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Some theorems concerning the ground states of classical one-dimensional lattice models with 
arbitrary interactions of finite range are proved. 

1. Introduction 

The problem of determining the ground states of classical spin models has 
received comparatively little attention. This is somewhat surprising since, apart 
from special cases, this problem may be quite difficult in two or higher 
dimensions. In fact, the closely related domino problem is algorithmically 
unsolvable in two dimensions [1]. Contrary to this, the ground states of 
one-dimensional models with a finite spin space S are in principle well known. 
This arises from the fact that the period of any ground state for interaction 
range r is  <lsl'. Nevertheless, the number of possible ground states can be 
quite large even for moderate values of IsI and r. For example, the Ising model 
(IsI--2) with r = 5 has 30 176 possible ground states (see section 11). There-  
fore,  and as an introduction to the much more difficult problem in higher 
dimensions, it seems meaningful to develop some experience in the one- 
dimensional situation. 

Previous work on the problem is quite sparse. Morita and Horiguchi [2] have 
determined the ground states for the Ising model for r = 2 and Bundaru et al. 
[3] for r = 3. Some general results on systems with inversion symmetry have 
been obtained by Morita [4]. For  r = oo very interesting new phenomena appear 
[5, 6], but this paper is restricted to finite r. 

2. Configurations and correlations 

A configuration oJ is a doubly infinite sequence 
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with 0-i E { -  1, 1} such that  all the  cor re la t ions  of  range  s ~< r 
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are well defined.  Let  12 be the set of  all conf igurat ions .  T w o  conf igurat ions  are 

equiva len t  if they  differ  by a t ransla t ion.  Equ iva len t  conf igurat ions  have  the 
s ame  corre la t ions  ( t rans la t ional  invar iance) .  

For  r = 0 the only cor re la t ion  is the magne t i za t ion  (0-) .  For  r = 1 we have ,  
in addi t ion,  the neares t  ne ighbour  ( N N )  cor re la t ion  (0-i0-i+1). For  r = 2 there  

a p p e a r  two addi t ional  cor re la t ions ,  name ly  (o-i0-i+2) and ( O ' i 0 - i + l O ' i + 2 ) .  I n  

genera l ,  p roceed ing  f rom r - 1 to r, 2 r-  1 new corre la t ions  appea r .  These  are in 

a one - to -one  c o r r e s p o n d e n c e  with the 2 r i subsets  of  the r - 1  spins 
%+1 . - -  0-i+r ~. T h e r e f o r e ,  the total  n u m b e r  of  cor re la t ions  re levant  to the 

in te rac t ion  range  r is U. 

3. The correlation polyhedron Pr 

W h e n  p lo t ted  as points  in a space  of 2 r d imens ions ,  every  conf igurat ion ~o 

gene ra t e s  a point  ( o ' )  = (~r (w))  in this space.  Le t  Pr be  the set  of  points  
ob t a ined  in this way.  Since 

l(0-i • • • < + r ) l  ~ 1 (2) 

Pr is con ta ined  in the T - d i m e n s i o n a l  h y p e r c u b e  [ - 1 ,  1] 2r. It is easy to see that  

D r ( the  closure of  Pr) is a convex  set (see appendix) .  
Le t  

/ 4=  Z e !s',, i, (3) 
A = 1 

be a Hami l ton ian .  C o m b i n i n g  the E . . .  and the cor re la t ions  into U-d imens ion -  
al vec tors  E and ( t r ) ,  respect ively ,  the g round  states of  H are the minimizers  
of  

m i n { E .  ( o ' )  : ( o ' )  E P r } .  

This  means  geomet r ica l ly  tha t  the  g round  s tates  are  just the ex t r eme  points  of  
the convex  set Pr. Since the n u m b e r  of  g round  s tates  in one  d imens ion  is 



M. Teubner I Ground states o f  classical 1D lattices 409 

known to be finite, Pr is a polyhedron whose vertices correspond to the possible 
ground states [7]. 

Example. r = 1. This is the well known Ising model with NN interactions. 
There are 2 ~ = 2  correlations, namely (or) and (o-io-~+1), and three ground 
states: (+)p ,  ( - )p  and ( + - )p  (see fig. 1). (By (0-1 . . .  ~rn) p we denote the 
periodic configuration . . .  o'~ . . .  o-no- 1 . . .  tr n . . . ) .  

The polyhedron possesses the following elementary properties: 
(1) Spin inversion induces a reflection that maps Pr onto itself• It inverts the 

sign of a correlation with an odd number of spins and leaves invariant the even 
ones. In fig. 1 this is the reflection symmetry (o-) ~ - (o-), (o- i%+~ ) 
( or/O'/+ 1 ) • 

(2) The mapping 

• . .  o ' _ 2 0 " _ 1 0 " o ~ r l c r 2 . . . - - > . . ,  o ' 2 0 " 1 % c r _ l o - _  2 . . .  

maps every correlation on to its mirror image. This global symmetry comes 
into play for r ~> 3 (mapping (~o-i+lo-i+3) onto (%oi+2%+3)). 

(3) The projection of Pr+l on the space spanned by all the correlations of 
range less than or equal to r is just Pr- For example, projecting P1 in fig. 1 on 
the (o')-axis yields the segment [ - 1 ,  1] with the two ferromagnetic ground 
states as vertices. 

(4) The origin ( t r )  = 0 is contained in the interior of Pr" 
Property (4) stems from the fact that any random configuration is mapped 

onto the origin. Any other point in Pr therefore corresponds to non-random 

l (O i Oi.,. 1) 

-i ~ j /  1 ,(o> 

Fig. 1. For r = I the correlation polyhedron is a triangle with vertices ( I ,  1), ( - i ,  1) and (0, - 1 )  
corresponding to the ferromagnetic states (+)p and (- )p and to the antiferromagnetic state (+ - ) p ,  
respectively. 
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configurations. This suggests that the ent ropy of a configuration may be 

determined by its position in Pr. This, in fact, is true quite generally. It stems 
f rom the fact that the ent ropy can be expressed either by the fields (the Ei~.. .i, 
in eq. (3)) or by their conjugate densities (the (o-io-i+q. . .  o'i+~fri+s) ). 

4. The graph G r 

Van Aardenne-Ehrenfes t  and de Bruijn [8] (see also ref. [9]) and indepen- 
dently Bundaru  et al. [3] have introduced a useful representat ion of the ground 
states in terms of a graph G r (see fig. 2). Consider a graph with 2 r nodes 

0-1 . . .  o r . Two nodes A = tr I . . .  o- r and A ' =  ~r~ . . .  or' r are connected by an 
arrow, if and only if the last r - 1 spins of A are identical to the first r - 1 spins 
of B. Every  configuration can be represented by an infinite path in this graph, 
and the ground states are in a one- to-one correspondence with the closed paths 
on G r without self-intersections. In this way Bundaru  has identified the 19 
ground states for r = 3 (for r = 2 there are the six ground states (+ )p ,  ( - ) p .  
( + - ) p ,  ( + + - ) p ,  ( - - + ) p ,  ( + + - - ) p ) .  In particular, the period of any 
ground state is less than or equal to 2 r and the ground states of maximal period 

are the Hamil tonian paths in this graph. These states of maximal period are 
known as de Bruijn states. Their  number  is 2 I~r) with f ( r )  = 2 r l _ r .  

5. The densit ies  n,~ 

Consider a configuration oJ and let 

~ r l  • • • e r r +  l 

© 

® / \ 

r=l  r=2 

© 

~t t 

"K@7 

r=3 

Fig. 2. Graphs G for r = l ,  2, 3. 
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be the density of the chain o- 1 . . .  o-r+l in to. For example, the antiferromag- 
netic ground state ( + - ) p  has n++-(1)= n(1)__ = 0 ,  n~ )=_ nO)+ = 1. The n,, are 

non-negative, 

n~ ) >/O, (4) 

and normalized, 

~] _(0 1 
o" 

Furthermore, they satisfy the following linear relations: 

(s) 

_ ( r - l )  'x 
_( r )  _{_ _ ( r )  - - (0  + nCO (= l t a l  . . . .  r "/ 
f t  ~ r  I , . . ~ Y r  + f t  ~ 1  " " " ° ~ r  - -  ~ n + ~ r  1 . . , ~ r  - -  ° ~ 1  " " " e r r  

(6) 

which expresses the fact that the next spin to the right or left is either + or - .  
The ,,,,'-(° can be expressed in terms of the correlations 

n (0 = 2 - ' - l { ( l + r l o ' i ) ( l + r 2 o ' i + l )  (l+rr+Xo'i+r)) 
T I . . . T r +  1 . . . .  (7) 

Since there a r e  2 r independent correlations of range r, the number of indepen- 
dent n,,"(~) is also 2 ~. A state can be characterized either by the correlations or by 
the densities n~. For r =  1, e.g., we have the four densities _(1) with 

¢~ ,rl  r 2 

normalization 

n(1) + n o )  + n~l)+ + n (1 )  = 1 + +  ÷ - -  - - - -  (8) 

and the linear relation 

n (1)+_ -~ n~_l+ ~ • ( 9 )  

Now consider the graph G r. An arrow in this graph is characterized by an 
( r + l ) - t u p l e  ° '1.--o-/r~+l from the node ( % . . .  o-~) to the next node 
(°'2..-o'~o'~+1). It is clear that the multiplicities with which these arrows are 
traversed by a closed path in G r are identical to the n~ ) of the corresponding 
configuration. Similarly, the multiplicities with which the nodes are traversed 
are identical to the corresponding n~ -1) . Relation (6) is a conservation law for 
the associated flow. For a ground state of period p, the n~ ) are either 0 or 1/p 
and the same is true for the n~ -1) 

In particular, for a maximal ground state, where each node is visited 
precisely once, all the n~ -1) = l / p = 2  -r. It follows from (7) that all the 
correlations of range less than or equal to r -  1 vanish for maximal ground 
states. 
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6. The faces of P~ 

Our aim is to obain a characterization of the ground states, their number ,  

period, etc. Now a polyhedron can be characterized either by its vertices or, 
dually, by its faces. While a vertex corresponds to a ground state, a face 
corresponds to a Hamil tonian having a maximal number  of coexisting phases. 

In a sense, the faces are more  fundamental  than the vertices. Firstly, their 
number  is much smaller ( - 2  ~+ ~ compared  with the number  of vertices, which is 
- 2  2" '). Secondly, in contrast  to the vertices, it turns out that the faces can be 

easily and explicitly enumerated.  From a practical viewpoint,  knowledge of the 

faces permits the determinat ion of the ground state of any particular Hamil to-  

nian by the techniques of linear programming.  

A face corresponds analytically to a linear inequality for the correlations, 
and the task consists in finding the complete  set of these inequalities. Now a 

particular kind of linear inequality is 

O ~ < ( ( l + , r ,  0 - i ) ( l + T 2 0 - i + l ) . . . ( l + ' r + , 0 - i + r ) ) = - - l + F . , - ( o "  ) .  (10) 

This means that the density "-{r) is non-negative.  For example,  for r 1 we have 
the following three inequalities: 

F++ = 2(0-) + (0-i0-i+1) > - 1 ,  

F = -2<0-> ~- <0-i0-i+1> ~ - 1 ,  

F+ = F + =- (0- i0- i+1)  ~ - 1  . 

Compar ing  with fig. 1 we observe that we have already found all the linear 
inequalities. Thus, for r = 1 the set (10) is complete.  The following theorem 

states that this is true in general.  

Theorem 1. The number  of faces of Pr is 3 for r = 1 and 2 r+ J - 2 for r > 1./~r is 

the intersection of the half-spaces 

r , ,  . . . .  r+ ( 1 1 )  

All the FT~ • • " ~ ' r ~  1 are different with the exceptions 

F+ .... = F .... + ,  (12) 

F . . . . .  + = F+...+ . (13) 
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Proof. We first prove the last part.  Let F, r l . . .Tr+l~F,i . i  . . . .  r+l" Compar ing  
(O'iO'i+r) we obtain T 1 T r + l ~ - ' r t l T t r +  1 .  Compar ing  ( O r i o r i + k O r i + r )  w e  find 

= = ' for k = 2, r. If  r 1 ' then ~r = ~". ' ' ' i . e .  r k ~'k • = ~ ' 1  T 1 T k + I T r + I  T I T k + I T r + I ~  • . , 

Therefore ,  let z 1 = - z '  r Then %+1 = - z ' r + l -  Compar ing (or) we find that 

Zl+~-~+~=0. Compar ing  (O'iO'~+k) we find Zk+~=%+l_ k for l < ~ k < - r - 1 .  
Comparing ((ri~ri+l(ri+k) we find r2Zk+l = rr÷l_ k Zr+E_k, i.e. ~-2 = ~'2+r-k for 
2 ~< k ~< r - 1, i.e. ~'2 = z3 . . . . .  %. Therefore ,  all the F~ are different with the 
stated exceptions and their number  is 2 '÷1 - 2  for r > 1. 

The rest of the theorem follows f rom 

Theorem 2. Let n~ ) = n (r) be a set of 2 r+~ non-negative numbers  with the 
° ' 1  " " " ° ' r +  l 

following properties:  

(a) they are normalized,  eq. (5) 
(b) they satisfy the conservation laws (6). 

Then,  for any e > 0 ,  there is a periodic configuration to with densities n~)(to) 
such that 

E In~)(to) - n~)l < E. (14) 
o "  

Proof. We try to interpret  the n~ ) as the multiplicities of a configuration in the 
graph G r as discussed in section 5. Let the _(r-~) be as in eq. (6). All the f t O. 1 . . . o_ r 

nodes (tr 1 . . .  o'r) in G r with rt-(r¢,. ~).. o-, > 0 form a subgraph G '  r. If the theorem 

has been proved for the connected components  of G'r, an argument  similar to 
the appendix proves the theorem in the general case. Therefore ,  we may 

suppose that G '  r is connected.  It suffices to prove the theorem for rational n~ ) . 
Let  

n~ ) = M~ ) / N  

with common denominator  N and integers M ~  ) . For every node in G'r we have 

M(,) + M(,) = M(,) + M(,) (,-1) > 0  (15) 
O - 1  " " " ° - r +  t r l  " " " ° ' r - -  + ° - 1  " • - ( r r  - - o "  1 • • , o "  r ~ M ~ I . .  • % ' 

We start f rom a node (tr °) in G '  r and make  allowed moves (i.e. M~ ) > 0) to 
other  nodes, thereby traversing a path in G '  r. Every time an arrow is passed, we 
decrease its M~ ) by one. This path must stop at some node. It  is easy to see 
that the path can only stop at the initial point ( t r°) ,  and is therefore  closed. If  
all of G', is exhausted, we have completed the task. If  not, the whole procedure  
is repeated.  In this way we find that G '  r is a finite superposit ion of closed paths: 

G'~ = (°1 U £0 2 U . . . U c.o n . 



414 M. Teubner / Ground states of  classical 1D lattices 

Each of these paths corresponds to a periodic configuration, and the argument  
in the appendix proves that these configurations can be composed to form a 

configuration with the required properties.  

This theorem shows that the natural  set of inequalities n~ ~>0 is already 
complete.  This is a greatly simplying feature of  one-dimensional  systems and is 
in general wrong in higher dimensions. An equivalent version is the following: 

Theorem 3. Let 

r + l  r + l  

ao + ~ aio'i q- E aijoio'j  + " '"  + a 1 2  . . . . .  ~O-lO- 2 . . . o r +  1 ~ 0  
l i , j = l  

(16) 

be an inequality valid for any chain cr~ . . .  o5+ ~ of length r + 1. Then 

ao+ aj ( o r ) + ~ a i i ( o ' i o ) ) +  " '"  + a 1 2  . . . .  +l(O- iO- i+l ' "o ' i+s )>~O 
" 1 i j (17) 

and every linear inequality for the correlations is obtained in this way. 

7. Uniqueness of the ground state 

By uniqueness of the ground state we mean that a vertex of P r  does 
determine its configuration uniquely. 

Theorem 4. For  any vertex ( o ' )  of P~ there is, up to a translation, a unique 

configuration w with (~r) (w)  = (or ) .  

Proof. Let F~,), i =  1 . . . .  , s be the faces of Pr that meet  at ( o ' )  and F~,~, 
i =  s + 1 . . . . .  2 r+~ - 2 be the other  faces. Then 

F , , , ) ( o ' )  = - 1 ,  

F,,)(ov) > - 1 ,  i = s + l  , . . .  ,2  ~+1 - 2 ,  

and the rank of the matrix (F.,~)/ 1 . . . . . .  is 2 r. In any configuration realizing 
(~r)  the chains ~.~i), i = 1 . . . . .  s, are forbidden while the chains 7 ~i), i > s are 
allowed. Take  one of the allowed chains, say 7 =  (r  I . . . . .  %+i). If  both 
9 ' ' = ( 9 -  2 . . . . .  9 " r + l - [ - )  and 9 " " = ( z 2 , . . .  , % + 1 - )  were not allowed, F , - ( o ' )  = 
- 1  and F ~ , , . ( o ' ) = - l ,  and therefore F T 2  ~ r , , ' ( ° ' ) = - - l "  However ,  
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F,, . . . .  r + , ' ( ° ' )  > - 1  and F~_,,) . . . .  r+, " ( ° ' )  i > - 1 .  Adding, we find that 
F*2.--~r+l" ( ° t )  > - 1 ,  which is a contradiction. Therefore, every allowed chain 
can be continued. Uniqueness follows from the fact that different paths in G~ 
correspond to different (o ' )  vectors. Indeed, if the (~r) vectors for two paths 
are identical, the same is true for their densities n~. In particular, both paths 
visit the same nodes. As in the proof of theorem 2 the subgraph G'  r of paths 
visited can be decomposed into a finite unit of simple closed paths to1 tA . . .  tA 
to n . If n > l ,  (~r) is in the convex hull of the (~r)(toi), contrary to the 
assumption. 

8. Boundary points and surface tension 

Consider the boundary of fig. 1. A configuration to maps upon the boundary 
( - )p ,  ( + - ) p  if and only if n÷+ =0 .  Therefore, any (rational) point on this 
boundary can be realized. Furthermore, the surface tension between the two 
phases vanishes. The same is true for the boundary (+)p,  ( + - ) p .  Now 
consider a point on the (+)p,  ( - ) p -  boundary. On this boundary n÷_ = 
n_ ÷ = 0. Therefore, the only points on this boundary that can be realized are 
(+)p and (- )p .  The surface tension between these phases does not vanish. This 
is a special case of the following: 

Theorem 5. Let v and v' be two vertices of Pr. Then the line segment vv'  
belongs to the boundary of Pr, and there is the following alternative: 

(a) The points on vv' that can be realized by a configuration are everywhere 
dense on or ' .  

(b) Only the endpoints v and v' can be realized. 
The surface tension between the two ground states is zero in the first case and 
positive in the second. 

Proof.  Let to and to' be the paths in G r corresponding to the two vertices. If 
we can find a surface F~ that contains both (o-(to)) = v and (o-(to')) = v', then 
vv '  belongs to the boundary. But F ÷ . . . ÷ - - - 1  (F_ .... = - 1 )  contains every 
vertex with the exceptions of ( ~ ( +  )p ) ( ( o-(-)p ) ). This proves the first part of 
the theorem. The alternative is easily proved: if to and to' have at least one 
node in common, the first case holds while the second case is true, if their 
intersection is empty. 

The theorem excludes situations where only some isolated points on vv' can 
be realized. This would physically correspond to crystals that combine stoich- 
iometrically in a fixed proportion to form a mixed crystal. This may, of course, 
happen in higher dimensions. 
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9. Spin inversion 

Spin inversion is the global symmet ry  o9 ~ o3 where  o9 = . . .  or_ ~, ~r0, 0-1 . . . .  

and 03 = . . .  ~ i, 0% cr I . . . .  with di ~ - ~ -  The  correla t ions  involving an even 

n u m b e r  of  spins are invariant  unde r  spin inversion. As  o9 ranges over  the set ot 

all configurat ions f l ,  the even corre la t ions  of  range less than or  equal  to r trace 
ou t  a po lyhed ron  Pr ~ven. O9 and o3 always co r re spond  to the same point  in Pr ~ve". 

The  configurat ions cor respond ing  to the vertices of  peven will be called the even 

g round  states of  range r. ( In  this sense the two fe r romagnet ic  g round  states 

( + )  and ( - )  are a single even g round  state of  degeneracy  two). 

Let  o9 = . . .  0-_ 1, o-/, o -~ , . . ,  be a conf igurat ion in 11. Then  we define an 

ope ra to r  M:  11---~ f~ by 

M o g = o g ' =  ' ' ' . .  and ' = o - i ~ + 1 ,  (18) • . . O r  1 , 0 " ( ) ~  o r  1 . o r  i 

i.e. the ith spin of  Mo9 in the p roduc t  of  the ith and (i + 1)th spins of  w. It is 

easy to see that  M -~ is in general  two valued (M(og) = M(O3)). It is one  valued 

for  those w that  satisfy to = ~3, i.e. for  per iodic  configurat ions of  the type 
(o.~... ¢r.~1... ~)~. 

T h e o r e m  6. The ope ra to r  M induces a natural  i somorphism 

M*: 

In part icular ,  if w '  = (o- 'x . . .  o-')p is a g round  state of  Pr, then M-l (o9  ')  is an 

even g round  state of  range r + 1, and every even g round  state of  range r + 1 

is ob ta ined  in this way. If  1I I 0-' i -- - 1 ,  the two inverse images coincide,  and 

M-lo9 has the fo rm (o-1 . . . o-,,d l . . .  dn)p. If  [I I o" I = 1, there  are two inverse 

images wl, 602 with w 2 = 031. 

The  p roo f  is easy,  and we only indicate the definit ion of  M*.  F r o m  (18) we 

have ( o - ) '  = (o-io-i+l) , ( ~ c r i + l )  ' =  (triO-g+2) etc. and we define 

M * ( ( ~ o ' g + l )  ) = ( o ' ) ' ,  M * ( ( o ) o ) + 2 )  ) = (o-io-~+~) , etc. 

I0. Higher spin 

Except  for  spin inversion,  the results remain  valid for  arbi t rary finite spin 
with minor  modificat ions.  For  example ,  eq. (6) reads for finite spin q 
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q q 

E n~ 1 . . . .  rS = ~ n ,~  1 . . . .  • (19) 
s = l  s = l  

11. Open problems and special results 

We finally list two open problems. 
(1) What is the number Ng of possible ground states for Hamiltonians of 

interaction range r? This number has been determined in the literature for 
r ~ 3. The numbers for r = 4 and r = 5 have been calculated by a computer (see 
table I). For comparison the de Bruijn numbers NdB = 2 r('), f ( r )  = 2 r - I  -- r are 
also included in table I. The last column shows that 

Ng ~ 3 rNdB  (20) 

is in a good approximation to Ng. It would be interesting, if this relation could 
be rigorously proved. 

(2) What is the number of ground states Nlg '2 of Hamiltonians with one- and 
two-body interactions only? This number is considerably smaller than Ng and 
also in general unknown. Even the number of faces of the corresponding 
polyhedron is unknown. The natural conjecture that all inequalities 

0~<a0 + b,(cr) + k aj(o'/o-/+j) 
j = l  

can be obtained from local inequalities of the type 

r + l  r + l  

0~< a° + ~j=l bjo'jq-j~k-', =1 CjkOrjO'k 

is wrong for r/> 5. For example, for r = 5 the inequality 

0 ~< 4 - 2( ~/o-~+~ } - 5(o'~r~+2 } + 3(<%+3} + 3( o'/o',.+4 } - 3( cr, o-~+5 } 

Table I 

r N s Nda NJ3rNd B 

1 3 1 1 
2 6 1 1 
3 19 2 1.06 
4 179 16 0.93 
5 30176 2048 0.98 
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is obtained from the (correct) inequality 

0 ~  < 16 - 2(o- lo-  2 - o-3 o-4 + o-.s o-6) - 3(° '2° '3  + o-4 o-5) - 7 ( °1  °-3 + o 4 o 6 )  

- 3(0-20-4 + o-3 ~ s )  + 4(o-1 °'4 + 0-20"5 -k 0"30"6) q- 6(O'I 0-5 + O-2O-6) 

- 12o-i o- 6 - 0-10-20-_3o-4 -I- 2O-2O-30"4O-5 - -  O-3O-4O-5O-6 

- 3(0-1°'20-3~s - 0 2 0 3 0 4 0 6 )  ~- 3(°"1°"3°"4°"5 - 0"20"40.50-6), 

where the four-spin correlations cancel on averaging. 
Also  unknown is the maximal period (the analogue of  the de Bruijn states) 

that can be achieved by a Hamil tonian with one-  and two-body interactions 
only. 

For small r (r~<6) and two-body interactions only some results in this 
direction are displayed in table II. N(g 2) is the number of  possible ground states 
for Hamiltonians  with two-body interactions only,  

j= l  

Nineq is the number of  faces of  the corresponding polyhedron,  i.e. the number 
of  independent  inequalities of  the type 

2 ai(o-io-i+j) ~> - 1 ,  ( 2 1 )  
j= l  

and Pmax is the maximal period of  any ground state. These  states of  maximal 
period are all of  the form 

( O " I o r 2 ' " "  O ' n O ' l O ' 2 ' " "  ~ n ) p  

and "type" denotes  the sequence O" 1 O'2 . . . O" n . 

Table II 

r N(g 2 ) Nineq P .... Type 

l 2 2 2 
2 3 3 4 
3 5 6 6 
4 7 12 8 
5 15 34 14 
6 27 80 26 

+ 
+ +  
+ + +  
+ + + +  
+ + + + +  + 
+ + + - - + - - - - - - + + - - + +  
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We briefly describe how the results have been obtained. For  r ~< 3 the ground 
states are well known. For r - - 4  it is not difficult to prove that the only 
additional ground states are ( + + + +  . . . .  )p and ( + + - + - - - + - ) p .  For  
r = 5, 6 the following "exper imental"  procedure was adopted: 

(1) In order  to generate a sufficient set of periodic states as possible 
candidates for ground states, a stepwise crystal growth model was simulated. 
The first r spins 0- lo" 2 . . .  o"r and the interaction constants Jj were chosen at 
random. Then the next spin err+ 1 was adjusted in such a way that H is 
minimized. This procedure was repeated. After  an initial transient a periodic 
state emerges. This is a possible candidate for a ground state. (It turned out 
that the majority of these states are indeed ground states). 

(2) The pair correlations (o"io"i+~) of these states are plotted as points in an 
r-dimensional space and the convex polygon generated by these points is 
determined. Those states that are not vertices are discarded. The boundary 
half-planes are the candidates for the inequalities (21). 

(3) If all these inequalities can be proved to be correct,  the phase diagram is 
complete,  and all the ground states have been found. In order  to prove an 
inequality, it is first rewritten in terms of the n,,'-(') in the form 

- - (~)  > / 0 .  
l g  o .  g ~  o . 

o "  

If all the % / >  0, the inequality is valid. Otherwise, (which is the general case) 
one can try to prove the inequality by employing the relations (6), thereby 
transforming the a,,. If, by a series of such transformations, all the % can be 
transformed to non-negative quantities, the inequality is proved. This proce- 
dure can be programmed on a computer,  and in this way all the inequalities for 
r = 5 and r = 6 have been proved, demonstrating the completeness of the 
ground states. 

Appendix. Proof that Pr is convex 

Let x and y '  be two points in Pr and let to, to' be the corresponding 
configurations. Let  0 < A < 1. It suffices to show that for any E > 0 there is a 
configuration o3 such that 

t ( o . ) ( 0 3 )  - - ( 1  -  )yl < , ,  

where (o ')(03) is the correlation vector of 03. We may assume that A is rational, 
h = m / n .  Choose sufficiently large segments ton and to~, such that 
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Consider the configuration 

! t t 
(~3 : . . . O J  N O . )  N . . . 0 . )  N O )  N O 3  N . . . 0 3  N , 

m . l  n . l  

where l is an integer. For l sufficiently large o5 has the required properties. 
The convexity of ['r is very general, it holds in any number of dimensions and 

for any spin. 
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