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Abstract. Understanding the global carbon (C) cycle is of crucial importance to map current and future climate dynamics 

relative to global environmental change. A full characterization of C cycling requires detailed information on spatiotemporal 10 

patterns of surface-atmosphere fluxes. However, relevant C cycle observations are highly variable in their coverage and 

reporting standards. Especially problematic is the lack of integration of vertical oceanic, inland freshwaters and terrestrial 

carbon dioxide (CO2) exchange. Here we adopt a data-driven approach to synthesize a wide range of observation-based 

spatially explicit surface-atmosphere CO2 fluxes from 2001 and 2010, to identify the state of today’s observational 

opportunities and data limitation. The considered fluxes include vertical net exchange of open oceans, continental shelves, 15 

estuaries, rivers, and lakes, as well as CO2 fluxes related to gross primary productivity, terrestrial ecosystem respiration, fire 

emissions, loss of tropical aboveground C, harvested wood and crops, as well as fossil fuel and cement emissions. Spatially 

explicit CO2 fluxes are obtained through geostatistical and/or remote sensing-based upscaling; minimizing biophysical or 

biogeochemical assumptions encoded in process-based models. We estimate a global bottom-up net C exchange (NCE) 

between the surface (land, ocean, and coastal areas) and the atmosphere. Uncertainties for NCE and its components are 20 

derived using resampling. In most continental regions our NCE estimates agree well with independent estimates from other 

sources. This holds for Europe (mean±1 SD: 0.80±0.16 PgC/yr, positive numbers are sources to the atmosphere), Russia (-

0.02±0.49 PgC/yr), East Asia (1.76±0.38 PgC/yr), South Asia (0.25±0.16 PgC/yr), and Australia (0.22±0.47 PgC/yr). Our 

NCE estimates also suggest large C sink in tropical areas. The global NCE estimate is -6.07±3.38 PgC/yr. This global 

bottom-up value is the opposite direction of what is expected from the atmospheric growth rate of CO2, and would require an 25 

offsetting surface C source of 4.27±0.10 PgC/yr. This mismatch highlights large knowledge and observational gaps in 

tropical areas, particularly in South America, Africa, and Southeast Asia, but also in North America. Our uncertainty 

assessment provides the basis for designing new observation campaigns. In particular, we lack seasonal monitoring of shelf, 

estuary and inland water-atmosphere C exchange. Also, extensive pCO2 measurements are missing in the Southern Ocean. 

Most importantly, tropical land C fluxes suffer from a lack of in-situ observations. The consistent derivation of data 30 

uncertainties could serve as prior knowledge in multi-criteria optimization such as the Carbon Cycle Data Assimilation 

System (CCDAS) without overstating data credibility. Furthermore, the spatially explicit flux estimates may be used as a 

starting point to assess the validity of countries’ claims of reducing net C emissions in climate change negotiations. 
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1 Introduction 

The global carbon (C) cycle is crucial for sustaining life on Earth (Vernadsky, 1926). Humans have largely modified the C 

cycle over centuries if not millennia (Pongratz et al., 2009; Ruddiman, 2003). In recent times this has been laregly driven by 

burning fossil fuels and rapid changes in land use. As anthropogenic C emissions are partly taken up by oceans and 5 

terrestrial vegetation, the different components of the global C cycle and the fluxes between them change over time 

(Houghton, 2007). A precise knowledge of the various stocks and fluxes in the C cycle is a prerequisite to monitor these 

changes and make well-informed predictions under future climate change. 

The Global Carbon Project (GCP) has made major efforts in this direction and its annual updates of the global C budget have 

become a crucial source of information for the scientific community and policy makers (Le Quéré et al., 2015). The GCP 10 

annual C budget quantifies the partitioning of anthropogenic C emissions among the atmosphere, land, and ocean 

components of the global C cycle, and separates the net land flux into land use change emissions and a so called ‘residual 

land carbon sink’ over non land-use affected ecosystems. The budget of the GCP focuses on annual values integrated at the 

global scale. An important caveat is that the GCP budget focuses solely on anthropogenic CO2, i.e., it provides information 

about the fate of anthropogenic emissions in natural reservoirs only while ignoring background CO2 fluxes over land and 15 

ocean, some of them related to riverine C transport (Ciais et al., 2013; Regnier et al., 2013). According to the GCP, about 

44% of the anthropogenic CO2 emissions each years stay in the atmosphere, while the rest is taken up by the oceans (26%) 

and land (30%) (Le Quéré et al., 2015).  

Recently, a case has been made for a globally policy-relevant integrated carbon observation and analysis system (Ciais et al., 

2014). This system would go beyond the update of global budgets, for which the CO2 growth rate accurately measured at a 20 

single station (e.g. Mauna Loa) is sufficient to constrain the global multi-year time-space integral of all CO2 sources and 

sinks. It proposes to quantify regional CO2 fluxes at a relevant spatial scale to monitor the effectiveness of CO2 mitigation 

and to detect and monitor trends of CO2 losses and gains by land and terrestrial systems.  This is partly relevant for 

monitoring country-level Intended Nationally Determined Contributions (INDCs) to keep global warming well below 2 

degrees Celsius (UNFCCC, 2015). In such a system, an uncertainty assessment for each data stream is important to, for 25 

instance, identify significant regional to global trends (Ciais et al., 2014).  

The steadily increasing number of Earth observations, in particular since the start of the satellite era, has improved our 

knowledge about the Earth system (Berger et al., 2012; Tatem et al., 2008). Especially C cycle science has benefited from 

globally available satellite observations and community efforts to unify in-situ observational networks such as FLUXNET on 

land (Baldocchi, 2014) and Surface Ocean CO2 Atlas (SOCAT) over water (Bakker et al., 2014).  Combining these now 30 

abundantly available point measurements of either CO2 fluxes (e.g., from eddy-covariance towers on land), or variables that 

can be directly related to CO2 fluxes (e.g., pCO2 over aquatic surfaces) with climate and remotely sensed variables (e.g., 
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vegetation greenness), provides a basis to robustly upscale surface-atmosphere CO2 exchange to larger areas using statistical 

models (Jung et al., 2011; Rödenbeck et al., 2014).  

In this study we aim to characterize the maturity of current C cycle observations on ground for quantifying a 

spatiotemporally explicit picture of the net CO2 exchange between the Earth’s surface (terrestrial and aquatic) and the 

atmosphere. Unlike the GCP global budget of anthropogenic CO2, we consider here both natural background and 5 

anthropogenic surface-atmosphere CO2 fluxes. Here, anthropogenic fluxes consist of those fluxes that occur as the result of 

past and present human activities since an arbitrary time in the past, such as fossil and land use emissions, climate change, 

reactive nitrogen creation, and ecosystem management (see Gasser and Ciais, 2013 for equations). We focus our analysis on 

fluxes that can be directly derived from observations. That is, we use data-driven empirical models instead of process-based 

models, which are only indirectly constrained by observations. Further, we only consider ‘bottom-up’ estimates derived from 10 

measurements at the Earth's surface or from satellites. Inversions, which largely rely on atmospheric measurements in 

combination with a transport model, are not directly included but used for comparison. The goal of this analysis is to test the 

upscaling of local flux-related observations to regional and global budgets, and point out the limitations of the current 

observational networks and data-driven models used to interpolate them, for quantifying the most important CO2 fluxes 

exchanged between the Earth’s surface and the atmosphere.  15 

One of the major innovations of this study is combining data-driven estimates of oceanic, inland waters and terrestrial 

ecosystems CO2 exchange and providing spatially explicit maps of the carbon exchange between the surface and the 

atmosphere at a monthly scale for the decade 2001-2010. At the same time, by adding emissions from fossil fuels and 

cement production and comparing with the annual growth rate of CO2, we identify the limits of a purely data-driven C 

budget. We characterize regions in which surface-atmosphere CO2 fluxes are most uncertain based on the currently available 20 

data and the models used for upscaling, and thus point out regions where either more observations or a better understanding 

of the processes are necessary. It is not the primary goal of this study the provide the best global CO2 flux inventory, but 

rather to identify the key uncertainties and observational shortcomings that would need to be addressed in future 

measurement campaigns or expansions of in-situ observatories.  

The paper is structured as follows. In Sect. 2 we introduce the different data streams used in the analysis, including spatially 25 

explicit estimates of aquatic and terrestrial CO2 exchange. In Sect. 3 we present the resulting combined synthesis as global 

maps, regionally aggregated fluxes, absolute and relative uncertainties, latitudinal averages and seasonal cycles. Sect. 4 

addresses the benefits and limits of the current observational system for constraining global net CO2 fluxes. Sect. 5 provides 

an outlook on future requirements to achieve better observationally-based net CO2 flux estimates and discusses the necessity 

for more consistent uncertainty estimates. 30 
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2 Data and Methods 

We collected ensembles of data-driven estimates of the net CO2 exchange between the Earth’s surface and the atmosphere 

for the major subsystems of the Earth from 2001-2010 (Table 1). Each dataset was resampled to 1 x 1 degree spatial 

resolution and monthly time step; a compromise that minimizes aggregation/spatialization across different data products. In 

this synthesis, we include net CO2 exchange from open oceans, continental shelves, estuaries, rivers, lakes, and the land 5 

surface, which we combine with estimates of fossil fuel and cement emissions (FF). The land surface component accounts 

for fire emissions (Fire), loss of tropical above-ground biomass assumed to be released as CO2 to the atmosphere (ELUC), 

emissions of the CO2 contained in harvested wood (Wood) and crops (Crops), and terrestrial ecosystem fluxes which are 

divided into Gross Primary Production (GPP) and Terrestrial Ecosystem Respiration (TER). We combine fluxes from 

oceans, shelves, and estuaries into a homogeneous marine flux product in order to account for overlapping or missing 10 

regions from the different aquatic products (Marine, Sect. 2.2.6). We further compare the net CO2 exchange derived from the 

combination of all the above products with the growth rate of atmospheric CO2 (CGR). Data scarcity precludes including all 

known vertical CO2 fluxes in this study. Missing fluxes include geological CO2 fluxes, erosion related fluxes, non-CO2 

fluxes, wood product pools decay, and biofuel burning. Combining all fluxes, the overall net CO2 exchange (NCE) between 

the Earth’s surface and the atmosphere is given as: 15 

NCE = Marine + Lakes + Rivers – GPP + TER + Crops + Wood + ELUC + Fire + FF.  (1) 

All units are transformed into fluxes of C per unit time. If all CO2 fluxes are included, NCE should equal CGR. In contrast, 

negative NCE indicates uptake of CO2 by the Earth’s surface. All data used in this study are listed in Table 1 and for 

convenience available from the GEOCARBON website http://www.bgc-jena.mpg.de/geodb/geocarbon/Home.php; direct 

access and citation of the data as pre-processed here is possible via 20 

https://dx.doi.org/10.17871/GEOCARBON_synth_obs_v1. 

2.1 Uncertainty estimation and propagation 

For each flux term in Eq. (1) we computed mean fluxes over all available realizations of a given product, uncertainty 

(defined as one standard deviation (SD) of the annual mean across all realizations), interannual variability (IAV, defined 

here as one SD of annual means across all available years) and the coefficient of variation (CV = IAV/mean). For NCE 25 

estimates, we randomly combined all datasets, using a single realization of each flux, to generate an estimate of NCE. This is 

repeated 200 times to construct an NCE ensemble, which was then used to calculate mean, SD, IAV, and CV of NCE. To 

estimate how the dependence between datasets affects our error estimate, for NCE we additionally estimate uncertainty by 

quadrature error accumulation assuming independent errors, defined classically by 
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,                     (2) 

where ei is the uncertainty for flux i, and eNCE is the uncertainty of NCE. Because this error estimate assumes independence 

of errors between all data sets, it is expected to result in higher uncertainties, as for instance GPP and TER have correlated 

errors due to the method used to separate net ecosystem production (NEP) into GPP and TER (as NEP=GPP-TER, Schulze, 

2006).   5 

2.2 Aquatic fluxes 

2.2.1 Oceans 

For the global open ocean flux estimate we used two complementary data-driven estimates (Table 1). Both approaches 

computed maps of the sea surface partial pressure of CO2 (pCO2). They relied on the surface ocean CO2 observations from 

the SOCATv2 database (Bakker et al., 2014) and filled data gaps by either establishing relationships between auxiliary 10 

driver data and observations, which can then be applied to extrapolate pCO2 in regions without data coverage (SOM-FFN, 

Landschützer et al., 2014), or by assimilating the available observations in a mass-balance model of the mixed layer and 

directly interpolating data gaps (Jena CarboScope mixed-layer scheme oc_v1.2, Rödenbeck et al., 2014). To test the 

established predictor-target relationship, the SOM-FFN method holds back a certain fraction of the observations proportional 

to the methods degrees of freedom for internal validation. Repeating this relationship building process and withholding 15 

different sets of validation data has created the 5 ensemble members schused for this study. For the Jena CarboScope mixed-

layer scheme, we used the 5 sensitivity cases with changes in correlation length etc. as described in Rödenbeck et al (2014). 

The pCO2 fields of both methods have been validated against independent observations (Landschützer et al., 2014; 

Landschützer et al., 2015; Rödenbeck et al., 2014) and were compared with other complementary data based interpolation 

methods (Rödenbeck et al., 2015), illustrating their good performance in reconstructing interannual variation. 20 

Both methods calculate the air-sea flux using a bulk formulation of the air-sea CO2 transfer, driven by the air-sea pCO2 

difference (∆pCO2) (Jähne et al., 1987) and a quadratic dependence of the wind speed at a height of 10 meters (Wanninkhof, 

1992, Sweeney et al., 2007) updating the gas transfer coefficient to fit a mean transfer velocity of 16.5 cm per hour following 

Nägler (2009). High-resolution wind speeds at 10 meters are calculated from the u and v wind components of the ERA-

interim wind speed analysis (Dee et al., 2011).  25 

2.2.2 Shelves 

For continental shelf seas we derived the ∆pCO2 from 3x106 surface pCO2 measurements extracted from the SOCATv2 

database (Bakker et al., 2014) and observational atmospheric pCO2 data (GLOBALVIEW-CO2, 2012). The local CO2 air-

sea flux values were then obtained using a wind-dependent quadratic formulation parameterized as in Wanninkhof et al. 

∑ =
=

n

i iNCE ee 1

2
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(2013) and wind speeds extracted from a cross-calibrated multiplatform (CCMP) high-resolution data product for ocean 

surface winds (Atlas et al., 2011). The resulting local fluxes were then integrated spatially over 150 broad coastal regions 

(COSCATs - COastal Segmentation and related CATchments; Laruelle et al. (2013); Meybeck et al. (2006)) using distinct 

integration methods depending on the data density (Laruelle et al., 2014). In addition, a temporal integration was also 

performed at the monthly, seasonal or yearly time scale depending on the data coverage. These temporally and regionally 5 

averaged air-sea CO2 fluxes were then disaggregated using a 1-degree resolution map excluding land areas and open ocean 

waters using the shelf break as outer limit (Laruelle et al., 2014). 

2.2.3 Estuaries 

The CO2 emissions from estuaries were derived from 161 annually averaged local CO2 air-water exchange rates reported in 

the literature (Laruelle et al., 2013). The data were allocated to one of the 45 coastal MARCATS regions (MARgins and 10 

CATchments Segmentation) defined in Laruelle et al. (2013) and further categorized among the 4 dominant estuarine types 

(i.e., small deltas, tidal systems, lagoons, fjords, see (Dürr et al., 2011)) to calculate regionally-averaged, type specific CO2 

emission rates. In MARCATS regions devoid of estuarine data, the global average type-dependent air-water CO2 flux was 

used from Laruelle et al. (2013). These flux densities were then multiplied by the estuarine surface areas for each type, 

estimated at 1-degree resolution from the length of the coastline and a type-specific length to estuarine surface ratio (Dürr et 15 

al., 2011). 

2.2.4 Marine 

We combined all non-inland aquatic fluxes (oceans, shelves, and estuaries) to a consistent marine product. For pixels with 

observations from multiple products (e.g., estuaries and oceans) we follow a “priority rule” whereby the shelves, estuaries, or 

oceans observation value only (in that order) is retained. Empty pixels are gap-filled with 3 x 3 mean window. This same 20 

filter is also applied to the rest of the merged dataset to smooth out hard borders between the different estimates. This 

application does not significantly change the overall flux estimates, but arguably results in a more realistic interface. Note 

that in the merged Marine product, uncertainty and IAV could only be assessed for the ocean flux. 

2.2.5 Rivers 

Estimates of CO2 evasion from streams and rivers were derived from a spatially explicit, empirical model of river water 25 

pCO2 and global maps of stream surface areas and gas exchange velocities at a resolution of 0.5 degree (Lauerwald et al., 

2015). The empirical pCO2 model was trained on 1182 river catchments from the GLORICH database (Hartmann et al., 

2014) for which robust averages of pCO2 could be calculated. Steepness of terrain, terrestrial net primary production, 

average air temperature as well as population density were identified as predictors (R2=0.47). The global maps of stream 

surface area and gas exchange velocities were obtained by a GIS-based application of published empirical scaling laws 30 

(Raymond et al., 2013; Raymond et al., 2012) using topography (Lehner et al., 2008) and runoff (Fekete et al., 2002).  The 
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CO2 evasion was calculated as product of water-air pCO2 gradient (assuming an atmospheric pCO2 of 390 µatm), river 

surface areas, and gas exchange velocities.  A Monte-Carlo simulation based on standard errors of the predictors in the pCO2 

model and uncertainty ranges for estimates of stream surface area and gas exchange velocity was run to produce 50 CO2 

evasion estimates.  

2.2.6 Lakes 5 

Estimates of CO2 evasion from lakes and reservoirs were taken from Raymond et al. (2013), which reports average lake 

pCO2, total lake/reservoir surface area, and total CO2 evasion for 231 COSCAT regions (including endorheic regions). For 

the total lake/reservoirs surface area, data from the Global Lakes and Wetland Data base (GLWD, Lehner and Döll, 2004) 

were combined with an estimate for small lakes and reservoirs not represented in the GLWD using a scaling law. Here, we 

used the GLWD data to downscale the estimates of Raymond et al. (2013) to a continuous 1-degree resolution. For this 10 

purpose, we combined a uniform air-water CO2 flux (per unit surface area) within each COSCAT region with a spatially 

explicit estimate of the lakes/reservoirs surface at this resolution. The small lakes/reservoirs not represented in the GLWD 

were assumed evenly distributed over the COSCAT area. 

2.3 Terrestrial fluxes 

2.3.1 GPP and TER 15 

We used empirical, machine learning based products from FLUXCOM (www.fluxcom.org) for GPP and TER, derived from 

more than 200 FLUXNET sites and exclusively remote-sensing based predictor variables (“FLUCOM-RS”, see Tramontana 

et al., 2016). The eight machine learning methods used here include artificial neural networks, four variants of model or 

regression tree ensembles, kernel methods (support vector machines, kernel ridge regression), and multivariate adaptive 

regression splines (Tramontana et al., 2016). All methods were trained on 8-daily tower based GPP and TER estimates from 20 

two NEP flux partitioning approaches (Lasslop et al., 2010; Reichstein et al., 2005) such that 16 ensemble members are 

available for GPP and TER (see Tramontana et al. (2016) fo details). 

2.3.2 Crops 

About 42% of global crop biomass is harvested, transported, and respired off site (Wolf et al., 2015a). The impact of this 

lateral C transport on fluxes can be seen at the country scale in the form of import and exports, but even more so at sub-25 

regional scales where the movement of crop biomass to feed livestock and humans is evident (Hayes et al., 2012; West et al., 

2011).  To capture the spatial distribution of biogenic CO2 fluxes from agricultural production, we used livestock and human 

emissions estimates (Wolf et al., 2015b) that are available from 2005-2011 at 0.05 degree spatial resolution. Because CO2 

that is taken up by crops is implicitly included in the NEP estimates from FLUXCOM, we only used CO2 emissions related 

to livestock and human respiration. We aggregated best estimates of the data to 1 degree, added all uncertainty estimates 30 
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within one 1 degree pixel and used them as estimates for one standard deviation on the new 1 degree grid. Assuming 

Gaussian distributed errors we sampled 1000 values at each pixel and used 10 maps of the 5th, 15th,…, 95th quantiles as 

different ensemble members. Data was then linearly extrapolated back to 2001-2004. In a final step, and because it is not 

known in which months the emissions occur, we further distributed the annual estimates equally across all 12 months.  

2.3.3 Wood 5 

We use globally gridded forest harvesting data around year 2000 as described in the Supplementary Information S1. These 

data include fuelwood and roundwood harvested volumes in m3. We translated wood volumes into units of C using a value 

of 0.275 MgC/m3 from FAO (http://www.fao.org/docrep/w4095e/w4095e06.htm), assuming wood density of 0.55 t/m3. To 

avoid double counting wood harvest with aboveground biomass loss in tropical areas, we use wood harvesting data only in 

locations where the amount of harvested wood (in C) exceed the average of ELUC (Sect. 2.3.4). We assume that 100% of the 10 

harvested wood is respired back to the atmosphere within a year, thus assuming no change in C stock of wood products and 

constant harvesting rates across years. However, C contained in harvested wood is usually emitted at a different location than 

where the harvest took place. We thus incorporated lateral shifts of harvested wood by redistributing wood harvest according 

to the consumption of wood as explained in the Supplementary Information S1 (see also Fig. S2). 

2.3.4  ELUC 15 

We used two estimates for changes in C due to tropical deforestation and degradation. It is assumed here that 100% of 

biomass loss is converted to a CO2 flux being released instantly (within a year) to the atmosphere. In reality, a fraction of 

tropical biomass lost decays in ecosystems (belowground biomass and slash) and a fraction is used in wood products of 

various lifetime. However, slash is decomposed fast and biomass from deforested areas is transformed on average to short-

lived products (≈ 5 years after Earles et al. (2012)). 20 

1) Gross tropical deforestation emissions were taken from Harris et al. (2012). They represent total (above- and 

belowground) carbon loss from gross forest cover loss in the tropical regions due to human or natural causes (without forest 

recovery) for the period of 2000-2005.  

2) More recent estimates of aboveground C loss in the tropics from stand-replacement disturbance of forest cover due to 

human or natural causes were provided by Tyukavina et al. (2015). Sample-based estimates of mean 2000-2012 25 

aboveground C loss for each 30-m resolution forest carbon stratum were attributed to all pixels of the corresponding stratum 

and averaged to the 1x1 degree resolution. 

We us ELUC only in those pixels where the average of 1) and 2) exceeds wood harvesting (Sect. 2.3.3).  

2.3.5 Fire 

We downloaded fire emissions from the Global Fire Emissions Database version 4 with small fires (GFED4s, 30 

http://www.globalfiredata.org) based on burned area from Giglio et al. (2013) and Randerson et al. (2012) and an updated 
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version of the biogeochemical modelling framework of van der Werf et al. (2010) to conver burned area to emissions. We 

included all fire types except tropical deforestation and degradation fires which are included in the aboveground biomass 

loss estimates (Sect. 2.3.4). For an earlier version (GFED3) a Monte Carlo simulations indicated an uncertainty of about 20% 

(1σ) for continental-scale estimates but these estimates turned out to be not very reliable. For example, the inclusion of small 

fire burned led to an increase in burned area exceeding the previously assumed uncertainty and the current version therefore 5 

has no uncertainty assessment at pixel level. Note that GFED fire emissions depend on estimates of net primary production 

as computed by the CASA model. Moreover, there is currently no uncertainty estimate available at pixel-basis. 

2.3.6 FF 

We use the IER-EDGARv4.2 product for fossil fuel emissions, which was derived within the CARBONES project by the 

Institute für Energiewirtschaft und Rationelle Energieanwendung (IER). It is based on the Edgar v4.2 fossil fuel spatial 10 

distribution (with the highest spatial resolution of 0.1 x 0.1 degree) and uses national consumption and global production 

statistics. Based on the sectorial distinguished EDGARv4.2 emissions, sector-specific and country specific temporal profiles 

were included (hourly, weekly and seasonal). A detailed description of the construction of the product is given at 

http://www.carbones.eu/wcmqs/project/ccdas/#Fossil%20Fuel.  

2.4 Atmospheric growth rate 15 

We estimate the atmospheric burden of CO2 using the calculations made by the GCP (Le Quéré et al., 2015). These 

calculations are based on the global growth rate of atmospheric CO2 (CGR) provided by the US National Oceanic and 

Atmospheric Administration Earth System Research Laboratory (NOAA/ESRL) and were derived from multiple stations 

selected from the marine boundary layer sites with well mixed background air (Ballantyne et al., 2012; Masarie and Tans, 

1995).  20 

2.5 Inversions 

For a comparison of yearly variability, spatial patterns and latitudinal bands, we used annual means of 10 inversions 

collected in Peylin et al., (2013), available at the same spatial resolution after regrinding the original flux estimates and 

monthly temporal resolution. Not all inversions were available till 2010. Atmospheric CO2 inversions estimate surface CO2 

fluxes such that they best fit observed atmospheric CO2 concentration gradients, using a transport model. They usually rely 25 

on prior information provided by terrestrial and oceanic biogeochemical models but are mostly independent from the 

bottom-up datasets included in the present synthesis (especially at continental scale). They further use FF as an input and 

then provide the surface-atmosphere flux excluding FF. 
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3 Results 

3.1 Global net carbon exchange 

Mean fluxes, their uncertainties, interannual variability (IAV), and CV (the mean-normalized IAV) for all individual fluxes 

contributing to NCE are presented in Table 2. Mean fluxes are also summarized graphically in Figure 1 (mean over 2001-

2010). Our best data driven bottom-up global estimate of NCE is -6.07±3.38 PgC / year. That means, that our data suggests a 5 

large net sink. However, the amount of C in the atmosphere is increasing by an estimated rate of 4.27±0.10 PgC / year. 

Combining both estimates, we obtain a C imbalance of 10.34±3.38 PgC / year (=NCE-CGR). Potential reasons for this 

mismatch are discussed Section 4.  

Using the ensemble approach we obtain an uncertainty in NCE of ±3.38 PgC / year. With quadrature error accumulation, 

taking into account the uncertainties in Marine, Rivers, GPP, TER, Crops, and ELUC (Eq. 1) the uncertainty of NCE is ±5.12 10 

PgC / year. The higher uncertainty for the quadrature error accumulation is to be expected as in Eq. 1 all errors in the flux 

observations are assumed to be independent, whereas in fact many errors might be correlated as this clearly the case for GPP 

and TER. For most fluxes, uncertainty estimates strongly exceed IAV (Table 2).  

3.2 Spatial patterns of net carbon exchange 

Building a 200-member NCE ensemble enables us to provide a best estimate for a gridded average surface-atmosphere CO2 15 

flux map for the time period 2001-2010 (Figure 2a). According to these estimates, tropical land areas are a larger C sink than 

the mid-latitudes despite the visible forest bands in North America and Russia that function as sinks.  In contrast, the high 

latitudes indicate a relatively small source. In the ocean, these patterns are reversed, with sources in the tropics and a sink in 

the mid-latitudes. Clearly, there is a strong land-sea contrast and land NCE is much higher in magnitude compared to ocean 

NCE. In areas with high human population densities and active industry (Europe, Eastern China, US, South Africa), 20 

emissions from fossil fuels and cement production are clearly visible. 

Absolute uncertainty of NCE generally scales with the mean flux and is highest in the most productive areas over land 

(Amazon basin, Congo basin, Indonesia; Figure 2b). Due to the small contribution of the oceans, absolute uncertainties are 

barely discernible.  

Relative uncertainties however show very distinct patterns (Figure 2c). These are high on land in semi-arid and arid, and in 25 

mountainous regions (i.e., rather unproductive areas with near-zero mean) such as Australia, the Middle East, the Midwest 

US, the Sahel, South Africa, the Andes, and around the Tibetan Plateau. Marine C exchange is most uncertain in relative 

terms in the Bay of Bengal and in the Southern Ocean, which is known to be undersampled (Landschützer et al., 2014; 

Rödenbeck et al., 2014). In addition, linear features with high relative uncertainty are visible, especially in the Southern 

Hemisphere. These are related to the borders of the clusters used for deriving homogenous regions of sea-air exchange in one 30 

of the ocean-exchange products, which are linked to strong spatial gradients in the sea surface pCO2 (Landschützer et al., 
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2014). Relative uncertainties are mostly below 100% for the median across latitudinal bands (Figure 2c). Only in the 

Southern Ocean the relative uncertainty is substantially higher, reflecting difficulties in reconstructing seasonal to 

interannual variabilities with weak observational constraints (Landschützer et al., 2014; Rödenbeck et al., 2014). 

Nevertheless, Landschützer et al. (2015) have shown that there is a better agreement between the estimates of Landschützer 

et al. (2014) and Rödenbeck et al. (2014) when low frequency variability, such as decadal variability, is analysed. 5 

Averaged over latitudinal bands, the tropics are clearly a C sink (Figure 3a), a feature of the FLUXCOM models used for 

GPP and TER, whereas mid-latitudes form a net C source, mostly due to fossil fuel and cement emissions surpassing natural 

C sinks. This latitudinal pattern is strongly driven by the terrestrial fluxes (Figure 3b). Aquatic C exchange in turn is about 5 

times smaller in magnitude and shows a reversed picture with C sources in the tropics and C sinks in the extratropics (Figure 

3c). The aquatic C source in the tropics is not only the result of the ocean air-sea exchange, but also of the very intense river 10 

outgassing in low latitude regions (Lauerwald et al., 2015).  NCE in the mid-latitudes is strongly driven by fossil fuel 

emissions (blue line in Figure 3d shows NCE-FF). FF have little contribution in the tropics and the high-latitudes but turn the 

sink in the northern mid-latitudes into a strong C source.    

We use the land cover map of 2005 from the European Space Agency (http://www.esa-landcover-cci.org/) to identify 

tropical forests (all pixels where broadleaved evergreen trees dominate). Tropical forest, which covers about 2.8% of the 15 

Earth’s surface, are responsible for a sink of -5.55±1.41 PgC / year, resulting in a global NCE without tropical forests of -

0.51±3.00 PgC / year. Although the best estimate is still far from the expected net global C source, which is constrained by 

the measured atmospheric CO2 growth rate of 4.27±0.10 PgC / year, in 13% of our runs we obtain a global C source that is 

consistent with the atmospheric growth rate. Including missing fluxes for which we do not have spatial explicit estimates 

(see Sect. 4.4) could close this gap. These considerations suggest that the C sink of tropical forests is probably strongly 20 

overestimated in our approach (FLUXCOM) and most responsible for the global mismatches. 

3.3 Net carbon exchange over the RECCAP regions 

Here we compare our NCE estimates over land with largely independent estimates of net ecosystem exchange (NEE) over 

continental-scale regions collected in RECCAP (REgional Carbon Cycle Assessment and Processes). These regions include 

North America (NA, King et al., 2015), South America (SA, Gloor et al., 2012), Europe (EU, Luyssaert et al., 2012), Africa 25 

(AF, Valentini et al., 2014), Russia (RU, Dolman et al., 2012), East Asia (EA, Piao et al., 2012), South Asia (SAs, Patra et 

al., 2013), and Australia (AU, Haverd et al., 2013). No regional study is yet available for Southeast Asia (SEA). Greenland, 

Middle East, Ukraine, Kazakhstan and New Zealand are omitted in regional RECCAP studies because of the difficulty to 

obtain local ground-based observations. Ciais et al. (in revision) collected the regional estimates and combined them with 

estimates of lateral transport to estimate carbon budgets for each region. NEE in Ciais et al. (in revision) minus C export by 30 

rivers should in principal be equal to our NCE estimates without FF over the same regions (Figure 4). In regions without 

tropical forest except NA (that is, EU, RU, EA, SAs, and AU) the estimates by Ciais et al (in revision) are within the 
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interquartile range of our assessment. For NA and regions containing the tropics, our approach shows a much stronger C 

sink. 

Annual NCE-FF for all RECCAP regions amounts to -11.7±3.1 PgC / yr in contrast to -1.3±0.6 PgC / yr in Ciais et al. (in 

revision). If we exclude SA, AF and SEA, the numbers are -2.8±1.9 PgC / yr and -1.5±0.4 PgC / yr, respectively, bringing 

both estimates in each other’s uncertainty range. Hence, except for continents with tropical forest, the estimates between the 5 

two assessments match relatively well. For SA, AF and SEA, however, the two estimates even differ in sign. While our 

estimates indicate strong C sinks of -4.8±1.0, -2.6±1.0, and -1.5±0.4 PgC / yr, respectively, Ciais et al. (in revision) report 

0.1±0.3, 0.1±0.3, and 0.0±0.2 PgC / yr. 

Given that Ciais et al. (revision) rely on an independent method, this demonstrates that a good understanding of net C fluxes 

exists for non-tropical areas, North America excluded. Yet it also reveals the high uncertainties in bottom-up estimates of 10 

NCE over tropical forests (see Sect. 3.2, but also Gloor et al. (2012) and Valentini et al. (2014)) and underlines the 

importance of long-term ground based measurement campaigns (e.g. RAINFOR, http://www.rainfor.org/, Malhi et al. 

(2002), and ATTO, Andreae et al. (2015), Zhou et al. (2014)). 

3.4 Comparison with inversions 

We compare NCE without FF (NCE-FF) with annual values from 10 inversions estimating the land-atmosphere CO2 flux 15 

without FF (Peylin et al., 2013). While both estimates agree well in the extratropics, they show opposite patterns in the 

tropics (Figure 3d). The latitudinal pattern of the inversions follows a pattern similar to that of the aquatic fluxes in the 

present synthesis (Figure 3c), possibly related to the fact that the interiors of many continents are widely undersampled 

(Peylin et al., 2013), propagating the marine signal into continents. On the other hand, the estimates of GPP-TER in NCE-FF 

probably have a substantial bias towards too much uptake over tropical land. The comparison suggests that C fluxes are 20 

comparably well constrained in the extratropics where bottom-up and top-down approaches agree.  

The temporal evolution between both estimates show little agreement except the trend towards more net C uptake by the 

Earth’s surface (Figure 5). Uncertainties are very high for our NCE-FF (Figure 3d). In addition, the mean annual C uptake in 

our estimate is about 10 PgC/yr higher than for inversions. 

3.5 Monthly variability and mean seasonal cycle 25 

NCE in the Northern hemisphere exhibits a much stronger mean seasonal cycle, ranging from a net C uptake of about 2 PgC 

(per month) in July to a net C release of about 0.9 PgC in December and January (Figure 6). The Southern hemisphere is 

always a net C sink, ranging between slightly under 1 PgC uptake in February to roughly 0.2 PgC in August and September. 

This illustrates the “breathing of the Earth”, that is, vegetation activity largely follows the annual cycle of the sun. Northern 

hemispheric NCE is strongly offset by fossil fuel emissions. The uncertainties for the Southern hemispheric seasonal cycle 30 
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are generally about 1.5-2 times lower than for the Northern hemispheric fluxes due to the larger contribution of the latter to 

the overall flux pattern.  

 

4 Current limitations of a bottom-up spatiotemporal assessment of net carbon exchange 

4.1 Difficulties in estimating TER and NEP over land 5 

Correctly predicting NEP from remote sensing requires establishing universal relationships between those drivers and 

ecosystem respiration (TER) (Tramontana et al., 2016). However, predicting respiratory processes still poses major 

challenges to researchers (Trumbore, 2006). The CO2 flux related to decomposition, for instance, relates to factors 

controlling microbial activity such as temperature, moisture availability, and the decomposable substrate material. How soil 

or total ecosystem respiration depends on these variables is not yet well understood. Advancing our knowledge on these 10 

processes is challenging due to both a lack of theory of respiration and the difficulty of obtaining relevant data to test models 

(Trumbore, 2006).  

In addition to a good theory for respiration, information on disturbance history and forest age would improve the upscaling 

TER and NEP from sites to regions (Ciais et al., 2014). Disturbances that cause physical damage to vegetation properties 

tend to temporarily increase respiration and reduce photosynthesis and thus alter the balance between GPP and TER. 15 

Disturbed ecosystems are thus initially assumed to be strong C sources until plant production recovers. However, how these 

regrowth processes compensate a given disturbance regime cannot yet be quantified at global scales, as the area covered by 

disturbed ecosystems is variable and unknown (Ciais et al., 2014). For example, regrowth of vegetation after fires and other 

disturbances is not well sampled by FLUXNET stations. Furthermore, management can have strong effects on annual NEP 

of croplands which form large parts of the land surface (Jung et al., 2011). Even if all the above processes were well known 20 

and described, not all relevant drivers are available to be included in the upscaling (Tramontana et al., 2016). 

If we assume that NEP is the main reason why the C budget is not closed in our approach, this raises the question why 

upscaled NEP has such a strong systematic bias towards a sink, particularly in the tropics (see also Jung et al., 2011). One 

hypothesis related to the missing information of disturbance history is that eddy-covariance towers collected in FLUXNET 

(which provide the empirical basis for the global data driven estimates, see Sec. 2.3.1) do not represent the different age 25 

classes of forests very well. For instance, young and regrowing forests with a generally higher-than average NEP are 

overrepresented in FLUXNET, i.e., the C budget of a forest depends on its age. Such an age-dependency (Amiro et al., 2010; 

Coursolle et al., 2012; Hyvönen et al., 2007; Magnani et al., 2007) has not been included in global upscaling of net 

ecosystem exchange, mostly due to missing global driver information.  
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4.2 Uncertainties in fire emissions 

Fire emission estimates combine satellite-based fire data with ecosystems models. Uncertainties in global fire emission 

estimates are substantial and different fire products vary largely by location, vegetation type and fire weather (Ciais et al., 

2014; French et al., 2011). 

While GFED4 burned area estimates come with uncertainty estimates (Giglio et al., 2013), the actual uncertainty of C 5 

emissions from fires might be larger, in the order of 50% and depend regionally and temporally on the various input data sets 

such as burned area, small fire burned area, biomass loadings, combustion completeness, etc. Top-down assessments using 

for example carbon monoxide (CO) have indicated that estimates on regional scales are often not too far off but given that 

different top-down studies using different atmospheric models provide conflicting information on the adjustments needed to 

align modelled concentrations with measured ones, this information cannot be used to provide clear uncertainty ranges 10 

4.3 Seasonality for coastal and inland waters, wood and crop harvest emissions 

Recently, major steps have been undertaken to resolve the spatial variability of coastal and inland water CO2 fluxes (Laruelle 

et al., 2013; Laruelle et al., 2014; Lauerwald et al., 2015; Raymond et al., 2013). To better constrain C exchange on a 

monthly basis, however, the seasonal cycles of those fluxes would be necessary. For inland waters, seasonality has so far 

only been investigated at regional scale (Laruelle et al., 2015; Richey et al., 2002). For shelves some seasonal estimates are 15 

currently available in temperate and high latitudes, indicating that net C uptake is highest in spring whereas C release is 

highest in summer (Laruelle et al., 2013). These estimates indicate that seasonal differences in shelf net C exchange are as 

high as the annually integrated latitudinal gradient. An analysis performed over Atlantic shelves suggests that the seasonal 

variability in the air-sea CO2 exchange is most pronounced over temperate latitudes. In these regions, shelves generally 

behave as strong CO2 sinks in winter and spring, partly sustained by CO2 fixation during the spring phytoplankton bloom, 20 

but can become mild CO2 sources to the atmosphere in summer due to the effect of temperature-driven decrease CO2 

solubility in water (Laruelle et al., 2014). Such behaviour is consistent with that of the open ocean under similar latitudes 

(Takahashi et al., 2009).    

Biogenic C emissions related to tropical aboveground biomass loss as well as crop and wood harvest are equally distributed 

across months in this study. When exactly C emissions from humans and livestock occur is difficult to predict and would 25 

require more detailed consumption data (Wolf et al., 2015a).  

4.4 Missing fluxes 

Due to a focus on spatially explicit maps, not all known fluxes between land surface and atmosphere are considered in our 

analysis. We assume for instance that including the following fluxes may have an influence on the regional and global flux 

estimates: 30 
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• Emissions from biogenic volatile organic compounds (VOCs) amount to approximately 0.76PgC / year 

(Sindelarova et al., 2014)  

• CO2 emissions from wetlands, estimated globally at around 2.1 PgC /year (Aufdenkampe et al., 2011) 

• Crop residues burning in households 

• Biofuel burning 5 

• Changes in land management, e.g. shifts in agriculture, soil tillage, grassland ploughing and grazing 

• Geological fluxes 

• Raymond et al. (2013) estimate a much higher river evasion (1.8 PgC / year instead of 0.65 PgC / year used in this 

study).  

4.5 Uncertainty estimates and model-data fusion 10 

A comprehensive spatiotemporally explicit bottom-up estimate of NCE can be a powerful ingredient for model-data 

integration exercises (Rayner et al., 2005). Yet, model-data integration requires uncertainty characteristics of all used data 

streams (Raupach et al., 2005). Furthermore, it is important that uncertainties can be described in terms of random errors 

(Ciais et al., 2014). Error estimates at the local or regional level are difficult to use if no spatial error covariance matrix is 

available. The uncertainty analysis presented in this study obtained through Monte Carlo sampling aims to be of use for 15 

modal-data-integration studies. Errors are automatically propagated through different spatial resolutions by aggregating the 

individual ensembles of NCE. Naturally, efforts should be made to obtain error estimates for all integrated datasets (i.e., 

Wood, Fires, Shelves, Estuaries, and Lakes). Nevertheless, this first integrated NCE estimate offers new possibilities for 

approaches such as the Carbon Cycle Data Assimilation System (CCDAS, Rayner et al., 2005), by not only providing a full 

spatiotemporal grid of fluxes, but also a transparent and consistent error propagation scheme. This can have also practical 20 

applications, for instance for designing new measurement campaigns in regions with high uncertainties to reduce knowledge 

gaps in the global CO2 fluxes. 

 

5 Outlook and conclusions 

If we exclude FF from the NCE estimate, we end up with a net CO2 uptake by the Earth surface of 13.6±3.4 PgC / year. 25 

Assuming neutral CO2 exchange for tropical forests (Sect. 3.2) still requires an additional source of about 4 PgC / year (2.5 

PgC / year with river outgassing from Raymond et al., 2013), and potential candidates were suggested in Sect. 4.4. The 

estimate of 19 PgC / year for NEP seems rather high and in fact exceeds the estimate by Ciais et al. (in revision) over the 

RECCAP regions by nearly 9 Pg / year (7.5 Pg / year if the river outgassing by Raymond et al., 2013 is used). In particular, 

our analysis probably strongly overestimates CO2 uptake in South America, Africa Southeast Asia, and North America. A 30 
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comparison between upscaled ecosystem fluxes with a satellite-based inversion using GOSAT data lead to similar results 

(Kondo et al., 2015). One has to recall that the study aims for a transparent appraisal of the available and empirically derived 

pieces of information. It thus offers a quantitative approach to better identify knowledge gaps that should be addressed with 

future observation missions in to better constrain NCE in specific regions. In fact, we find that the uncertainty range of this 

synthesis of data-driven CO2 fluxes is still too large to provide any confidence for a budget based on bottom-up information 5 

only.  

Relative uncertainties are comparably low in the most productive areas over land (tropical forests) in our synthesis, yet these 

are the largest contributors to the terrestrial net C flux and still largely unconstrained by ground-based observations 

(Tramontana et al., 2016). This overly high confidence indicates that the model ensemble spread does not capture the full 

uncertainty and more appropriate methods are needed to quantify uncertainties in these products. As noted before, a 10 

sufficient network of ground-based observations of C exchange (i.e., eddy covariance towers) for constraining tropical C 

fluxes is still lacking (Baldocchi, 2014; Schimel et al., 2015).  

Tough conditions for measurement campaigns in the Southern Ocean render it the largest undersampled ocean, leading to 

high uncertainties in the mean C exchange estimates (Landschützer et al., 2014; Rödenbeck et al., 2014). Plans for new 

comprehensive sampling expeditions are underway (Newman et al., 2015). 15 

As we have shown, the current observation-based bottom-up estimates are not yet precise enough to close the global C 

budget at the global scale. Yet at regional scale, high confidence can be achieved, for instance in Europe, Russia, East Asia, 

South Asia, and Australia. In addition, our estimates of NCE agree well with mostly independent estimates from other 

sources (Fig. 4). While in some region and for some subsystems more observational constraints are certainly necessary 

(including the Southern Ocean, tropical land areas, and continental water bodies), new approaches to model respiratory and 20 

disturbance related fluxes are required to improve the upscaling of terrestrial ecosystem fluxes. Detailed information about 

soil properties, forest age and disturbance history is essential to improve the prediction of respiratory fluxes. Nevertheless, a 

purely data-derived bottom-up estimate of net C fluxes as presented here may be used as an additional constraint in model-

data assimilation systems, to calibrate model parameters, or as priors for atmospheric inversions. 

 25 
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Table 1. Datasets used in this study including reference, time period and number of ensemble runs. If not specified, 

temporal resolution is monthly. 

Data set Reference Time period used # Runs 

Ocean Landschützer et al. (2014) 

Rödenbeck et al. (2014) 

2001-2010 5+5 

Shelf Laruelle et al. (2014) 1 estimate 1 

Estuaries Laruelle et al. (2013) 1 estimate 1 

Marine  2001-2010 10 

Rivers Lauerwald et al. (2015) 1 estimate 50 

Lakes Raymond et al. (2013) 1 estimate 1 

GPP / TER  Tramontana et al. (2016) 2001-2010 16 

Crops Wolf et al. (2015b) 2005-2010, annual 10 

Wood Poulter (2015) 2000, 1 estimate 1 

Fire Giglio et al. (2013) 2001-2010 1 

ELUC Tyukavina et al. (2015) 

Harris et al. (2012) 

2000-2010, 1 estimate 

2000-205, 1 estimate 

2 

FF (Fossil Fuels) CARBONES 2001-2010 1 

Atmospheric growth rate NOAA 2001-2010 1 
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Table 2. Net carbon exchange for different subsystems and variables. Uncertainty is SD over ensemble runs, IAV is 

SD over annual values time (2001-2010), CV is coefficient of variation, computed as IAV over Mean. 

Variable Marine Rivers Lakes -GPP TER Crops Wood ELUC FF Fire NCE 

Mean -1.60 0.65 0.32 -108.29 89.24 2.68 0.71 0.83 7.78 1.81 -6.07 

Unc 0.15 0.08  3.62 3.60 0.21  0.16   3.38 

IAV 0.36   0.69 0. 33 0.09   0.75 0.11 0.63 

CV 0.22   0.006 0.004 0.034   0.096 0.061 0.11 
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Figure 1. Different components of observation-driven C exchange between the Earth’s surface and the atmosphere. 

Red arrows denote a flux from the surface to the atmosphere (net source), green arrows denote a flux from the 

atmosphere to the surface (net sink). Units are in PgC / year. 5 
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Figure 2. 
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Gridded spatial patterns of NCE. a) 2001-2010 decadal mean. b) Uncertainty; 1SD across the NCE ensemble. c) 

Relative uncertainty; uncertainty normalized by absolute mean. Latitudinal plots in b) and c) denote median across 

latitudes. 

Figure 3. Mean 

and uncertainty (1 SD) of different subsets of NCE. a) All fluxes. b) Terrestrial fluxes. c) Aquatic fluxes. d) NCE 5 

without fossil fuels (blue) and NCE from inversions (by construction without fossil fuels, green). 
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Figure 4. 

NCE over RECCAP regions, including (red) and without fossil fuels (blue). Shown are median, interquartile range 

(box) and 1.5 x interquartile range (whiskers). The regional estimates including uncertainties of NCE collected in 

Ciais et al (in revision) are underlain in grey. 
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Figure 5. 

Comparison of NCE-FF with NCE from inversions (by construction without FF) on interannual time scales. Both 

time series were zero-centered by adding an offset of 13.87 PgC / year for NCE-FF and 3.74 PgC / year for NCE from 

inversions. Lines show mean, shading is 1 SD.  
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Figure 6. 

NCE mean seasonal cycle and uncertainty (1 SD) for Northern (blue) and Southern hemisphere (green). 
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