Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

RNA editing of brain glutamate receptor channels: mechanism and physiology

MPG-Autoren
/persons/resource/persons95292

Seeburg,  Peter H.
Department of Molecular Neurobiology, Max Planck Institute for Medical Research, Max Planck Society;

/persons/resource/persons93415

Higuchi,  Miyoko
Department of Molecular Neurobiology, Max Planck Institute for Medical Research, Max Planck Society;

/persons/resource/persons95439

Sprengel,  Rolf
Department of Molecular Neurobiology, Max Planck Institute for Medical Research, Max Planck Society;

Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Seeburg, P. H., Higuchi, M., & Sprengel, R. (1998). RNA editing of brain glutamate receptor channels: mechanism and physiology. Brain Research Reviews, 26(2-3), 217-229. doi:10.1016/S0165-0173(97)00062-3.


Zitierlink: https://hdl.handle.net/11858/00-001M-0000-002B-7ABC-D
Zusammenfassung
Glutamate-gated cation selective channels mediate fast excitatory neurotransmission in the mammalian brain. Functionally critical channel positions contain amino acid residues not predicted from the exonic sequence for the channel subunits. The codons for these residues are created in the respective primary gene transcripts by the site selective deamination of adenosine to inosine. This type of RNA editing requires a short double-stranded RNA structure formed by the exonic sequence around the adenosine targeted for deamination with a complementary sequence in the downstream intron and hence, it precedes splicing. Candidate enzymes for nuclear transcript editing currently comprise three molecularly cloned mammalian RNA-dependent adenosine deaminases. Two of these are expressed in most body tissues, perhaps indicating that adenosine deamination in transcripts is more global than has been recognized. Indeed, numerous mRNAs in different tissues may contain inosine residues and encode proteins with amino acid substitutions and different properties relative to the exonically encoded forms. If so, RNA editing by adenosine deamination may significantly enlarge the functional repertoire of the mammalian genome.