundary
accounted for the fact that the squeezing is expected to be masked by
classical laser noise below 3 MHz. The upper boundary results from
the presence of a modulation field at 15 MHz (used inter alia for the
length control of the OPA) possibly disturbing the measured spectrum.
The frequency splitting of a three-mirror cavity is determined by the
coupling of both resonators and by the ratio of their lengths (refer to
Sec. 2.2.5). Since the coupling was already determined by the existing
SRM, LTSR2 had to be chosen properly.

2 | The beam profile (interferometer mode) was defined by the existing
setup of the dual-recycled Michelson interferometer (DRMI). In the
context of already available mirrors with radii of curvature (ROC) of
1 m, 1.5 m and 2 m the length of the TSR resonator had to be chosen such
that a matching to the predefined interferometer mode was ensured.

3 | The RF-modulation frequencies used in the DRMI experiment should be
reused also for the extended setup. Since the coupling of error signals
for the various longitudinal degrees of freedom (DOFs) depends on
the resonator lengths as well, the existing RF-scheme gave a further
boundary condition for the choice of LTSR2.

Fig. 5.1 shows the frequency splitting (lower graph) achievable with the res-
onator length determined by the mirrors radius of curvature (upper graph).
Here, the reflectivity of the TSRM affecting the gain (bandwidth) of the res-
onances was tentatively set to RTSRM = 0.95. The resonator geometry with
LTSR2 = 1.94 m gives a frequency splitting of approximately 5 MHz which
coincides with the lower bound of the possible spectrum. Accordingly, this
solution was excluded a priori. The configuration with LTSR2 = 0.29 m gives
a resonance already close to the upper bound of the spectrum. Additionally,
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Figure 5.1 — The upper graph shows the radius of curvature of the beam propagating from
the SRM towards the TSRM. From this investigation possible positions of the
TSRM with the respective ROC can be deduced. The lower graph shows the
resonance doublet for these resonator geometries.

the bandwidth of the TSR resonators is comparatively large. Hence, this reso-
nance doublet might not lead to distinct structures (i.e. sharp resonances) in
the squeezing spectrum. The intention was to deduce the actual OP of the TSR
interferometer from the measured squeezing spectrum. Accordingly, clear
resonances in the spectrum would allow an easier interpretation/identifica-
tion of the interferometers state. By increasing the reflectivity of the TSRM a
narrower resonance can be achieved. However, in presence of internal inter-
ferometer losses a higher reflectivity of the TSRM would increase the losses
of the incoupled squeezed light limiting the shot noise reduction around the
resonance. Satisfying solutions (with respect to the frequency splitting) are
obtained for LTSR2 = 0.575 m and LTSR2 = 1.35 m. Besides the bounded pos-
sibilities given by the available curved mirrors also a combination of a lens
and a flat mirror was considered. Such a combination allows the realization of
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almost any resonator length providing a great flexibility in the experimental
setup. These possible configuration were reviewed with respect to a realizable
locking scheme (Sec. 5.1.2).

5.1.2 Simulation of error signals

The control scheme of the DRMI was based on RF phase modulations at
15 MHz and a variable modulation frequency in the order of the FSR (123.6 MHz)
of the SRC. Furthermore, two polarization modes were used to decouple the
error signal for the dark port condition from all other DOFs (for further de-
tails refer to [41, 87]). Within this conditions, the control scheme for the TSR
interferometer was investigated by means of FINESSE [88] simulations. The
corresponding kat-files are documented in Appendix B. Appropriate error
signals were found by the consideration of any possible detection port accessi-
ble in the experimental setup. Initially, the simulations were accomplished
without taking the effect of higher order modes into account.

One main result of the control scheme investigations was that configu-
rations with unequal lengths of the TSR resonators show a strong coupling
in the error signals for the positions of the SRM and the TSRM to all other
DOFs. The investigation revealed that in the case of equal resonator length
(LTSR1 = LTSR2 = 1.21 m) at least the coupling of the SRM position and the
dark port condition of the Michelson Interferometer (MI) to the TSRM error
signal can be reduced. The normalized control matrix obtained for this con-
figuration is given in Tab. 5.1. The corresponding error signals are shown
in Fig. 5.2. It can be seen that the error signals for the position of the PRM
(first row in Tab. 5.1/Fig. 5.2) and the dark fringe condition of the MI (second
row) are perfectly decoupled from the other DOFs. But in the error signal for
the position of the TSRM there exists a strong dependence on the PRC state.
However, since the signals for the PRC and the MI are perfectly decoupled a
hierarchic stabilization was realizable. Aside from the strong coupling, the
error signal for the TSRM provides a capture range of one FSR of the TSRC.
Thus, at a point of the locking procedure where the PRC and the MI are already
stabilized and the SRM is close to the target OP, one immediately obtains an
appropriate error signal for the position of the TSRM.

The error signal for the position of the SRM shows the least decoupling. In
fact, this signal is dominated by the other DOFs. However, the control matrix
is at least linearly independent allowing again a hierarchic stabilization. It
should be mentioned that the calculation of the control matrix implies that
while error signals are investigated in dependence on a certain DOF all other
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Table 5.1 — Normalized control matrix. Unsatisfactory values meaning a strong coupling are
highlighted in red.

Assigned DOF PRC MI SRC TSRC
PRC 1 1.18× 10−6 1.84× 10−11 5.88× 10−9

MI −9.32× 10−4 1 0 0
SRC -579.19 -32.18 1 -55.70
TSRC -3.07 -0.12 8.18× 10−3 1
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Figure 5.2 — The control matrix for the stabilization of the longitudinal DOFs of the TSR
interferometer. Each row shows the error signals depending on the four DOFs
(columns) obtained from one single photo diode. Note, that the y-axis scale is
fixed for plots within on row. The diagonal of the control matrix represents the
error signals of that photo diode assigned for the stabilization of the respective
degree of freedom.
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Table 5.2 — Final set of the TSR interferometer parameters.

Interferometer arm lengths 1 m, Schnupp asymmetry of 7 mm
Distance of PRM/SRM to BS 0.21 m
Length of TSR resonator 1.21 m
FSRs (PRC/SRC/TSRC) 123.6 MHz
Finesse FPRC = FSRC ≈ 60, FTSRC ≈ 40
Radius of curvature Mend 1.5 m
Radius of curvature PRM/SRM 1.5 m
Radius of curvature TSRM 0
Internal TSRC lens f = 0.5 m
waist size in PRC/SRC 499 µm
waist size on TSRM 181 µm

Table 5.3 — Parameters of the developed control scheme.

Assigned DOF fdemod / φdemod Detection port
PRC 15 MHz / 0◦ Interferometer reflection
MI 123.6 MHz / 90◦ PBS in front of SRM
SRC 123.6 MHz / 0◦ Interferometer reflection
TSRC 123.6 MHz / 0◦ Interferometer transmission

DOFs are at their target OP. Hence, in the experiment the interferometer
state has to be prepared accordingly to obtain the required error signals.
Furthermore, the control scheme does not provide the opportunity to define
the OP of the coupled TSR resonators (e.g. by a variable modulation frequency
as it was accomplished in [89]). Moreover, it could be shown that error signals
(similar to those shown in Fig. 5.2) are obtained also for OPs close to the
optimum OP. Therefore, the intention was to determine the actual OP on the
basis of the measured squeezing spectrum serving as a appropriate monitor.

5.1.3 The final choice of parameters

According to the above considerations the decision was made to use an inter-
ferometer configuration with equal length of the TSR resonators. Furthermore,
the reflectivity was chosen to RTSRM = 0.95 to obtain distinct structures in the
squeezing spectrum allowing the identification of the actual OP. The final set
of design parameters is given in Tab. 5.2 and Tab 5.3.
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5.2 The experimental setup

To simplify matters a reduced schematic is shown in Fig. 5.3. The main laser
source was a Nd:YAG non planar ring oscillator with a cw single-mode output
power of up to 2 W at 1064 nm. The laser beam was transmitted through a
ring resonator providing spatial and high-frequency amplitude and phase-
noise filtering. A major part of the laser power was frequency doubled in a
non-linear resonator; details can be found in [65, 87]. About 1.5 mW of the
filtered beam at the fundamental frequency served as local oscillator beam for
homodyne detection.

Approximately 35 mW s-polarized light was injected into the TSR Michel-
son interferometer through the PRM. The PRM had a power reflectance of
90 % and, together with the interferometers end mirrors having a reflectance
of 99.92 %, formed the carrier resonating PRC. The length of the PRC was
approximately 1.21 m, corresponding to a free spectral range of 123.6 MHz.
Its finesse was measured to 60, leading to a bandwidth of about 2 MHz when
the interferometer was locked to a dark fringe at the signal output port. The
PRC length, the MI dark port, and the TSR cavity lengths were stabilized by
RF-modulation/demodulation schemes (refer to Sec. 5.1.2) and by piezo actua-
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tion of mirror positions. For this purpose the s-polarized interferometer input
beam was phase modulated at 15 MHz as well as 125.6 MHz and accompanied
by a 10 mW p-polarized beam of the same frequency carrying the same two
phase modulations. Note, that the modulation frequency of 125.6 MHz dif-
fered from that used for the FINESSE simulation presented in Sec. 5.1.2. Since
the actual SRC length was realized with approximately 1.19 m giving a FSR
of 125.6 MHz, the modulation frequency was adapted accordingly. The error
signal for the PRC length control was gained from the 15 MHz modulation on
the s-polarized light reflected from the PR cavity (PDPRC in Fig. 5.3). The MI
dark fringe error signal was derived from the 125.6 MHz modulation on the p-
polarization (PDMI) detected behind a PBS placed between the interferometer
beam splitter and the SRM to decouple the polarization modes. The length
control of the two coupled TSR cavities built by the end mirrors, the SRM and
the TSRM utilized the sidebands at 125.6 MHz in the s polarization detected in
reflection of the PRM (PDSRC) and in transmission of one end mirror (PDTSRC),
respectively. Since the sidebands at 125.6 MHz were within the bandwidth of
the PRC and were thus enhanced, the interferometer arm length difference
of 7 mm was still sufficient to obtain proper error signals for the positions of
the SRM and the TSRM. The optical length of the cavity built by the SRM
and the end mirrors was approximately 1.19 m, the length of the resonator
formed by the SRM, and the TSRM was realized with about 1.26 m. With the
SRM power reflectance of 90% this leads to an expected frequency splitting of
approximately 6.1 MHz.

Another 15 mW of the filtered main laser beam was used for length control
of the squeezed light source cavity (not shown in Fig. 4.1). The squeezed light
source used type I optical parametric amplification (OPA) and was realized
as a single-ended standing-wave nonlinear resonator formed by two mirrors
and a PPKTP crystal (see Sec. 5.5.1). The squeezed light source was pumped
by 450 mW of 532 nm radiation and provided a dim amplitude squeezed field
of approximately 45 µW at 1064 nm. The squeezed field passed a combination
of a polarizing beam splitter, a λ/2–plate, and a Faraday rotator and was
matched to the interferometer mode with a visibility greater than 99%. Since
the TSR interferometer was locked at its dark port, the squeezed field was
reflected by the interferometer and, owing to the polarizing optics mentioned
before, was found in the interferometer signal output spatial mode [5]. This
combined mode was matched to the local oscillator beam of the homodyne
detector with a measured visibility of about 95%.
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Figure 5.4 — Measured mode spectrum of the PRC.

5.3 Alignment procedure

The locking scheme of the experiment included only the stabilization of longi-
tudinal degrees of freedom. Therefore, the alignment of the angular degrees
of freedom were accomplished manually. In this Section the single steps of
the alignment procedure and the achieved mode matchings are demonstrated.
Note, that the procedure demonstrated here differs from that applied for the
DRMI (see [87] for details) with respect to the alignment of the TSR resonators
and the squeezed field injection.

5.3.1 Interferometer alignment

At first the fringe visibility of the MI (without PR) was aligned. The light
fields were detected in reflexion of the interferometer (PDPRC) and in the dark
port (PDMI) giving the visibility of the s-polarized beam and the p-polarized
beam, respectively. In both cases, a measured visibility of better than 99.9 %
was achieved. In a next step, the PRC was aligned whereat solely the position
and the angular DOFs of the PRM were modified to keep the pre-aligned
visibility of the MI. Fig. 5.4 shows a measured mode spectrum of the scanned
PRC. From this measurement a mode matching efficiency of about 96 % can
be deduced assuming that the input beam was a pure TEM00 mode. Actually,
the input beam showed an elliptical beam profile caused by the EOM used
for the phase modulation at 125.6 MHz. Accordingly, the beam consisted of
higher order modes for which reason the mode matching efficiency of the
TEM00 mode to the PRC mode was probably better than 96 %.

For the initial alignment of the SRC the PRM was tilted to suppress the



102 EXPERIMENTAL REALIZATION OF TSR 5.3

buildup in the PRC. Additionally, to couple a small fraction of the light
circulating in the interferometer into the SRC the MI was locked slightly offset
from the dark fringe. In this stage, the SRC could be pre-aligned without the
need for a stabilization of the PRC. Afterwards the PRM was aligned again
and the SRC was matched to the mode defined by the locked PRC. The mode
spectra measured at these two stages of the SRC alignment are shown in
Fig. 5.5. The mode matching efficiency is almost 96 % in both cases. However,
in the case with locked PRC just one dominating HOM (that was identified
with the TEM01 mode) appears in the spectrum. There are three reasons
explaining the difference of the spectra. First, the tilt of the PRM applied in the
first step of the SRC alignment causes a displacement of the beam. Second, the
mode matching of the input beam to the PRC mode was not 100 %. Thus, if the
PRC is locked, the circulating TEM00 mode differs from that of the input beam.
Third, when locked to the TEM00 mode the PRC filters out the HOMs present
on the input beam. Note, that this measurement confirm the assumption, that
the actual mode matching efficiency to the PRC was better than 96 %. The
fact that the HOMs (except of the TEM01 mode) spectrum of the SRC vanishes
when the PRC is locked to the TEM00 mode could be traced back to the mode
cleaning effect of the PRC. Consistently, assuming that the two dominating
HOMs present in the spectrum of the scanned PRC (Fig.5.4) came already
with the input beam leads to an actual mode matching efficiency of about
99.5 %.

In the final step of the SRC alignment procedure the MI was locked on its
dark fringe. From the mode spectrum obtained in this case (Fig. 5.6) it can
be deduced that the presence of the TEM01 mode in the spectrum shown in
the right part of Fig. 5.5 does not originate from a misalignment of the SRC
but from the imperfect fringe visibility of the MI. The left graph of Fig. 5.6
compares the measurements with (black curve) and without (red curve) offset
from the dark fringe. It can be seen, that the amount of the TEM01 mode is
almost the same in both cases. The right part of Fig. 5.6 demonstrates, that
an online adjustment of the MI visibilityled to an reduction of the TEM01
mode by a factor of about 25. Accordingly, from the measurement shown in
Fig. 5.5 the actual mode matching efficiency of the SRC to the PRC mode can
be calculated to 99.5 %.

For the subsequent alignment of the TSRC the PRM was tilted again and
one arm of the interferometer was blocked. In this case, the SRM together
with one end mirror formed a low finesse cavity (FBS

SRC ≈ 4) since the lossy
beam splitter is included. Together with the TSRM this cavity built a linear
three-mirror cavity. Accordingly, the coupling to the TSRC resonator built
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Figure 5.5 — Pre-alignment of the SRC. Left: Mode spectra of the scanned SRC without aligned
PRM. Right: Modes spectra with aligned and stabilized PRC. In both cases the
MI was locked slightly offset from the dark fringe. The residual HOM in the
spectrum shown on the right was identified with the TEM01 mode originating
from the imperfect fringe visibility of the MI. In a further stage of the alignment
procedure the amount of the TEM01 could be reduced by a factor of about 25
(refer to Fig. 5.6).
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TEM01 mode was reduced by a factor of approximately 25.
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by the SRM and the TSRM was strongly dependent on the tuning of the SRC
which complicated the alignment of the TSRC. This procedure was however
obligatory to ensure that the adjustment of the lens position inside the TSRC
resonator occurred with respect to the mapping of the interferometer mode
on the flat TSRM. The mode spectra of the TSRC for three arbitrary tunings
of the SRC are shown in the left graph of Fig. 5.7. It can be seen that the
absolute peak height of the TEM00 mode as well as the relative amount of the
dominating HOM depend on the actual tuning of the SRC. For that reason
a calculation of the mode matching efficiency could not be accomplished.
However, the alignment and the mode matching of the TSRC was checked
using the transmitted control beam of the locked OPA as described in the
following Section.

5.3.2 Coupling of the squeezed light source to the interferometer

To match the squeezed light mode to the TSR interferometer mode, the OPA
was stabilized on the TEM00 mode utilizing the control beam. Here, the pump
field at the second harmonic was blocked so that the fundamental field (control
beam) was not parametrically amplified or deamplified. So the transmitted
control beam served as reference for the TEM00 mode of the later generated
squeezed light and was matched to the single TSRC. Unfortunately, it could be
observed that in some cases an apparently satisfying mode matching efficiency
of the control beam to the TSRC did not necessarily imply appropriate mode
matchings to the SRM and the MI. For that reason, the alignment of the OPA
was checked using the beam transmitted through the TSRC. For this purpose,
the TSRC was stabilized by means of a DC offset lock. The transmitted TEM00
mode was coupled to the (scanned) OPA and the mode spectra was analyzed.
Indeed, mode spectra similar to those obtained for the control beam when
coupled to the OPA could be observed confirming the proper alignment. This
procedure led to an achieved mode matching efficiency of better than 99.5 %
calculated from the spectrum measured for the control beam coupled to the
TSRC (right graph in Fig. 5.7).

5.3.3 Alignment of the homodyne detector

In the final step the mode reflected at the signal port of the TSR interferometer
was matched to the local oscillator beam. For simplicity, the TSR interferome-
ter was dumped such that only the part directly reflected at the TSRM served
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Figure 5.7 — Mode spectra of the TSRC. Left: Spectra for three arbitrarily tunings of the SRC.
Right: Spectra obtained for the control beam coupled to the TSRC from the signal
port side.

as reference for the interferometer mode. A fringe visibility of about 95 %
could be achieved whereat the imperfect beam profile of the local oscillator
beam could be identified as the limiting factor. Since some of the lenses in the
LO beam path possibly causing the observed distortion were also used for the
coupling of the main interferometer beam to the PRC the realized visibility
of 95 % represents (in view of the complexity of the experimental setup) a
satisfying result. In addition, it could be estimated that despite the imperfect
fringe visibility a sufficient shot noise reduction can be achieved allowing a
demonstration of the squeezing enhanced TSR interferometer.

5.4 Hierarchic stabilization of the TSR interferometer

In this Section the hierarchic stabilization of the TSR interferometer (performed
in accordance to the control scheme developed in Sec. 5.1.2) is presented by
means of an exemplary measurement. Here, the states of the four DOFs were
monitored during the stabilization process by detecting the light powers in
that four ports used for error signal generation. As well, the control signals
fed back onto the actuators for the PRC (PZT-PRM), the MI (MI-PZT), the
SRC (SRM-PZT) and the TSRC (TSRM-PZT) were monitored. From these
eight traces (which were recorded with two LeCroy WJ314 oscilloscopes)
the actual state of the interferometer can be deduced. Figures 5.8 and 5.9
show the traces corresponding to the measured light powers and the feedback
signals, respectively. In the first stage of the stabilization procedure the PRC
was locked (red traces). Afterwards, the MI was stabilized on its dark fringe
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Figure 5.8 — Hierarchic stabilization of the TSR interferometer. The demonstration of the long
time stability shown here bases on two subsequent measurements performed
with a time-lag of 14 minutes. The shown traces (DC powers) were detected in
reflection of the MI (red trace), in the dark port (green trace), in transmission of
one end mirror (blue trace) and in the signal detection port (yellow trace). The
shaded areas on the left highlight the four stages of the hierarchic stabilization.
From dark to bright: un-stabilized, PRC locked, PRC+MI locked , PRC+MI+TSRC
locked. The stabilization of all DOFs (PRC+MI+TSRC+SRC) was realized at
t = 1.4 min.

(green traces). Please note, that the MI state was monitored by detecting the
p-polarized light transmitted from the PBS placed in front of the SRM. Since
the dark fringe condition for the p- and s-polarized beams were not degenerated
due to different penetration depth in the steering mirror placed in one MI arm,
the p-polarized beam has a non-zero transmission into the dark port although
the dark fringe condition is fulfilled for the s polarized beam. In the third stage
it was possible to scan the TSRC length identifiable with the triangular driving
voltage applied on PZT-TSRM (yellow trace in Fig. 5.9). Simultaneously, the
SRM was manually (i.e. by adjusting the offset of the corresponding feed back
voltage) moved towards its target position to achieve a proper error signal
for the TSRC. In the last stage – after the TSRC was locked – the SRC was
stabilized on its target OP. Note the correlated jump in the feed back signals of
PZT-SRC (blue trace in Fig. 5.9) and PZT-TSRC (yellow trace). Since a length
change of the SRC caused by a movement of the SRM also changed the length
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Figure 5.9 — Feed back signals corresponding to Fig. 5.8.

of the TSRC, the TSRM must follow the SRM to maintain the targeted tuning
of the TSRC.

The measurement presented here demonstrates that the developed control
scheme — despite strong couplings of the DOFs — allowed a longtime stable
operation of the TSR interferometer. The duty cycles achieved were sufficient
to perform the subsequent injection of squeezed light into the TSR interfer-
ometer and the measurement of its quantum noise spectra. So it was possible
to modify the actual OP of the TSR under consideration of the measured
spectrum whereby the targeted optimum OP could be reached (refer to 5.5).

5.5 Broadband squeezing of quantum noise

5.5.1 Characterization of the injected squeezed field

The squeezed light source was developed as described in [90]. A PPKTP
crystal was used as non-linear medium and placed in a two-mirror cavity
with a finesse of about 150. The control scheme for the length stabilization of
the squeezed light source and the relative phase lag between the fundamental
and the harmonic pump field (obtained from SHG in a further non-linear
cavity) was similar to that used in [65]. For a detailed description of the
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Figure 5.10 — Comparison of measured and simulated (straight lines) squeezing spectra for
several detunings of the TSRC. The upper and lower boundaries correspond to
the anti-squeezing and the squeezing, respectively. Here the TSRC was on anti-
resonance for the carrier. The homodyne detection angle in the experiment were
chosen to give maximum shot noise suppression below the TSRC resonance
leading to a distinct structure of the spectrum. Note, that these detection angles
does not correspond to the detection of the amplitude quadrature. In the
simulation values in a range from −7.2◦ to −9.45◦ for the detection quadrature
were used. The detuning was determined by means of the resonance structure
in the spectrum.

squeezed light source please refer to [90]. The discussion in this Section is
restricted to the characterization of the squeezed field and its coupling to the
TSR interferometer on the basis of an exemplary measurement.

At first, the squeezed field reflected at the TSRC (the SRC and the MI
were blocked) was characterized by means of a measurement of the squeezed
and anti-squeezed quadrature. Here, the TSRC was held on anti resonance
allowing an investigation of the initially injected squeezed field. As well, the
homodyne detection and the corresponding control loops could be proved
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without the influence of the complete TSR interferometer. In a next step, the
coupling of the squeezed light to the TSRC was analyzed. Here the TSRC was
locked on several tunings within a range from 5 MHz to 15 MHz. The error
signal for the applied DC offset lock was gained from the detection of the dim
(deamplified) control beam in transmission of the TSRC. Figure 5.10 shows
measured and simulated spectra. An overall detection efficiency of almost
70 % can be deduced. The best agreement of measurement and simulation
was obtained by setting RTSRM = 0.94 and RSRM = 0.905. The internal loss
of the TSRC was assumed with 0.2 %. Note, that the TSRC builds an under
coupled cavity for the squeezed field injected in the signal port (through
TSRM). Accordingly, the quadrature rotation of the detuned TSRC is less than
90◦. For that reason the noise level at the resonance of the TSRC does not reach
the level of the anti-squeezed quadrature. Furthermore, if the internal loss in
the simulation is assumed to be greater than 0.2 %, the quadrature rotation
decreases further and no adequate fit to the measurement could be achieved.

5.5.2 Quantum noise spectra of the TSR interferometer

Figure 5.11 shows quantum noise spectra of the TSR interferometer for differ-
ent suboptimal tunings of the TSR cavities. Curves (a)–(d) provide upper and
lower bound references and represent the noise spectra with strong under-
coupling to the TSR cavities. For these measurements these coupled cavities
were on antiresonance (similar to the measurement described in Sec. 5.5.1).
For all the other curves in Fig. 5.11 the TSR cavities’ lengths were close to but
not at the optimum OP and therefore produced dispersion and a frequency-
dependent rotation of the squeezing ellipse. The noise spectra for the optimum
OP of the TSR cavities are shown in Fig. 5.12, providing the lowest quantum
noise floor for a strong coupling to the TSR cavities. The optimum OP is
realized if the detunings of the two TSR cavities are such that the resonances
of upper and lower sidebands are arranged symmetrically around the car-
rier frequency (i.e. ΦTSRC1 = ΦTSRC2 = 0). Only in this case no dispersion
is produced by the TSR cavities, the squeezing ellipse is not rotated, and a
broadband shot noise reduction from frequency-independent squeezed light
injection is achieved, as proposed in [91]. Starting with the interferometer
stabilized at suboptimal tunings, the optimum OP was reached by smoothly
adjusting the offsets of the error signals for the SRM and the TSRM. As il-
lustrated in Fig. 5.12 the resonance peaks were brought together until the
rotation into the anti-squeezed quadrature vanished. The remaining bump at
approximately 6.1 MHz arises not from quadrature rotation but from losses
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Figure 5.11 — Comparison of measured and simulated quantum noise spectra of the squeez-
ing enhanced TSR interferometer at suboptimal OPs: (a), (b) Simulated and
measured anti-squeezing spectra as well as (c), (d) simulated and measured
squeezing spectra when the TSR interferometer was tuned to antiresonance.
(e)(n) Simulated and measured spectra when the TSR cavities were locked close
to but not at the optimum OP.

inside the interferometer. Notice that the squeezing is just affected by inter-
ferometer losses at sideband frequencies fulfilling the resonance condition of
the coupled TSR resonators and thus entering the interferometer. Hence from
this measurement the frequency splitting can be deduced to approximately
6.1 MHz, which agrees with the TSR parameters.

The straight lines in Figs. 5.11 and 5.12 represent the numerical simulations,
which are based on the mirror reflectivities, macroscopic cavity lengths, cavity
detunings, optical loss, and the homodyne angle. The cavity detunings for
each measurement were derived from the resonance frequencies in the noise
spectra. The values for the homodyne angle and for the optical loss due to
an interferometer dark port offset were then fitted and were found to match
the results of independent measurements within their uncertainties. For the
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Figure 5.12 — Measured (f) and simulated (e) broadband squeezing of quantum noise in the
TSR interferometer achieved at the optimum OP. For traces (a)(d) see caption of
Fig. 5.11

experimental data shown in Fig. 5.11 the uncertainty for the actual homodyne
angles was untypically high, for two reasons. First, the quadrature angle
could not be determined by simply minimizing the squeezed noise variance
in Fig. 5.11 because of the quadrature rotation and frequency-dependent
quantum noise. Second, when varying the TSR cavity detunings the mode
degeneracy and therefore the power in residual transversal higher-order
modes caused an offset change of the homodyne quadrature error signal. For
this reason the homodyne angle also varied from trace to trace in Fig. 5.11.
For the simulations of curves (i) and (k) detection angles of 9◦ and 12.6◦,
respectively, were used and detection angles between 0◦ and 1.4◦ for all other
curves. The optical loss of the interferometer was also dependent on the
cavity detunings. First, the error signals for the length control of the two
TSR cavities and the PR cavity coupled with the error signal of the dark port
control. Notice, that an offset from the perfect dark port condition increases
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the loss on the squeezed states. Second, the changes in the degeneracy with
higher-order transversal modes changed the strength of the according loss
channels. The simulation in Fig. 5.11 is based on values for the loss inside the
TSR interferometer in a range from 0.4% to 3.9%.

In contrast to Fig. 5.11, the simulation for the optimum OP shown in
Fig. 5.12 was not based on any fitting. Here, the homodyne quadrature
angle could easily be optimized and precisely locked to 0◦ by minimizing the
noise floor. Spatial mode degeneracy was not observed, and the dark port
condition could be realized by minimizing the loss peak. The remaining loss
corresponded to the minimum loss of 0.4% in the setup, which was given by
the transmittivities of the end mirrors and non-perfect anti-reflection coatings
of the cavity mirrors and beam splitters.

5.6 Summary

By means of detailed parameter studies and numerical simulations the nec-
essary extensions for an upgrade of a table-top Dual-Recycled Michelson
interferometer to a TSR interferometer were determined and implemented.
It was experimentally demonstrated that an interferometer with TSR and
properly chosen detunings (optimum operating point) of its two coupled
cavities show a broadband quantum noise reduction from the injection of a
non-classical field with a white squeezing spectrum (Fig. 5.12). Although the
experimental realization targeted on the verification of the broadband shot
noise reduction as proposed in [91], the spectra obtained at the other OPs
(Fig. 5.11) demonstrate the possible shaping of the TSR transfer function as
presented in Sec. 4.4.1 and Sec. 4.4.2.



CHAPTER 6
Analysis of a Kerr non-linear

resonator

6.1 Introduction

Since a Kerr non-linear resonator (KNLR) yields an improved response to
phase modulation signals, it came into consideration for gravitational-wave
detectors. Here, its so-called critical state is favorable as it is characterized by
an infinite slope for a particular detuning (see Fig. 6.1). However, compared
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Figure 6.1 — Intra cavity power (left) and phase shift (right) of a KNLR for different strength
of the Kerr effect. The critical state (red curves) is characterized by an infinite
slope for a particular detuning.
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to Michelson interferometers with linear arm cavities, the increased signal to
noise ratio is not based on an enhanced transfer function for signal sidebands
but on the self-squeezing of the vacuum noise. It was shown by Pace et al. [27]
that the radiation pressure noise in a Michelson interferometer with tuned
KNLRs can be canceled at certain sideband frequencies. A detuned topology
similar to the RSE configuration was proposed by Rehbein et al. [28]. Here
an additional cavity is placed in the interferometers detection port forming
together with the non-linear arm resonator a four-mirror cavity. The featured
resonance doublet allows to shift the Kerr noise reduction to arbitrary frequen-
cies. This topology was also considered as a new scheme for a continuous
wave (cw) squeezed light source because it reduces the problem of driving
noise in these sources. The high finesse resonators can be operated on reso-
nance providing the required power build-up with moderate input powers,
and the squeezing can be extracted at frequencies where the classical laser
noise is reduced.

The investigations presented by Rehbein et al. [28] and earlier works [92,
30, 29] are focused on the squeezing of quantum noise. However, it can
be deduced that Kerr non-linear resonators allows an passive pure optical
reduction of laser power noise within their linewidth. Thus, together with
active power noise reduction schemes [25, 26] the Kerr effect can be employed
to achieve the required stabilization of high-power laser required for future
gravitational-wave detectors.

Within this context, a KNLR was investigated experimentally in the frame-
work of this thesis. In order to exploit the optical Kerr effect for laser noise
reduction or squeezed light generation, a high-quality third-order non-linear
optical material is required. Typical third-order non-linearities of optical me-
dia are, unfortunately, rather small. In the pulsed laser regime high laser
intensities can be used to compensate for this. In the continuous-wave laser
regime, interacting χ(2) non-linearities can be employed to obtain an effec-
tive Kerr effect. It was indeed shown that by the means of second harmonic
generation and a subsequent frequency down-conversion, an intensity depen-
dence of the refractive index can be realized. Such a scheme represents an
effective third-order non-linear Kerr medium but utilizes the second-order
non-linearity of, for example, lithium niobate or KTP [42]. The lower or-
der of non-linearity results in a comparatively strong effective third-order
non-linearity.



6.2
CASCADED KERR EFFECT IN SECOND ORDER NON-LINEAR

MATERIALS 115

6.2 Cascaded Kerr effect in second order non-linear
materials

Interacting non-linearities have been discussed analytically and numerically
since the first days of non-linear optics [93, 94, 95, 96]. Here the results are
summarized focusing on the physical understanding of the mechanism that
leads to a cascaded Kerr non-linearity and hence to a noise suppression. For
this purpose, a loss-less second-order non-linear material and the second
harmonic generation in such a material of length L, driven by a field of
fundamental frequency ω0 is considered. In case of optimum phase matching
between the fundamental and the second harmonic mode of the EM field, the
second-harmonic light generated along the length L interferes constructively
over the whole interaction length. Now let’s assume the phase matching
is artificially worsened until the first conversion minimum is reached. The
new situation can be conceptually understood by splitting the crystal in two
parts of lengths L/2. In both parts, when considered independently, SHG still
occurs, although this process is no longer optimized any more. However, the
contributions of both parts now exhibit a differential phase shift. This phase
shift leads to a complete destructive interference after the full crystal length L.
Consequently, no light at frequency 2ω0 exits the crystal. The fundamental
field exiting the crystal can be thought of as a composition of two parts. One
part represents the field that previously has experienced up-conversion to
the second-harmonic frequency. The second part represents the field that
never experienced up-conversion. The phases of the two parts are different
because the phase matching is not optimized as said before, and the refractive
indices at the two wavelengths are therefore different. Since up-conversion
is a non-linear (χ(2)) process, the two parts change their weights if the input
intensity changes. Effectively, the transmitted fundamental light experiences
an intensity-dependent phase shift formally identical to the optical Kerr effect
observed in a χ(3) medium.

A simple mathematical description is obtained by solving the non-linear
wave equation for the involved modes of the optical field assuming a weak
conversion of the fundamental field (fixed intensity approximation) [97]. In this
case one obtains the expression

φ(z) = φprop(z)

+
∆kz

8 + (∆k)2

χ′ Ifund

1− sinc

z·

√(
∆k
2

)2

+ 2χ′ Ifund

 (6.1)
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describing the phase dependence of the fundamental field on the coordinate
of propagation, z. Here ∆k is the wave vector mismatch between the fun-
damental and the second harmonic wave, φprop is the intensity-independent
phase shift due to propagation while χ′ contains material-specific information
(as the effective non-linearity and the propagation speed inside the crystal)
and further depends on both frequencies involved. In the case of minimal
conversion efficiency (at the first phase matching minimum with ∆k ≈ 2π/z)
this expression simplifies to

φ(z) ≈ φprop(z)± χ′

2π
z2 Ifund (6.2)

whereas in the case ∆k = 0 the intensity dependence vanishes. Thus, the res-
onator can be operated as pure frequency doubler or pure Kerr non-linear
resonator by simply adjusting the corresponding phase matching condition
(i.e. by using the temperature dependence of the refractive index in birefrin-
gent crystals). Following this approach, the investigated KNLR was realized
as two-mirror cavity embedding a second-order MgO:LiNbO3 crystal.

6.3 The experimental methods

6.3.1 Preparation of the laser source

This Section is aimed at the description of the length (frequency) stabilization
of the three-mirror ring resonator (referred to as mode cleaner (MC) in the fol-
lowing). The MC was used for spatial higher order modes and high frequency
amplitude and phase noise filtering of the laser source. Additionally, this MC
allowed the decoupling of the filtered laser carrier (serving as pump beam
for the Kerr non-linear resonator) and the Kerr affected noise sidebands (see
Sec. 6.3.3 for details).

As laser source a commercially available (Mephisto 2000 NE from Inno-
Light [98]) continuous wave Nd:YAG Laser system at 1064 nm with a max-
imal output power of 2 Watts was used. This source provides a low-noise
continuous-wave single-mode single-frequency laser beam with a very clean
spatial beam profile with typically less than 2.5 % of the power in higher-order
modes. The relative power noise is below 1× 10−6Hz−1/2 for Fourier frequen-
cies f = Ω/2π above 30 Hz and shows an approximately 40 dB high peak at
the frequency corresponding to the laser relaxation oscillation at frequencies
around 1 MHz. Above these frequencies the power noise falls with 1/ f 2 and
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Figure 6.2 — Illustration of the mode cleaner and laser stabilization.

is less than 3 dB above the shot noise of 100 mW for frequencies above 10 MHz.
A detailed characterization of eight similar lasers can be found in [99].

The MC was realized as ring resonator built by three mirrors glued
on a quasi-monolithic aluminum spacer giving a round-trip length of ap-
proximately 52 cm corresponding to a free spectral range of about 577 MHz.
Whereas the curved end mirror (ROC=2 m) was highly reflective, the plano-
plano in-coupling and out-coupling mirrors had a polarization dependent
transmittance whereby two modes of operation – the low-finesse (LF) mode
and the high-finesse (HF) mode – could be performed depending on the lasers’
polarization. In the LF-mode the MC had a Finesse of FLF ≈ 555 and a half
bandwidth (pole frequency) of about 1 MHz. In the HF-mode the Finesse was
FHF ≈ 10500 with a half bandwidth of about 55 kHz.

Fig. 6.2 shows a schematic of the MC and the length (resonance) control
loop. For the length control of the MC (frequency control of the laser source)
accomplished with a Pound-Drever-Hall (PDH) locking scheme a phase mod-
ulation of the laser beam at 12 MHz was applied utilizing a resonant EOM.
The error signal was generated by demodulating the AC signal of PDMC. The
control loop was based on a so-called split feedback. A low pass filtered part of
the feedback signal (xMC

FB ) was applied to peltier elements thermally contacted
with the aluminum spacer. Due to this, the MC’s resonator length followed
longtime frequency drifts. Additionally, a feedback without the need for a
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Figure 6.3 — Open-loop gain of the lasers frequency stabilization. A maximal unity gain
frequency of approximately 50 kHz could be achieved.

HV-amplifier was possible. This method was performed when the MC was
operated in its HF-mode to avoid the coupling of high frequency noise present
on the HV-amplifier output into the servo loop [100].

The high frequency part was applied either on the PZT mounted end-
mirror or the PZT of the laser crystal. Feeding back on the end mirror resulted
in an open-loop gain of up to 7 kHz which was adequate for alignment pur-
poses of the further experimental stages. For the measurements of the noise
transformation caused by the non-linear resonator, the feedback signal was
applied on the laser crystal PZT. Here, a stabilization of the laser frequency
on the MC resonance with an open loop gain of up to 50 kHz was achieved.
Fig. 6.3 shows the corresponding measured open loop transfer function.
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Figure 6.4 — Oven housing embedding the non-linear crystal. Illustration by A. Khalaidovski.

6.3.2 The Kerr non-linear resonator

6.3.2.1 Optical and mechanical layout

The Kerr non-linear resonator (KNLR) consisted of a 1.5 x 2.0 x 6.3 mm3

7% MgO:LiNbO3 crystal placed in between two curved mirrors of 25 mm ra-
dius of curvature. The coupling mirror had the reflectivities
ρc(1064 nm) =

√
0.983 at the fundamental and ρc(532 nm) =

√
0.01 at the

generated second harmonic, whereas the end mirror was highly reflective at
1064 nm and weakly reflective at 532 nm (ρend(532 nm) =

√
0.02). The intra

cavity crystal surfaces were anti-reflective coated (ρAR ≤
√

0.001) at both
1064 nm and 532 nm. The crystal was separated from the mirrors by 23.6 mm
air gaps, creating a cavity mode for the resonant fundamental light with a
27 µm waist at the center of the crystal. Together with the round-trip loss that
was estimated to 0.5 % (each AR-coating gives 0.1 % per transmission, the
absorption in the crystal was considered with 0.077 % cm−1 corresponding
to the results obtained in Sec. 3.3.3 of [101]) the KNLR had a Finesse of about
F = 274 and a half-bandwidth (pole) of approximately 4.5 MHz.

Fig. 6.4 illustrates the oven housing enclosing the non-linear crystal. An
active temperature control loop utilizing two peltier elements for actuation
allows the acclimatization of the phase matching condition of the fundamental
and harmonic light field. These peltier elements were thermally contacted with
two copper plates (used for the intra cavity phase modulation via the pockels
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Figure 6.5 — Detection ports used during the alignment of the KNLR and the reference mirror.

effect) placed at both sides of the crystal. Furthermore, a thin indium foil in-
between crystal and modulation plates was used for thermally contacting the
plates and the crystal. A negative temperature coefficient (NTC) thermistor
was placed in one of the copper modulation plates for error signal generation.
For further details of the temperature control loop developed by H. Vahlbruch
refer to Sec. 3.3.1 and App.B in [101]). Two aluminum plates containing a
stack of a PZT, the coupling- or end-mirror, respectively, and a viton ring were
mounted to the oven housing.

6.3.2.2 Alignment of the non-linear cavity

The alignment of the KNLR was accomplished in three subsequent steps. At
first, the KNLR housing without the coupling and end-mirror was placed in
the pre-aligned pump beam. The housing was positioned with respect to the
beam transmitted through the crystal. By minimizing the beam displacement
an optimal orientation of the crystal to the laser beam path could be ensured.
At second, the aluminum plate containing the KNLR coupling mirror was
attached to the oven housing. Since the reflected beam propagated back to
the MC and was filtered again, higher order modes were reflected towards
the detector PDRR (see Fig. 6.5). Accordingly, the coupling mirror was aligned
with respect to the DC-signal of PDRR whereby a very high mode matching
efficency could be achieved. The corresponding measurement is shown in
Fig.6.6.

Finally, the end-mirror was aligned to the beam transmitted through the
coupling mirror and the non-linear crystal. In this stage of the alignment pro-
cedure, the MC was stabilized and the KNLR length was scanned. The mode
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(red curve). For visualization purposes 1-PDMC (grey curve) was plotted to
display the MC’s transmission. The line shape of the signal obtained from PDRR
accords to the expected product of the MC’s transmission and reflection. If the
MC is tuned to the carrier light this signal is almost zero. Thus, a mode matching
efficiency close to 100 % of the filtered beam to the KNLR’s coupling mirror can
be deduced.

spectrum was monitored with the detector PDs-pol placed in transmission of
the KNLR. At a point where the mode matching efficiency to the entire KNLR
was in the order of about 95 % the aluminum plate containing the end-mirror
was fixed. Then, only small corrections of the beam lag were necessary to
enhance the mode matching further. Figure 6.7 shows the measured mode
spectrum of the KNLR. From this measurement a mode matching efficiency
of about 99 % can be deduced.

As shown in Fig. 6.5 an auxiliary mode matched mirror was implemented
in the experiment. The beam reflected at this mirror served as reference for the
initial laser beam whereby a comparison with the beam affected by the KNLR
was possible. The mode matching to this reference mirror was accomplished
also with respect to the monitor signal of PDRR.

6.3.2.3 Control schemes for length stabilization

For the length control of the KNLR either a PDH scheme or a DC offset lock
was used depending on what resonance state (tuned or detuned) needed to
be stabilized. For measuring the conversion efficiency the KNLR was held
on resonance using the PDH locking scheme. To avoid additional optical
loss and mode distortions possibly caused by a further EOM placed between
MC and KNLR the 12 MHz phase modulation sidebands already applied
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for the MC control scheme were used for error signal generation. Although
the modulation sidebands got attenuated due to the low-pass filtering of
the MC (operated in its LF mode) and the KNLR, a proper error signal was
obtained from the demodulation of the AC signal of PDs-pol. But within the
measurements of the KNLR induced noise transformation occasional strong
detunings were required. Here an offset applied to the PDH error signal was
not sufficient to reach all targeted OPs. Hence, in these cases a DC-lock was
performed. The corresponding error-signal was obtained from PDs-pol by
adding an appropriate offset to its DC-signal. The respective feedback signals
were HV amplified and applied on the PZT mounted end-mirror. Fig. 6.8
shows the open-loop transfer function measured for the DC lock control
loop. The unity gain frequency of about 5 kHz was limited by resonances
around 8 kHz (here over-compensated with a notch-filter included in the servo
electronics).

6.3.3 Detection schemes

6.3.3.1 Self-homodyning of the carrier light’s amplitude quadrature

From the investigations in [28] it can be deduced, that the laser’s power noise
can be reduced by means of a KNLR. Thus, for demonstrating this noise
reduction a self-homodyning detection scheme corresponding to the readout
of the laser’s amplitude quadrature was performed. The laser beam reflected
off the KNLR was detected with PDX1 as shown in Fig. 6.9. The noise of
the initial laser beam was investigated utilizing the mode matched reference
mirror. A combination of a λ/2 – plate and a PBS was used to attenuate the
detected light powers to exactly the same reference value for all measurements.
Note, that the readout with PDX1 gives the noise power of the initial laser
beam transmitted and thus low-pass filtered twice by the MC. However, as
these measurements aimed at the demonstration of a noise reduction only the
relative noise levels at the same sideband frequency were of interest.

With this self-homodyning scheme only the amplitude quadrature noise
of the laser beam can be measured. Moreover, this method is restricted to
the detection of classical noise. Here an attenuation of the laser beam in the
order of 90 % was required to obtain manageable powers on the photodetector
PDX1. Thus, any squeezing of quantum noise generated in the KNLR will be
destroyed by this high optical loss.
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Figure 6.9 — Readout of the laser’s spectral noise. The lower left box shows the self-
homodyning of the laser’s amplitude quadrature. The beam reflected at the
KNLR or the reference mirror respectively passed the MC a second time and
were guided by means of a Faraday rotator towards a single photodetector (PDX1).
The detected light power was attenuated by a combination of a λ/2 – plate and a
PBS. The lower left box illustrates the balanced homodyne readout with exter-
nal local oscillator beam. An output mode cleaner (OMC) was implemented to
suppress spatial higher order modes reflected at the back reflection port of the
MC.

6.3.3.2 Balanced homodyne readout with external local oscillator beam

In order to investigate the manipulated laser noise in phase space, a homodyne
readout with external local oscillator (LO) beam was performed. Since the
power of the LO beam must dominate that of the detected signal, it was
necessary to decouple the sidebands from the strong carrier having a power
of up-to 1 W. Such an optical AC-coupling is provided by the MC’s ring
resonator topology. Whereas the DC and low frequency parts are transmitted,
the sidebands at frequencies far above the MC’s half-linewidth are reflected
and thus spatially separated from the carrier field. Thus, the sole sidebands
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present in the back reflection port of the MC can be guided to downstream
homodyne readout. Optical AC-coupling enables the detection of the noise
sidebands present on a high power carrier field without the need for high
power photodetector. In addition, this method introduces marginal optical
loss on the sideband fields whereby squeezing generated in the KNLR is
preserved. A similar approach for an active power stabilization scheme of
high power lasers was reported by Kwee et al. [26].

Besides the AC-coupled sidebands also spatial higher order modes prop-
agated towards the homodyne detector. These modes are originated by the
imperfect mode matching of the filtered pump beam to the KNLR. Although
a mode matching efficiency of about 99 % was achieved the residual higher
order modes (HOMs) led to a considerable power on the homodyne detectors
photodiodes. As high pump powers in the order of 1 W were required to
obtain a strong Kerr effect, these powers in the HOMs were in the order of
10 mW. Hence, an output mode cleaner (OMC) was implemented in the signal
path to suppress the HOMs. The bandwidth of the OMC was approximately
65 MHz and represents a compromise of the achievable mode suppression
and the optical loss of squeezed sidebands within the OMC’s half-bandwidth.
E.g. at a sideband frequency of 5 MHz the low-pass filtering of the OMC led
to an attenuation of approximately 2.5 %. At 10 MHz the attenuation was al-
ready 9 %. However, since the half-linewidth of the KNLR was approximately
4.5 MHz a considerable amount of squeezing at higher sideband frequencies
could not be obtained anyway.

The calculated mode spectrum of the OMC is shown in Fig. 6.10. HOMs
were considered up to the order of five. Although the smallest suppression is
about 4.5 for the fourth order, the implementation of the OMC led to a relaxed
power requirement for the LO beam of the homodyne detector. A ratio of the
LO beam power to the overall DC-power of the signal beam (including HOMs)
of 30 was targeted. Hence, the homodyne photodetectors were designed such
that a light power of up to 80 mW could be detected (per PD). Figure 6.11
shows a measurement demonstrating the linearity of the detector.

6.4 Prove of the Kerr effect

6.4.1 Dependence on phase matching temperature

At first, the SHG conversion efficiency of the KNLR was investigated in depen-
dence on the phase matching condition adjusted by the crystal’s temperature.
From this measurement the phase matching temperature yielding a cascaded
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Figure 6.10 — Mode separation of the OMC calculated with FINESSE. The normalized trans-
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span measurements (RBW=100 kHz, VBW=100 Hz) at 3 MHz. These data were
dark noise corrected. For a LO power of 80 mW the dark noise was about 6 dB
below the shot noise level.

Kerr effect could be deduced. Figure. 6.12 shows the normalized phase match-
ing curve for a TEM00 input mode for crystal temperatures between 61 ◦C and
67 ◦C. As expected, the curve in Fig. 6.12 is well described by a sinc-function.
The additional peak at a temperature of about 64.9 ◦C is most likely due to
the non-zero reflectivity of the cavity mirrors at 532 nm and its effect on the
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curacy of ± 1 ◦C. The Kerr effect can be observed in conversion minima slightly
offset from the optimum SHG temperature: (TKerr, lower − TSHG) =−1.41 ◦C and
(TKerr, upper − TSHG) = +1.77 ◦C.

differential phase between the reflected fields at 1064 nm and 532 nm [102]. At
the SHG operation point of the KNLR a maximum conversion efficiency of
ηSHG ≈ 72 % was observed.

The theory predicts a sign change of the cascaded non-linearity induced
phase shift when going from lower to upper conversion minimum (refer
to Eq. 6.1) . Accordingly, by measuring the Airy peak profile of the KNLR
operated at the conversion minima the existence of an effective third-order
non-linearity could be verified. To minimize the influence of any thermal
effects caused by the heating of the crystal due to the non-zero absorption
at the fundamental wavelength, the resonance of the KNLR was scanned in
a short time of a few µs. The Airy peaks were recorded in both conversion
minima, in each case for a reducing resonator length. The results approving
the presence of an optical Kerr effect are shown in Fig. 6.13. The Airy peaks
clearly show the predicted phase matching dependent declination.
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Figure 6.13 — Airy peaks for a reducing KNLR length measured in the first conversion minima
at TKerr,lower − TSHG = −1.41◦ (red curve) and TKerr,upper − TSHG = 1.77◦ (blue
curve). The Kerr effect induced phase shift and the corresponding deformation
of the Airy peak’s line shape changes with the phase matching condition as
expected from the theory.

6.4.2 Hysteresis measurements of the dynamic resonator

Since the squeezing of the pump field noise (classical as well as quantum noise)
is expected to be most significant at the so-called critical state of the KNLR,
it was essential to investigate whether the cascaded Kerr non-linearity was
strong enough to reach this state. Here, one possible analysis is a measurement
of a hysteresis effect of the intra cavity power for an expanding and reducing
resonator length. When the KNLR is already in its multi-stable regime a strong
hysteresis is expected as illustrated in Fig. 6.14. In the case of the expanding
resonator the line shape of the dynamic Airy peak follows that of the static
case until the maximum power build-up is reached. Immediately beyond, the
intra cavity power drops to the level of the static Airy peak in the wings of the
multi-stable region (grey shaded area). Likewise, in the case of the reducing
resonator length the cavity field jumps to the level of the static Airy peak
when the multi-stable region is left. The slopes at the jumps are limited by
the cavity storage time. Furthermore, an overshoot can be observed resulting
from the fact that the field does not reach equilibrium at these tunings.

Unfortunately, such short scanning times as assumed in the numerical
simulation did not led to satisfactory results in the experiment due to thermal
effects caused by the absorption of the non-linear crystal. Accordingly, in
order to minimize the impact of thermal (as well as acoustic distortions), the
resonance of the KNLR was crossed within a time of a few µs. Due to this, the
cavity dynamics accounting for the cavity build-up and storage time need to
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Figure 6.14 — Illustration of the hysteresis effect of a multi-stable resonator. The black curve
shows the Airy peak of the static resonator (i.e. the intra cavity field reaches
equilibrium at each tuning). The data for the expanding (red curve) and the
reducing (blue curve) resonator length were calculated in the time-domain
assuming an end mirror velocity of 50λ/s. The used c-script is attached in
App. C

be considered. Here, to allow an interpretation of measured hysteresis curves
a numerical model (basing on Eq. 2.37) was consulted. The used source code
is attached in C. One major result was, that just a presence of a hysteresis
effect is not a sufficient condition to infer the multi-stability of the KNLR.
The comparison of the Airy peaks of a scanned KNLR that is close to the
critical state (top graph in Fig. 6.15) with those of KNLR that has just entered
the multi-stable regime (center graph) shows, that in both cases already a
significant hysteresis effect can be observed. The strength of the hysteresis
effect grows with strength of the Kerr effect as shown in the bottom graph.

Consequently, the intention was to estimate the strength of the Kerr non-
linearity by the comparison of the numerical model with the measurements.
Unfortunately, the PZT used for scanning the resonator length showed a
strong non-linear behavior so that the actual end-mirror velocity fluctuated
even within the time needed for crossing the resonance. Furthermore, the
measured line shapes at that points of the Airy peak where a ringing effect
was expected (see Fig. 6.15) strongly depended on the response function of
the used photodetectors. Accordingly, the comparison with numerical sim-
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Figure 6.15 — Comparison of a scanned KNLR close to the critical state (top) with a KNLR
just entered the multi-stable regime (center) and a strong multi-stable KNLR
(bottom). The dashed curves show the respective static Airy peak. The light
colored curves shows the Airy peaks for the expanding resonator length and
the dark colored curves those for a reducing resonator length, respectively. The
end mirror velocity was the same for all cases.

ulations yields a great uncertainty. Figure 6.16 shows the best measurement
result in comparison with the numerical simulation. The KNLR was operated
at the upper conversion minimum (TKerr,upper − TSHG = 1.77◦) with a pump
power of 780 mW. A sinusoidal signal at a frequency of 1 kHz with an am-
plitude of 7 Vpp was applied to the HV-amplifier driving the PZT mounted
end-mirror. The Airy peaks were recorded in the linear region of the sine wave.
The mean end-mirror velocity during the measurement time was expected
to be about 2024 λ/s. This value is based on the PZT hub of approximately
0.054λ/V determined by independent measurements. In the numerical model
scanning velocities of νexp = 1850 λ/s for the expanding resonator length and
νred = −0.93 · νexp for the reducing length led to the best agreement. These
values corresponds to a deviation of approximately 8.6 % and 15 %, respec-



6.5 ENHANCEMENT OF PHASE MODULATION SIGNALS 131

 0

 20

 40

 60

 80

 100

 120

-1.5 -1 -0.5  0  0.5  1  1.5

D
ed

uc
ed

 In
tr

a 
ca

vi
ty

 p
ow

er
 [W

]

Deduced Tuning [deg]

sim. expanding length
exp. expanding length

sim. reducing length
exp. reducing length

Figure 6.16 — Comparison of simulated and measured hysteresis curves. The experimental
data were normalized to the tuning and the intra cavity power deduced from
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tively. In view of the PZT’s non-linear behavior these deviations present an
acceptable error. The properties of the KNLR accords to the description in
Sec. 6.3.2.1. The intensity dependent phase shift inside the KNLR φKerr = θ · P
(with the intra cavity power P) was considered with θ = 5.54× 10−3 rad/W.
Except of that points where the simulation predicts a ringing effect, the line
shapes of the simulated and measured Airy peaks are in good agreement.
Then, the simulation based on θ = 5.54× 10−3 rad/W implies, that the KNLR
has just entered the multi-stable regime. Although the estimation on the basis
of the above measurement yields a great uncertainty, it could be deduced at
least that the Kerr non-linearity was strong enough to reach the multi stable
regime and thus the targeted critical state if input powers Pin ≥ 800 mW are
chosen.

6.5 Enhancement of phase modulation signals

Since a KNLR – compared to a linear cavity – has an enhanced sensitivity for
phase modulation signals, the investigation of its transfer functions provides
a further opportunity to demonstrate the presence of an effective third-order
non-linearity in the experiment. Additionally, together with numerical models
a further estimation of the actual strength of the Kerr effect was possible. Two
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types of measurements were performed. First, the response of the KNLR on
strong phase modulation signals applied at discrete frequencies was measured.
Second, for OPs on the steep and shallow resonance slope the transfer function
was measured in a frequency band from 100 kHz to 15 MHz (see Sec. 6.5.2).

6.5.1 Strong modulation of the geometrical length

The response for a strong phase modulation was investigated at frequencies of
30 kHz and 1.76 MHz. Since the modulation depth of the KNLR internal EOM
was frequency dependent, the modulation frequencies were chosen to give a
strong modulation by simply applying the output of a frequency generator on
the modulation plates. Additionally, the intention was to choose a frequency
close to DC where the enhancement is expected to be maximum. Here, a
frequency of 30 kHz led to a satisfactory modulation depth. Likewise, for the
investigation of the response at higher frequencies (within the bandwidth of
the KNLR) a modulation frequency of 1.76 MHz was selected. Furthermore,
the input power was set to 750 mW and 510 mW, respectively. The OP (tuning)
was chosen to give a distinct characteristic of the detected AC-signals. Here,
the KNLR was operated slightly off-resonance on the steep flank of the Airy
peak leading to an intra cavity power corresponding to 40 % of the maximum
build-up reached at resonance.

Fig. 6.17 shows the results of the measurements in comparison with fitted
numerical data. For the fit of the data the reflectivities RMc = 0.983 and
RMend = 0.9992, the round-trip loss art = 0.005 and the optical length of the
KNLR Lopt = 122.19× 10−3m were kept constant. At first, on the basis of
the measurement performed with Pin = 750 mW and fmod = 1.76 MHz (blue
curve in the upper graph of Fig. 6.17), the actual modulation depth and Kerr
non-linearity were fitted. The obtained values leading to the best agreement
between simulation and measurement where then also assumed for the mea-
surement at fmod = 1.76 MHz with Pin = 510 mW. For the measurement at
fmod = 30 kHz the modulation depth was fitted again, whereas all other pa-
rameters were kept constant. Furthermore, all experimental data were scaled
with the same factor and shifted on the x-axis to obtain an overlap with the
numerical data allowing a direct comparison.

To estimate the accuracy of this fitting method, the procedure described
above was repeated considering values for the Kerr non-linearity increased
and decreased by 10 %. Then the modulation depth was fitted again whereas
all other parameter were the same. The results of these fits are displayed in
Fig. 6.18 and Fig. 6.19. It can be seen, that in both cases the agreement between
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Figure 6.17 — Comparison of measured (solid blue curves) and simulated (dashed red curves)
phase modulation signals detected in transmission of the KNLR. For an input
power of 750 mW strong modulations were applied at frequencies of 1.76 MHz
(top) and 30 kHz (center), respectively. Additionally, for a modulation at
1.76 MHz the response was investigated for an input power of 510 mW (bottom).

measurement and simulation is not as good as in Fig. 6.17.
From the method described above, the product θ · P giving the Kerr ef-

fect induced phase shift can be deduced. For the fits the input powers Pin
were considered with 510 mW and 750 mW as measured in the experiment.
However, these values were measured with a power meter (Coherent FM-GS)
having a specified accuracy of 7 %. Thus, the overall error of the fitted value
for θ was roughly estimated as 20 % leading to

θ = (4.5± 0.9)× 10−3 rad
W

. (6.3)

The effective non-linear refraction index neff
2 of the cascaded Kerr effect
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Figure 6.18 — Non-optimal fitting. Here the neff
2 was kept on a fixed value 10 % below the

actual fit result.

can be obtained from the relation [103]

θP =
neff

2 ω0LKM

Ac
P . (6.4)

Here LKM is the length of the Kerr medium, P the intra cavity power and
A the cross-sectional area of the laser beam. By a rigorous assumption of a
beam waist w0 = 27.6 µm located in the center of the crystal, the mean beam
size over the entire crystal can be calculated to wmean = 59.3 µm. Thus, with
A = πw2

mean the effective non-linear refractive index can be calculated from
Eq. (6.4) leading to

neff
2 = (1.7± 0.3)× 10−18 m2

W
. (6.5)

This value is about 2 orders of magnitude greater than the non-linear
refraction indices corresponding to the χ(3) non-linearity of e.g. sapphire, BK7
and fused silica.
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Figure 6.19 — Non-optimal fitting. Here the neff
2 was kept on a fixed value 10 % above the

actual fit result.

6.5.2 Transfer function of phase modulation signals

As already stated, the modulation depth of the KNLR internal EOM was
strongly dependent on the frequency. Nevertheless, the observation of dif-
ferent transfer functions obtained for OPs on the steep or shallow resonance
slope would have been sufficient to prove the presence of an effective Kerr
effect. But the line shape and the frequency dependent characteristics could
not be determined. For that reason, the attempt was made to calibrate the fre-
quency dependent modulation depth of the EOM. When locked to resonance,
the transfer function of a two-mirror cavity is flat within the cavity bandwidth.
Since the internal loss of the KNLR was dependent on the amount of SHG, at
the crystal temperature TSHG (refer to Fig. 6.12) the bandwidth of the KNLR
was maximum. Figure 6.20 shows the resonance peaks measured for TSHG and
TKerr,upper. Again, to minimize thermal effects the resonances were crossed
within a few µs. Hence, the maximum build-up and the bandwidth of the
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Figure 6.20 — The figure shows the transmission of the KNLR depending on the SHG. The
measurement were normalized to the respective maxima. the x-positions are
arbitrary.

KNLR operated at the conversion minimum are affected by the resonator
dynamics. Additionally, the observed non-linearity of the PZT used for scan-
ning the resonator length leads to a further uncertainty. However, from these
measurements it can be deduced, that the bandwidth at the SHG maximum is
increased by a factor of more than 2.5. Thus, when estimating this bandwidth
with 11 MHz, the transfer function at the SHG can be assumed to be flat up
to frequencies of about 10 MHz. Accordingly, the measured transfer function
of the KNLR locked close to resonance was used as reference for the EOM
frequency response.

Figure 6.21 shows the normalized phase modulation transfer function of
the KNLR at phase matching temperatures around TKerr,upper. The source of a
network analyzer was applied to the EOM. The signals were detected with
PDs-pol. The laser input power was approximately 650 mW and the KNLR was
locked on its steep and shallow resonance slope corresponding to P/Pres ≈ 0.6.
At first, the response was measured when locked to the shallow slope (yellow
trace). Subsequently, the transfer functions were analyzed for the OP on the
steep slope. Starting from the red trace, the crystal temperature was slightly
adjusted whereby an improved response was achieved as shown with the
green and blue traces.

Please note, that these measurements are just of a qualitative character.
First, at high frequencies the calibration of the EOM yields a great uncertainty.
Second, the dependence on the strength of the Kerr effect was demonstrated
by varying the phase matching condition. Accordingly, the internal loss (corre-
sponding to the SHG) and thus the bandwidth were not the same for all cases.
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were divided by the reference transfer function measured in the SHG maximum.
The y-positions of the curves were arbitrarily normalized to the low frequency
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However, as expected the frequency response of the KNLR depends on the
chosen OP (steep or shallow resonance slope) in contrast to a linear two-mirror
cavity. Additionally, these measurements demonstrate the enhancement of
phase modulation signals depending on the strength of the Kerr effect.

6.6 Laser power noise reduction

In this Section the power noise reduction of a continuous-wave laser field
by means of an effective third-order KNLR is demonstrated. In contrast to
conventional noise reduction schemes relying on linear cavities, a strong noise
suppression at Fourier frequencies below the linewidth of the non-linear cavity
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was possible. The laser light was reflected off the KNLR that was operated
slightly off-resonance at approximately 3/4 of the maximum power build-up,
close to its so-called critical state. A power noise reduction of up to 32 dB at
Fourier frequencies below 1 MHz was observed after reflection. The laser had
a power of 0.75 W.

6.6.1 Introduction

An active laser power stabilization is essential for many high-precision optics
experiments, . Passive noise filtering provided by the transmission through
optical cavities can efficiently be used in order to reduce power fluctuations
at Fourier frequencies above the cavity linewidth. More adequate in most
cases are active feedback control circuits. Here, a certain fraction of the laser
power is detected by photodiodes in order to sense the power fluctuations,
and different kinds of actuators like acousto-optical modulators are then used
to reduce the laser noise on the residual beam. Especially in applications
that require high power stability at low frequencies a constraint arises for
active stabilization schemes, which is caused by (presumably photodiode
internal) unknown noise sources associated with the large photocurrent. At
10 Hz this photo-diode noise already exceeds the shot-noise of a 100 mW
laser beam which corresponds to a relative power noise of approximately
2 × 10−9 Hz−1/2 [25]. At just slightly lower relative power noise levels
(corresponding to slightly higher powers) an additional problem arises and
the sensing sensitivity would be limited by the available dynamic range
of photo-diodes and their amplifiers. Hence novel schemes are required
that either reduce the required dynamic range and the detected power of
the sensing device [26]. But again these schemes are typically limited to
frequencies comparable or above the linewidth of the optical cavity involved.

Another way out, proposed quite a while ago, is based on the optical
Kerr effect. It does not require any photo detection [104, 30] and can be
combined with optical cavities in order to yield a power noise reduction by
self-modulation [28]. One problem of this approach is the typically rather
low third-order non-linearity of high-quality optical materials. In the pulsed
laser regime high laser intensities can be used to compensate for this and
strong noise reductions of certain field quadratures even below the shot-noise,
i.e. into the non-classical regime of squeezed states, were demonstrated [105,
106].

In the continuous-wave laser regime an intensity increase through tight
focusing and power build-ups in optical resonators are typically not sufficient,
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and materials with higher third-order non-linearities are desired. A promising
solution is the use of interacting χ(2) non-linearities as proposed for the first
time already four decades ago (refer to Sec. 6.2), however, up to now no strong
noise suppression of continuous-wave (cw) light had been demonstrated.
In [94] the classical noise of a cw laser beam of less than 30 mW power was
reduced by 1.5 dB. In [107] the more demanding regime of non-classical states
was targeted, and squeezed states of a 0.45 mW cw beam were observed. The
measured noise reduction was 30 % (approx. 1.5 dB) below the vacuum noise
level.

6.6.2 Measurements

Figure 6.22 shows the measurement results that demonstrate the laser power
noise reduction by means of the KNLR. The top peaked curve shows the
initial laser power noise detected with the single photodetector PDX1 after
two transmissions through the MC (refer to Sec. 6.3.3.1). For this reference
measurement the flip mirror was used as shown in Fig. 6.9. The other curves
show the power noise spectra of the same laser when being reflected off the
detuned Kerr cavity and when the OP on the steep slope of the Airy peak
(Fig. 6.16) was varied and stabilized by an appropriate DC offset lock. The
reflected laser power was attenuated to exactly the same reference value and
was detected also with PDX1. A maximum noise suppression of 32 dB was
observed slightly below 1 MHz. This suppression value was observed for a
KNLR operating point at about 3/4 of the Airy peaks maximum where the
steepest slope is predicted from theory. All curves in Fig. 6.22 were shot noise
limited at frequencies above 9 MHz. At intermediate frequencies they showed
additional noise that increased with an increasing Kerr effect and most likely
arose from internal Brillouin scattering.

Several experiments were performed which confirm that the observed
noise reduction is due to the Kerr effect. The essential measurements discussed
in Sec. 6.4 demonstrate the presence of a cascaded Kerr effect in the used
second order non-linear crystal. Furthermore, when the KNLR was locked
to points on the steep slope, the observed maximum noise suppression was
merely independent of the choice of the two conversion minima, but always
dependent on the input power, as predicted from theory and the achievable
noise suppression decreased with decreasing input powers.
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Figure 6.22 — The figure compares the normalized power noise spectra of the initial laser
beam with the laser beam after reflecting off the KNLR. The KNLR was locked
on several OPs on the steep resonance slope. The maximum noise reduction
was achieved at an OP where the intra cavity power reaches approximately 3/4
of the maximum power obtained at resonance.

6.7 Tomographic analysis of the noise transformation

6.7.1 Motivation

From the measurements of the laser noise reduction presented in the previous
Section the actual (de-)amplification factor of the classical noise level could not
be precisely determined for two reasons. First, in the self-homodyning readout
scheme only the amplitude quadrature of the incident field is detected. Since
the KNLR was operated detuned, a frequency dependent phase-space rotation
of the de-amplified quadrature occurs. Second, the investigated laser showed
an elliptical noise distribution (i.e. the noise in the amplitude quadrature was
much higher than in the phase quadrature). Together with the first argument,
the measurement presented in Fig. 6.22 does not allow to distinguish between
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Figure 6.23 — The figure shows the normalized mode spectrum of the scanned OMC for a)
the beam reflected off the reference mirror and b) for the beam reflected off the
KNLR. The x-positions are arbitrary.

the actual amount of deamplification and the noise reduction possibly caused
by a rotation of the initial amplitude quadrature into the less noisy phase
quadrature. Furthermore, in view of an application in gravitational-wave
detectors the noise level in the phase quadrature of the laser beam needs to
be known as it could limit the detectors sensitivity. These informations can
be obtained from a tomographic analysis recovering the noise distribution in
phase-space.

6.7.2 Measurements

For the tomographic analysis a homodyne readout was performed as illus-
trated in Fig. 6.9. The local oscillator beam was gained in transmission of a PBS
placed in front of the MC. The spatial signal mode of the beam reflected off the
KNLR and transmitted through the OMC was matched to the LO beam with a
measured visibility of about 97 %. During the alignment process of the OMC,
the MC was locked strongly detuned whereby the TEM00 mode dominated
the power in the signal beam. The mode spectrum of the scanned OMC is
shown in Fig. 6.23. Curve a) shows the mode matching of the reference beam
and curve b) that of the beam reflected off the KNLR. The KNLR was locked
on its steep resonance slope such that an intra cavity power P of about 50 %
of the maximum power Pres was reached. The data of both measurements
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were normalized to the respective maximum transmission to allow a direct
comparison. This measurement shows, that the mode pattern of the reference
beam and the KNLR affected beam have almost the same mode pattern.

In the first instance the tomographic measurements were targeted on the
determination of the deamplification and amplification factors of the classical
noise power. In addition, the phase-space rotation at the investigated sideband
frequencies should be deduced. Accordingly, the MC was locked tuned to
avoid an additional frequency dependent rotation of the signal field occurring
due to the reflection at the back-reflection port.

For the measurement of the KNLR transformed noise distribution a side-
band frequency was chosen at which the initial laser beam yields almost the
same noise levels in its amplitude and phase quadrature. In this case, the
noise transformation of the KNLR – although measured for classical noise –
corresponds to the transformation expected for a shot noise limited input
beam and the amplification and deamplification levels could be easily deter-
mined. The best regime was found at a sideband frequency of 1 MHz whereby
the noise eater [98] of the laser was used to reduce the power noise around
the relaxation oscillation. For an input power of about 500 mW the classical
noise level was about 45 dB above the shot noise level. The input power of
500 mW was chosen because the observed excess noise was expected to be
about 20 dB above the shot-noise level at this input power. This has been
shown in independent measurements. The excess noise does not originate
from the KNLR noise transformation as it was observed even at crystal tem-
peratures where no cascaded Kerr effect occurs. In order to recover the pure
noise transformation and the corresponding (de-)amplification factor without
being affected by the excess noise, the KNLR resonator was operated not at
the critical state. In this case, the achievable deamplification factor is expected
to be much smaller. Accordingly, since the noise of the input beam was about
25 dB above the excess noise level, the deamplfication was expected to be not
limited by this noise.

The homodyne detection angle was swept by actuating on a PZT mounted
steering mirror placed in the LO beam path. The AC signals of both homodyne
photo-detectors were subtracted and demodulated at 1 MHz. After filtering
with a 7-pole Bessel low-pass with a corner frequency of 200 kHz the data were
recorded with a NI PCI-6133 card [108]. Additionally, the DC signal of one of
the homodyne photodetector was recorded serving as homodyne detection
angle reference for the data evaluation. The sampling rate was 1MS/s in both
cases. The data acquisition controlled by a LABVIEW interface.
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6.7.3 Evaluation of the measured data

The data analysis and the evaluation of the measurement were based on
MATLAB-scripts developed by Boris Hage. The main focus was on the recon-
struction of the Wigner function representing a quasi-probability distribution in
phase space. On the basis of the Wigner functions obtained from the measured
data the phase-space rotation at the investigated sideband frequency could be
extracted. For further details on the tomographic reconstruction refer to [109].
In [87] the frequency dependent rotation of a squeezing ellipse reflected off a
filter cavity was analyzed similar to the method presented here.

First, the detection angle of each measurement was extracted. Assum-
ing that the PZT motion is well approximated by a third order polynomial
function, by fitting the function

f (x) = a0 + a1 sin(b1x + b2x2 + b3x3 + c1) (6.6)

to the recorded DC Signal of one photo-detector it was possible to interpolate
the actual detection angle of each data sample. Note, that this detection angle
refers to the amplitude quadrature of the pump beams DC part reflected off
the KNLR. Second, the sampled demodulated AC-signal was divided into 100
slices attributed to the respective detection angle. For each slice containing
5000 data points a histogram was build from with the Wigner function was
reconstructed by means of an inverse Radon transformation. Finally, the
phase-space rotation Θ was determined by fitting an ellipse

e(x) =
ab√

a2 sin(x−Θ)2 + b2 cos(x−Θ)2
(6.7)

to a contour line of the reconstructed Wigner function.
Figure 6.24 shows the demodulated AC signals obtained for the reference

beam (left) and the beam reflected of the KNLR (right). The signals are
normalized to the mean standard deviation σref of the reference beams noise
distribution. The detection angles were interpolated according to Eq. 6.6. It
can be seen that the noise of the reference beam is almost independent of the
detected quadrature. In contrast to this, the noise distribution of the Kerr
affected beam clearly shows the quadrature dependent deamplification and
amplification of the input beam. Figures 6.25 and 6.26 show the corresponding
histograms and reconstructed Wigner functions, respectively.

The noise transformation of the KNLR was investigated for several of
its OPs on the steep and shallow slope of the Airy peak. In each case, four
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Figure 6.24 — The Figure compares the sampled signals measured for the reference beam (left)
and the beam reflected off the KNLR (right). Here the KNLR was locked on its
steep slope with P/Pres = 0.88.
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Figure 6.25 — Histograms corresponding to the measured data shown in Fig. 6.24.

tunings were chosen leading to an intra cavity power P of approximately
76 %, 82 %, 88 % and 90 % of the maximum power Pres obtained at resonance.
Figure 6.27 compares the reconstructed Wigner functions. It can be seen, that
the deamplification and amplification of the classical noise increases with the
intra cavity power. Compared to the OPs on the shallow resonance slope, the
OPs on the steep slope (top graphs) lead to higher (de-)amplification factors
as expected from theory. Furthermore, moving the OP on the steep slope from
strong detunings to low detunings (i.e. from P/Pres = 0.76 towards P/Pres =
0.88), the noise ellipse rotated counter clockwise . At the OP corresponding to
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Figure 6.26 — Reconstructed Wigner function corresponding to the noise distribution of the
reference beam (left) and the beam reflected off the KNLR (right). The definition
of the quadratures refers to the carrier field reflected off the KNLR, where X1 is
the amplitude quadrature and X2 the phase quadrature.
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Figure 6.27 — Comparison of the Wigner functions showing the noise transformation occur-
ring at various OPs on the steep (top) and shallow (bottom) resonance slope.



146 ANALYSIS OF A KERR NON-LINEAR RESONATOR 6.7

-12

-10

-8

-6

-4

-2

 0

 2

 4

 6

 8

 10

 12

 0  90  180  270  360

N
or

m
al

iz
ed

 n
oi

se
 p

ow
er

 [d
B

]

Relative LO phase [deg]

Noise of reference beam

P/Pres=0.76
P/Pres=0.83
P/Pres=0.88
P/Pres=0.90

Figure 6.28 — The figure shows the noise power depending on the relative detection angle
(RBW=200 kHz, VBW=500 Hz). The initial beam was reflected off the KNLR
that was operated on the steep resonance slope. The readout of the amplitude
quadrature corresponds to the angles of 90◦ and 270◦. A deamplification level
of about 11 dB was achieved at P/Pres = 0.88 and P/Pres = 0.90. For all traces
the respective (de-)amplification factors are almost equal.

P/Pres = 0.90 the ellipse rotated again clockwise. This characteristic can be
observed in reversed orientation for the OPs on the shallow resonance slope.

6.7.4 Discussion of the results

As a main result it could be deduced that the (de-)amplification factors ob-
tained at a certain OP are of the same order. Thus, no considerable excess
noise is induced due to the noise transformation in the KNLR at the inves-
tigated sideband frequency of 1 MHz. For illustration purposes Figure 6.28
shows the quadrature dependent noise power obtained at the OPs on the steep
resonance slope. A maximum deamplification of about 11 dB was achieved.
Secondly it was shown that the amplitude quadrature (related to the relative
LO phase of 90◦) of the reflected carrier field is amplified at the investigated
OPs. Since the input power was set to 500 mW for these measurements, the
critical state at which the amplitude quadrature is optimally squeezed was
not reached. However, the measurements presented in Fig. 6.22 clearly show
the achievable laser power noise reduction when the KNLR is operated very
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close to the critical state (magenta curve). A theoretical investigation adapted
to these two different experimental situations revealed, that the obtained
(de-)amplification factors as well as the observed phase-space rotation can be
qualitatively recovered with a theoretical model [110].

6.8 Conclusions

In the proof of principle experiment presented in this Chapter it was shown
that a Kerr non-linear resonator can efficiently be used for the spectral power
noise reduction of a continuous-wave laser beam within the bandwidth of
the resonator. A strong power noise reduction of up to 32 dB at a frequency
corresponding to about one fifth of the resonators bandwidth and below was
demonstrated. Such a high value of noise suppression from the Kerr effect has
not been reported before for continuous-wave laser light. The noise reduction
technique presented here can be combined with standard techniques like
passive filtering through mode cleaner cavities. But in particular for high laser
powers and for amplitude noise at rather low Fourier frequencies, say the
kHz regime and below, the technique investigated here proves to be rather
powerful. It allows for a strong noise reduction at frequencies much smaller
than the cavity linewidth, without photo-electric detection of a considerable
fraction of the laser beam. In future work, the presented technique can be
used for the noise suppression of the new generation of single-mode high-
power lasers for advanced gravitational-wave detectors. These lasers provide
powers of up to 200 W whereby the noise reduction by means of a KNLR will
prove to be even more powerful. Since a smaller enhancement of the input
power is required, the finesse can be relaxed and optical loss thus be reduced.
Additionally, for these high input powers the intra cavity power will be about
two order of magnitudes higher compared to those in the actual experiment.
Accordingly, the third-order non-linearity of high quality optical materials like
fused silica might be sufficient to reach the critical state and thus the targeted
noise suppression.

Although a strong effective third order non-linearity was achieved and a
huge noise reduction in the classical regime was observed, the deamplified
noise was still far above the shot-noise limit. In order to demonstrate the
power noise reduction of the input laser, at first it was necessary to reach
the critical state of the KNLR. Accordingly, a comparatively high finesse was
required leading to a narrow bandwidth of about 4.5 MHz. This resulted in
an escape efficiency ηesc = Tc/(Tc + Lrt) of about 0.77, where Tc is the power
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transmittance of the coupling mirror and Lrt the round-trip loss. Accord-
ingly, a maximum squeezing of about 6 dB can be expected assuming that
infinite squeezing is generated inside the KNLR. At frequencies above the
bandwidth of the KNLR, the squeezing is further reduced. As the laser carriers
an enormous amount of classical noise around and below its relaxation oscilla-
tion, the squeezing possibly generated was masked at frequencies within the
bandwidth of the KNLR. At higher frequencies where the laser noise could
be reduced, the low pass characteristic of the KNLR limited the achievable
squeezing strength. Further loss was introduced in the homodyne read-out
scheme due to a imperfect visibility and the imperfect quantum efficiency of
the photo diodes. Additionally, the observed excess noise presumably caused
by internal Brillouin scattering contributed to the noise of the beam reflected
off the KNLR. For these reasons the squeezing of quantum noise could not be
observed. In order to beat the shot-noise limit for continuous-wave radiation
in future experiments Fourier frequencies far above the lasers relaxation os-
cillation need to be considered. Thus, the bandwidth of the KNLR needs to
be adapted. Additionally, the input power has to be reduced in order to get
closer to the shot-noise limit from the very beginning. A reduction of the input
power and the finesse then requires materials with stronger non-linearities,
for example periodically poled second-order non-linear crystals, and a tighter
focusing.



CHAPTER 7
Summary and Outlook

The purpose of this thesis was the theoretical and experimental investiga-
tion of advanced interferometric techniques applicable especially for future
gravitational-wave detectors. Two aspects that can lead to an improved sensi-
tivity of these detectors were treated: the optimization of the interferometer
topology itself with respect to an improved signal transfer function, and sec-
ond the reduction of noise sources. The former was focused on advanced
power- and signal-recycling techniques while the latter considered the quan-
tum noise reduction by squeezed field injection and the pure optical passive
laser power noise reduction by means of a Kerr non-linear resonator.

A comprehensive analysis and visualization of the resonance structure of
linearly coupled resonators was presented. Analytical expressions were de-
rived which allow systematically parameter studies and the adaptation of the
frequency response of coupled optical resonators to the requirements. Based
on this investigations the shot noise limited sensitivity of the four-mirror
cavity enhanced Michelson interferometer could be analyzed systematically
despite a huge 11-dimensional parameter space (see Chapter 3). The study
revealed, that in this topology the featured resonance doublet could not be
exploited optimally. As the resonance condition of the carrier field and the
sideband fields are coupled, the carrier light enhancement and the transfer
function for signal sidebands could not be optimized independently. Contrary
to expectations, the tunable frequency splitting lead to considerable sensitivi-
ties only at narrowband resonance frequencies.

In Chapter 4 a novel Twin-Signal-Recycling interferometer technique was
proposed and investigated for the use as squeezed light enhanced gravitational-
wave detector. It was shown, that this topology has an intrinsic increased
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signal to noise ratio compared to signal sideband recycling techniques like
SR and RSE. Additionally, the squeezed field injection is less demanding
as no additional filter cavities are required for a broadband shot noise re-
duction. Likewise, the gravitational-wave signal is detected optimally by a
frequency independent read-out of the carrier lights phase quadrature. Such
a frequency independent DC readout (self-homodyning) is targeted for future
gravitational-wave detector because it provides an improved signal to noise
ratio compared to the currently established heterodyne readout schemes [72].
Especially in view of squeezed field injection it is favorable [69].

The first experimental demonstration of a broadband shot noise reduction
in a Michelson interferometer with TSR was presented in Chapter 5. By means
of extensive accompanying simulations it was possible to upgrade an existing
experimental infrastructure of a dual-recycled Michelson interferometer [41].
A broadband shot noise reduction by a factor of up to 4 dB was demonstrated
whereby the measurements where in good agreement with the numerical
simulations.

The TSR technique came already into consideration for the GEO-HF de-
tector [40]. Implementation issues and expected sensitivities were studied
in [87] and reviewed in Sec. 4.5 of this thesis. It was shown, that the en-
hancement achievable with a TSR configuration will be masked by thermal
noise in the mid-frequency detection band. Nevertheless, a proper parameter
choice allows to adapt the sensitivity curve optimally to the thermal noise as
shown in Fig. 4.10. Compared to a tuned SR configuration a slightly improved
sensitivity at frequencies up to approximately 5 kHz can be achieved.

In conclusion, under consideration of the thermal noise TSR might find
applications where high, narrowband sensitivities are required at even higher
frequencies in the detection band which could not be covered with tuned
SR. At a point, where the thermal noise can be reduced by the realization
of cryogenic test-masses or coating free mirrors as well as an elongation of
the interferometer arms, TSR can also lead to considerable sensitivities in the
low and mid-frequency detection band. Additionally it was shown, that the
sensitivity of a TRSE topology as exemplary shown in Fig. 4.11 yields a con-
siderable improvement around a certain resonance frequency when compared
to the RSE topology as targeted for the next generation of gravitational-wave
detectors.

In Chapter 6 the capability of a Kerr non-linear resonator for a passive laser
power noise reduction was demonstrated in a proof of principle experiment.
Several experiments were performed to characterize the resonator whereby
suitable settings for a laser power noise reduction could be determined based
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on a comparison of the measurements with numerical simulations. A huge
noise suppression of up to 32 dB could be achieved for a continuous-wave
laser beam for the first time by exploiting the optical Kerr effect. These results
implied that a Kerr non-linear resonator is applicable to a pure optical noise
reduction in the field of advanced gravitational-wave detectors where stable
high-power lasers are required.





APPENDIX A
Matlab scripts

A.1 Noise spectral densities for GEO 600 with
squeezed input

With the following matlab script the noise spectral densities of GEO 600 was
calculated using the input-output formalism. This script was originally devel-
oped by Jan Harms and adapted within this thesis for the comparison with
the TSR interferometer.

1 clear;
2 %physical constants

3 c=299792458;
4 hbar=1.054e-34;
5 %carrier light angular frequency

6 w0=1.77e15;
7
8 %design parameters GEw0600

9 m=5.6; %Mirror mass

10 L=1200; %Iinterferometer arm length

11 Pin=10; %Input power

12 %Power at beam splitter (PR gain=1000)

13 Pbs=1000*Pin;
14 %Power in each interferoneter arm

15 Parm=0.5*Pbs;
16
17 %Interferometer end mirrors

153
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18 rend=sqrt(0.99995);
19 tend=sqrt(1-rend^2);
20 %SR Mirror

21 rsr=sqrt(0.99);
22 tsr=sqrt(1-rsr^2);
23
24 %Traget frequency [Hz]

25 ftar=2000.0
26 %corresponding SRC detuning

27 phi=(2*pi*ftar*L/c);
28
29 %Frequency range [10^fmin:10^fmax]

30 fmin=1;
31 fmax=4;
32 %calculation steps

33 steps=2000;
34
35 %Identity matrix

36 Ein=[1 0; 0 1];
37
38 %Detection angle of homodyne readout

39 zetaX1=0; %Amplitude Quadrature;

40 zetaX2=pi/2;%Phase Quadrature;

41
42 %Description of Squeezing

43 r=1; %squezzing parameter

44 sphi=pi*1; %Squeezed quadratur

45 %Squeezing matrix

46 SQ=[cosh(r)+sinh(r)*cos(2*sphi), sinh(r)*sin(2*sphi);'
47 sinh(r)*sin(2*sphi) cosh(r)-sinh(r)*cos(2*sphi)];
48
49 %Vector for data storage

50 data=[];
51
52 for f=logspace(fmin,fmax,2000)
53
54 %SQL for GEO600

55 h=sqrt(20*hbar/m/L^2/(2*pi*f)^2);
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56 %optomechanical coupling

57 K=4*Parm*w0/(m/5)/c^2/(2*pi*f)^2;
58 KM=[1 0;-K 1];
59
60 %Propagation matrix

61 Psr=[cos(phi) -sin(phi); sin(phi) cos(phi)]*exp('
62 i*2*pi*f*L/c);
63
64 %field enhancement in SRC

65 InSRC=tsr*inv(Ein-rsr*Psr*rend*KM*Psr);
66 %Reflexion at SRC

67 RhoSRC=(rsr*Ein-Psr*rend*KM*Psr)*inv(Ein-'
68 rsr*Psr*rend*KM*Psr);
69 %Reflexion of squeezed input

70 RHOsqz=RhoSRC*SQ;
71 %Loss: Shotnoise couples in at end-mirror

72 LOSS=tend*InSRC*Psr;
73 %Signal TF

74 Sig=2*InSRC*Psr*rend*KM*[0;1]*sqrt(2*K)/h;
75
76 %Spectral Densities

77 %Vacuum noise in reflexion of SRC

78 NSD = 1/2*(RhoSRC*transpose(conj(RhoSRC))+conj(RhoSRC)*('
79 transpose(RhoSRC)));
80 %Squeezed vacuum noise in reflexion of SRC

81 NSDSQZ=1/2*(RHOsqz*transpose(conj(RHOsqz))+conj(RHOsqz)'
82 *transpose(RHOsqz)); %Squeezing

83 %Loss (Imperfect end-mirror)

84 LSD = 1/2*(LOSS*transpose(conj(LOSS))+conj(LOSS)'
85 *transpose(LOSS));
86
87 %Vacuum noise at detection port

88 NSDD = NSD + LSD;
89 NSDSQZD = NSDSQZ + LSD;
90 %Signal at output

91 SSD = 1/2*(Sig*transpose(conj(Sig))+conj(Sig)*transpose('
92 Sig))
93
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94 %Homodyne detection

95 %Amplitude Quatrature

96 noutX1=[cos(zetaX1) sin(zetaX1)]*NSDD*[cos(zetaX1);sin('
97 zetaX1)];
98 noutSQZX1=[cos(zetaX1) sin(zetaX1)]*NSDSQZD*[cos(zetaX1)'
99 ;sin(zetaX1)];
100 soutX1=[cos(zetaX1) sin(zetaX1)]*SSD*[cos(zetaX1);sin('
101 zetaX1)];
102
103 NtoSX1=sqrt(noutX1/(soutX1));
104 NSQZtoSX1=sqrt(noutSQZX1/(soutX1));
105
106 %Phase Quatrature

107 noutX2=[cos(zetaX2) sin(zetaX2)]*NSDD*[cos(zetaX2);sin('
108 zetaX2)];
109 noutSQZX2=[cos(zetaX2) sin(zetaX2)]*NSDSQZD*[cos(zetaX2)'
110 ;sin(zetaX2)];
111 soutX2=[cos(zetaX2) sin(zetaX2)]*SSD*[cos(zetaX2);sin('
112 zetaX2)];
113
114 NtoSX2=sqrt(noutX2/(soutX2));
115 NSQZtoSX2=sqrt(noutSQZX2/(soutX2));
116
117 %Variational Readout according to

118 %Eq.(29) in Harms et.al. PRD 68 (2003)

119
120 Q11 = SSD(1,1)*(NSDD(1,2)+NSDD(2,1)) - NSDD(1,1)*(SSD(1,'
121 2)+SSD(2,1));
122 Q12 = SSD(1,1)*NSDD(2,2) - NSDD(1,1)*SSD(2,2);
123 Q22 = NSDD(2,2)*(SSD(1,2)+SSD(2,1)) - SSD(2,2)*(NSDD(1,'
124 2)+NSDD(2,1));
125 Q=[Q11 Q12; Q12 Q22];
126 %optimal detection angle (variational readout

127 %according to corrected Eq.(30) in Harms et.al. PRD 68

('

128 2003)

129 zetaVar = -acot(1/Q11*(sqrt(-det(Q))+Q12));
130
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131 noutVar=[cos(zetaVar) sin(zetaVar)]*NSDD*[cos(zetaVar);'
132 sin(zetaVar)];
133 noutSQZVar=[cos(zetaVar) sin(zetaVar)]*NSDSQZD*[cos('
134 zetaVar);sin(zetaVar)];
135 soutVar=[cos(zetaVar) sin(zetaVar)]*SSD*[cos(zetaVar);'
136 sin(zetaVar)];
137
138 NtoSVar=sqrt(noutVar/(soutVar));
139 NSQZtoSVar=sqrt(noutSQZVar/(soutVar));
140
141 %fully frequency dependend squeezing according to

142 %Eq.(16) in Harms et.al. PRD 68 (2003)

143 %For amplitude quadrature

144 lambdaX1=atan(-(RhoSRC(1,1)*cos(zetaX1) + RhoSRC(2,1)'
145 *sin(zetaX1))/(RhoSRC(1,2)*cos(zetaX1)+RhoSRC('
146 2,2)*sin(zetaX1)));
147 %For phase quadrature

148 lambdaX2=atan(-(RhoSRC(1,1)*cos(zetaX2) + RhoSRC(2,1)'
149 *sin(zetaX2))/(RhoSRC(1,2)*cos(zetaX2)+RhoSRC('
150 2,2)*sin(zetaX2)));
151 %For squeezed-variational readout

152 lambdaVar=atan(-(RhoSRC(1,1)*cos(zetaVar) + RhoSRC(2,1)'
153 *sin(zetaVar))/(RhoSRC(1,2)*cos(zetaVar)+'
154 RhoSRC(2,2)*sin(zetaVar)));
155
156 %frequency dependent squeezing for detection of X1

157 SQX1fd=RhoSRC*[cosh(r)+sinh(r)*cos(2*lambdaX1), sinh(r)'
158 *sin(2*lambdaX1); sinh(r)*sin(2*lambdaX1) cosh(r)'
159 -sinh(r)*cos(2*lambdaX1)];
160 %frequency dependent squeezing for detection of X2

161 SQX2fd=RhoSRC*[cosh(r)+sinh(r)*cos(2*lambdaX2), sinh(r)'
162 *sin(2*lambdaX2); sinh(r)*sin(2*lambdaX2) cosh(r)'
163 -sinh(r)*cos(2*lambdaX2)];
164 %for squeezed-variational readout

165 SQVarfd=RhoSRC*[cosh(r)+sinh(r)*cos(2*lambdaVar), sinh('
166 r)*sin(2*lambdaVar); sinh(r)*sin(2*lambdaVar)'
167 cosh(r)-sinh(r)*cos(2*lambdaVar)];
168
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169 %noise spectral densities

170 NSDSQX1fd = 1/2*(SQX1fd*transpose(conj(SQX1fd))+conj('
171 SQX1fd)*transpose(SQX1fd)) + LSD;
172 NSDSQX2fd = 1/2*(SQX2fd*transpose(conj(SQX2fd))+conj('
173 SQX2fd)*transpose(SQX2fd)) + LSD;
174 NSDSQVarfd = 1/2*(SQVarfd*transpose(conj(SQVarfd))+conj('
175 SQVarfd)*transpose(SQVarfd)) + LSD;
176
177
178 noutX1fd = [cos(zetaX1) sin(zetaX1)]*NSDSQX1fd*[cos('
179 zetaX1);sin(zetaX1)];
180 NSQZtoSX1fd =sqrt(noutX1fd/soutX1);
181
182 noutX2fd = [cos(zetaX2) sin(zetaX2)]*NSDSQX2fd*[cos('
183 zetaX2);sin(zetaX2)];
184 NSQZtoSX2fd =sqrt(noutX2fd/soutX2);
185
186 noutVarfd = [cos(zetaVar) sin(zetaVar)]*NSDSQVarfd*[cos('
187 zetaVar);sin(zetaVar)];
188 NSQZtoSVarfd =sqrt(noutVarfd/soutVar);
189
190
191 data=[data; [NtoSX1 NSQZtoSX1 NSQZtoSX1fd NtoSX2'
192 NSQZtoSX2 NSQZtoSX2fd NtoSVar NSQZtoSVar'
193 NSQZtoSVarfd zetaVar lambdaVar]];
194 end;
195
196 figure(1)
197 x=logspace(fmin,fmax,2000);
198 loglog(x,data(:,1),x,data(:,2));
199 save(’E:\aei-work\matlabs\forthesis\data-output\GEO600-'
200 2k.dat’,’data’,’-ascii’);

A.2 Noise spectral densities for TSR

With the following matlab script the noise spectral densities of the TSR topol-
ogy was calculated using the input-output formalism.
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1 clear;
2 %physical constants

3 c=299792458;
4 hbar=1.054e-34;
5 %carrier light angular frequency

6 w0=1.77e15;
7
8 %design parameters GEw0600

9 m=5.6; %Mirror mass

10 L1=1200; %Iinterferometer/TSRC1 length

11 L2=1200; %TSRC2 length

12 Pin=10; %Input power

13 %Power at beam splitter (PR gain=1000)

14 Pbs=1000*Pin;
15 %Power in each interferoneter arm

16 Parm=0.5*Pbs;
17
18 %Interferometer end mirrors

19 rend=sqrt(0.99995);
20 tend=sqrt(1-rend^2);
21 %Center mirror determining fsplit

22 fsplit=2*pi*1000;
23
24 rc=sqrt(4*cos(2*fsplit*L1/c)^2*rend^2/(1+rend^2)^2);
25 %rc=sqrt(0.99);

26 tc=sqrt(1-rc^2);
27
28 rtsr=sqrt(0.963);
29 ttsr=sqrt(1-rtsr^2);
30
31 phitsr1=0; %tuning of TSRC1

32 phitsr2=0; %tuning of TSRC2

33
34 %Frequency range [10^fmin:10^fmax]

35 fmin=1;
36 fmax=4;
37 %calculation steps

38 steps=2000;



160 MATLAB SCRIPTS

39
40 %Identity matrix

41 Ein=[1 0; 0 1];
42
43 %Detection angle of homodyne readout

44 zetaX2=pi/2; %Phase Quadrature;

45
46 %Description of Squeezing

47 r=1; %squezzing parameter

48 sphi=0; %Squeezed quadratur

49 %Squeezing matrix

50 SQ=[cosh(r)+sinh(r)*cos(2*sphi), sinh(r)*sin(2*sphi);'
51 sinh(r)*sin(2*sphi) cosh(r)-sinh(r)*cos(2*sphi)];
52
53 %Vector for data storage

54 data=[];
55
56 for f=logspace(fmin,fmax,2000)
57
58 %SQL for GEO600

59 h=sqrt(20*hbar/m/L1^2/(2*pi*f)^2);
60 %optomechanical coupling

61 K=4*Parm*w0/(m/5)/c^2/(2*pi*f)^2;
62 KM=[1 0;-K 1];
63
64 %Propagation matrices

65 Ptsr1=[cos(phitsr1) -sin(phitsr1); sin(phitsr1) cos('
66 phitsr1)]*exp(i*2*pi*f*L1/c);
67 Ptsr2=[cos(phitsr2) -sin(phitsr2); sin(phitsr2) cos('
68 phitsr2)]*exp(i*2*pi*f*L2/c);
69
70 %Reflexion at TSRC1

71 RhoTSR1=(rc*Ein-Ptsr1*rend*KM*Ptsr1)*inv(Ein-'
72 rc*Ptsr1*rend*KM*Ptsr1);
73 %field enhancement in TSRC2

74 InTSRC2=ttsr*inv(Ein-rtsr*Ptsr2*RhoTSR1*Ptsr2);
75 %field enhancement in TSRC1

76 InTSRC1=tc*inv(Ein-rc*Ptsr1*rend*KM*Ptsr1)'
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77 *InTSRC2*Ptsr2;
78 %Reflexion at TSRC2

79 RhoTSR=(-rtsr*Ein+Ptsr2*RhoTSR1*Ptsr2)*inv(Ein-'
80 rtsr*Ptsr2*RhoTSR1*Ptsr2);
81 %Reflexion of squeezed input

82 RHOsqz=RhoTSR*SQ;
83 %Loss: Shotnoise couples in at end-mirror

84 LOSS=tend*InTSRC1*Ptsr1;
85 %Signal TF

86 Sig=2*InTSRC1*Ptsr1*rend*KM*[0;1]*sqrt(2*K)/h;
87
88 %Spectral Densities

89 %Vacuum noise in reflexion of SRC

90 NSD = 1/2*(RhoTSR*transpose(conj(RhoTSR))+conj(RhoTSR)*('
91 transpose(RhoTSR)));
92 %Squeezed vacuum noise in reflexion of SRC

93 NSDSQZ=1/2*(RHOsqz*transpose(conj(RHOsqz))+conj(RHOsqz)'
94 *transpose(RHOsqz)); %Squeezing

95 %Loss (Imperfect end-mirror)

96 LSD = 1/2*(LOSS*transpose(conj(LOSS))+conj(LOSS)'
97 *transpose(LOSS));
98
99 %Vacuum noise at detection port

100 NSDD = NSD + LSD;
101 NSDSQZD = NSDSQZ + LSD;
102 %Signal at output

103 SSD = 1/2*(Sig*transpose(conj(Sig))+conj(Sig)*transpose('
104 Sig))
105
106 %Homodyne detection

107 %Phase Quatrature

108 noutX2=[cos(zetaX2) sin(zetaX2)]*NSDD*[cos(zetaX2);sin('
109 zetaX2)];
110 noutSQZX2=[cos(zetaX2) sin(zetaX2)]*NSDSQZD*[cos(zetaX2)'
111 ;sin(zetaX2)];
112 soutX2=[cos(zetaX2) sin(zetaX2)]*SSD*[cos(zetaX2);sin('
113 zetaX2)];
114
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115 NtoSX2=sqrt(noutX2/(soutX2));
116 NSQZtoSX2=sqrt(noutSQZX2/(soutX2));
117
118 %fully frequency dependend squeezing according to

119 %Eq.(16) in Harms et.al. PRD 68 (2003)

120 %For phase quadrature

121 lambdaX2=atan(-(RhoTSR(1,1)*cos(zetaX2) + RhoTSR(2,1)'
122 *sin(zetaX2))/(RhoTSR(1,2)*cos(zetaX2)+RhoTSR('
123 2,2)*sin(zetaX2)));
124
125 %frequency dependent squeezing for detection of X2

126 SQX2fd=RhoTSR*[cosh(r)+sinh(r)*cos(2*lambdaX2), sinh(r)'
127 *sin(2*lambdaX2); sinh(r)*sin(2*lambdaX2) cosh(r)'
128 -sinh(r)*cos(2*lambdaX2)];
129
130 %noise spectral densities

131 NSDSQX2fd = 1/2*(SQX2fd*transpose(conj(SQX2fd))+conj('
132 SQX2fd)*transpose(SQX2fd)) + LSD;
133 noutX2fd = [cos(zetaX2) sin(zetaX2)]*NSDSQX2fd*[cos('
134 zetaX2);sin(zetaX2)];
135 NSQZtoSX2fd =sqrt(noutX2fd/soutX2);
136
137
138 data=[data; [NtoSX2 NSQZtoSX2 NSQZtoSX2fd lambdaX2]];
139 end;
140
141 figure(1)
142 x=logspace(fmin,fmax,2000);
143 loglog(x,data(:,1),x,data(:,2), x,data(:,3));
144
145 figure(2)
146 semilogx(x,data(:,4));
147
148 save(’E:\aei-work\matlabs\forthesis\data-output\TSR-OPv.'
149 dat’,’data’,’-ascii’);



APPENDIX B
FINESSE simulation for the TSR

experiment

The following FINESSE script was written to investigate the control scheme
for the table-top TSR interferometer.

1 ########################################################
2 # .kat-file for simulating a tabletop experiment #
3 # investigating properties of #
4 # DETUNED TWIN-SIGNAL-RECYCLING #
5 # A.Thuering 05.03.0 #
6 ########################################################
7
8
9 ################ HIGHER ORDER MODES ####################

10 maxtem 3
11 gauss inputbeam PRM nprm2 499.85666e-6 -314.90741e-3
12
13 ################ Parameter Declaration #################
14
15 #----------- Power-Recycling-Mirror PRM ------------
16 const RPRM 0.9 #Power Reflexion
17 const TPRM 0.1 #Power Transmission
18 const RCPRM -2 #Radius of Curvature
19 const dxPRM -4e-5 #misalignment of x
20 const dyPRM 4e-5 #misalignment of y
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21
22 #--------- Signal-Recycling-Mirror SRM -------------
23 const RSRM 0.9 #Power Reflexion
24 const TSRM 0.1 #Power Transmission
25 const RCSRM 2 #Radius of Curvature
26 const dxSRM -3e-5 #misalignment of x
27 const dySRM 5e-5 #misalignment of y
28
29 #------- Twin-Signal-Recycling-Mirror TSRM ---------
30 const RTSRM 0.95 #Power Reflexion
31 const TTSRM 0.05 #Power Transmission
32 const RCTSRM 1.87 #Radius of Curvature
33 const dxTSRM 3e-5 #misalignment in x
34 const dyTSRM 1e-5 #misalignment in y
35
36 #--------- Interferometer End-Mirrors --------------
37 const REND1 0.999 #Power Reflexion
38 const TEND1 0.0008 #Power Transmission
39 const REND2 0.9992 #Power Reflexion
40 const TEND2 0.0008 #Power Transmission
41 const RCEND 1.5 #Radius of Curvature
42 const dxEND1 -8e-6 #misalignment in x
43 const dyEND1 8e-6 #misalignment in y
44 const dxEND2 0e-5 #misalignment in x
45 const dyEND2 0e-5 #misalignment in y
46
47 #-------------- cavity lenghts ---------------------
48 const LPRC 0.21 #Distance PRM to BS
49 const LSRC 0.21 #Distance SRM to BS
50 const LTSRC 1.21 #Length of TSRCavity
51
52 const IFOARM1 1.00 #Interferometer Arms
53 const IFOARM2 1.007 #7mm SchnuppAsymetry
54
55 #-------------- modualtion frequencies -------------
56 const fmod1 15M
57 const fmod2 123.13121M
58 const fmod3 234.3874M
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59
60 #---------------- Input Optics ---------------------
61 l laser 1 0 n1
62 mod eom1 $fmod1 0.2 2 pm n1 n2
63 mod eom2 $fmod2 0.2 2 pm n2 n3
64 mod eom3 $fmod3 0. 2 pm n3 n4
65 bs splitLO 0.00 1 0 0 n4 tohomobs toifo dumpB
66 s toPRM 1 toifo nprm1
67 #---------------------------------------------------
68
69 #########################################################
70 # The TSR-Interferometer #
71 #########################################################
72
73 m PRM $RPRM $TPRM 180.0 nprm1 nprm2 #PR Mirror
74 attr PRM RC $RCPRM #Radius of Curvature
75 attr PRM xbeta $dxPRM #Misalignment in x
76 attr PRM ybeta $dyPRM #Misalignment in y
77 s PRC $LPRC nprm2 nbs1 #Distance to BS
78
79 #-------- Interferometers Beamsplitter --------------
80 bs MainBS 0.5 0.5 0 45 nbs1 narm1 narm2 toSRMa
81 #------- AR-Coating of the Beamsplitter -------------
82 bs BSAR-darkport 0.003 0.997 0 45
83 toSRMa pickoff toSRM pickoff2
84
85 s ARM1 $IFOARM1 narm1 narm1end #1st Ifo Arm
86 s ARM2 $IFOARM2 narm2 narm2end #2nd Ifo Arm
87 m END1 $REND1 $TEND1 180.0
88 narm1end narm1trans #1st Endmirror
89 m END2 $REND2 $TEND2 270.0
90 narm2end narm2trans #2nd Endmirror
91
92 attr END1 RC $RCEND #Radius of Curvature
93 attr END1 xbeta $dxEND1 #Misalignment in x
94 attr END1 ybeta $dyEND1 #Misalignment in y
95
96 attr END2 RC $RCEND #Radius of Curvature
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97 attr END2 xbeta $dxEND2 #Misalignment in x
98 attr END2 ybeta $dyEND2 #Misalignment in y
99
100
101 s SRC $LSRC toSRM nsrm1 #Distance SRM to BS
102 m SRM $RSRM $TSRM 0 nsrm1 nsrm2 #Signal-Recycling-Mirror
103 attr SRM RC $RCSRM #Radius of Curvature
104 attr SRM xbeta $dxSRM #Misalignment in x
105 attr SRM ybeta $dySRM #Misalignemnt in y
106
107 s TSRC $LTSRC nsrm2 ntsrm1 #TSR-Cavity length
108 m TSRM $RTSRM $TTSRM 0 ntsrm1 detectionport #TSR-Mirror
109 attr TSRM RC $RCTSRM #Radius of Curvature
110 attr TSRM xbeta $dxTSRM #Misalignment in x
111 attr TSRM ybeta $dyTSRM #Misalignment in y
112
113 #########################################################
114 #########################################################
115
116 #################### cavity tracing #####################
117
118 trace 2
119 cav PRC1 PRM nprm2 END1 narm1end #PRC build with END1
120 cav PRC2 PRM nprm2 END2 narm2end #PRC build with END2
121 cav SRC1 SRM nsrm1 END1 narm1end #SRC build with END1
122 cav SRC2 SRM nsrm1 END2 narm2end #SRC build with END2
123 cav TSRC SRM nsrm2 TSRM ntsrm1 #TSR-Cavity
124
125 retrace off
126
127
128
129 ##########################################################
130 # ErrorSignals #
131 ##########################################################
132
133 pd1 PRC-LOCK $fmod1 0 nprm1 #15MHz in refl for PRC
134 pd1 SRC-LOCK $fmod2 90 nprm1 #123.5MHz in Refl for SRC
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135 scale 0.01 PRC-LOCK
136 scale 0.01 SRC-LOCK
137 pd1 TSR-LOCK $fmod2 0 narm1trans
138 #123.5MHz in transmission of
139 #MI-endmirror for TSRC
140
141 ##########################################################
142 func negative = $x1 * (-1)+90
143 noplot negative
144 func common = $x1 +90
145 noplot common
146 func sync = $x1 * 2.0 # +2.56
147 noplot sync
148 #########################################################
149
150 #########################################################
151 # commands #
152 #########################################################
153
154 #xaxis END1 phi lin 0 360 1000 #sweeps tuning of END1
155 #put END2 phi $common #sweeps tuning of END2
156 #put PRM phi $x1 #in common mode with END1
157 #-> PRC is scanned
158
159 #put END2 phi $negative #sweeps tuning of END2
160 #in differential mode with END1
161 #-> Darkport is scanned
162
163
164 xaxis SRM phi lin -360 -0 400 #sweeps tuning of SRM
165 put TSRM phi $x1 #sweeps tuning of TSRM in
166 #put TSRM phi $sync #in common mode with SRM
167 #-> SRC is scanned
168
169 #xaxis TSRM phi lin -90 270 1000 #sweeps tuning of TSRM
170 #-> TSRC is scanned
171 #x2axis TSRM phi lin -150 250 1000
172 #x2axis eom2 f lin 123.5M 123.6M 100
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173 #put SRC-LOCK f $x2
174
175 #xaxis ccd x lin -6 6 100
176 #x2axis ccd y lin -6 6 100
177 yaxis abs
178
179 #gnuterm NO
180
181 GNUPLOT
182 #set log y
183 #set yrange [-1e-4:1e-4]
184 END



APPENDIX C
Investigation of a scanned

3rd-order non-linear resonator

With the following C-script the dynamics of a 3rd-order non-linear resonator
was calculated.

1 #include "./headers/header.h"
2
3 main()
4 {
5 //data files

6 FILE *out;
7 FILE *index;
8 FILE *gnu;
9

10 int i,j, di;
11
12 //fields inside and in reflexion of the resonator

13 Complex double at1, at2, R;
14 Complex double A;
15
16 //Reflectivities of cavity mirrors

17 extern double rho1, tau1;
18 extern double rho2, tau2;
19 extern double P;
20
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21 //optical and geometric length of the resonator

22 double phit2, phigeo;
23
24 //effective kerr non-linearity

25 double x3;
26
27 int steps;
28 int nos;
29 double sweep;
30 double dt, dT;
31 double phimin, phimax;
32 double dphif, dphib;
33 double prop;
34 double trt;
35
36 double dPdt, dPdt1;
37
38 double f[5];
39 int n;
40
41 /* Scanning one FSR with nu [lamda/s]*/

42 f[0]=100.0;
43 f[1]=200.0;
44 f[2]=500.0;
45 f[3]=1000.0;
46 f[4]=2000.0;
47
48 // Input Power [W]

49 P=1.0;
50
51 // round-trip time of the resonator

52 trt=2.0*L/c;
53 // time step for calculation

54 dt=trt;
55
56 // tuning range

57 phimin=-2/180.0*M PI;
58 phimax=2.0/180.0*M PI;
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59 dphif=phimax-phimin; //forward scan

60 dphib=phimin-phimax; //backward scan

61
62 // Reflectivities of the non-linear cavity

63 rho1=sqrt(0.983);
64 tau1=sqrt(1.0 - rho1*rho1);
65 // rho2 includes rountrip loss

66 rho2=sqrt(0.9992-0.004);
67 tau2=sqrt(1.0 - rho2*rho2);
68
69 // dispersion

70 prop=omega*L/c;
71
72 // effective x3 gives theta = Pin/waist^2*x3

73 x3=-5.9e-14; //[W/m^2]

74
75 // calculation of static Airypeak

76 solve intrafield(x3);
77
78 out=fopen("./data-output/forw.dat","w");
79 index=fopen("./data-output/n-forw.dat","w");
80
81 /****** scanning forward ******/

82 nos = 5;
83 for(j = 0; j < nos; j++)
84 {
85 // scan velocity [rad/s]

86 sweep=f[j]*2*M PI;
87 // time needed to scan tuning range dphi

88 dT=((phimax-phimin))/sweep;
89 // stepsize needs to be dt=storage time

90 steps=(int)ceil(dT/(trt));
91
92 di=(int)(steps)/(1000);
93
94 // static intra cavity field at t=0

95 at1=I*tau1*sqrt(P)
96 /(1.0-rho2*rho1*cexp(2*I*(phimin)));
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97 A=at1;
98
99 fprintf(out, "\n");
100 fprintf(index, "\n");
101 // index of n-th maximum reset to zero

102 n=0;
103
104 for(i = 1; i < steps+1; i++)
105 {
106 // optical microscopic length at t = dt*i

107 phit2=phimin+dphif/steps*i+x3*cabs(A)*cabs(A)/
108 pow(waist,2);
109 // corresponding geometric length

110 phigeo=phimin+dphif/steps*i;
111
112 dPdt=cabs(A)*cabs(A);
113
114 // Intra cavity field at t = dt*i

115 A=I*tau1*sqrt(P)+rho2*rho1*cexp(2*I*phit2)*A;
116 // Reflected field at t = dt*i

117 R=sqrt(P)*rho1+I*tau1*A;
118 //dP/dt needed for finding n-th extreme value

119 dPdt=(cabs(A)*cabs(A)-dPdt);
120
121 // index of nth-maximum in ringing

122 if(((dPdt <= 0 && dPdt1 >= 0) ||
123 ( dPdt >= 0 && dPdt1 <= 0)) &&
124 //avoid numerical ringing

125 i >= steps/3.0)
126 {
127 n+=1;
128 fprintf(index,"\n%e\t%d\t%e\t%e",
129 (dt*i+dt*(i-1))/2.0,
130 n, cabs(A)*cabs(A), 0.0);
131 }
132 // just save each 1000th calculation step

133 // to assure a manageable file size

134 if(i % di == 0)
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135 fprintf(out, "\n%e\t%e\t%e\t%e\t%e\t%e",
136 (phigeo)/M PI*180.0,
137 dt*i, cabs(A)*cabs(A),
138 pow(cabs(R),2.0),
139 dPdt, phit2/M PI*180.0);
140
141 dPdt1=dPdt;
142 }
143 }
144 fclose(out);
145 fclose(index);
146
147 return 0;
148
149 }
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Hoppenstedts Weg 14 A
29308 Winsen

Born on June 28th, 1978 in Hannover, Germany

University studies

05/2004 - present Scientific Assistant,
University of Hannover

05/2004 - present Doctoral studies in Physics, University of Hannover

01/2004 Diploma thesis, University of Hannover, Lineare mehrfach
Spiegel-Resonatoren für Gravitationswellendetektoren

10/1998 - 01/2004 Physics studies, University of Hannover

Community service
08/1997 - 08/1998 Civil service. Behinderten Zentrum Hannover,

Hannoversche Werkstätten

Education

1997 Abitur, Kaiser-Wilhelm- und Rats Gymnasium Hannover





Publications

— 2009 —
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,,Upper limits on gravitational wave emission from 78 radio pulsars“,
Phys. Rev. D 76, 042001 (2007).

18 | B. Abbott, . . . , A. Thüring, . . . , J. Zweizig,
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