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We analyze theoretically and by means of molecular dynamics (MD) simulations the

generation of mechanical force by a polyelectrolyte (PE) chain grafted to a plane.

The PE is exposed to an external electric field that favors its adsorption on the

plane. The free end of the chain is linked to a deformable target body. Varying the

field one can alter the length of the non-adsorbed part of the chain. This entails

variation of the deformation of the target body and hence variation of the arising

in the body force. Our theoretical predictions for the generated force are in a very

good agreement with the MD data. Using the developed theory for the generated

force we study the effectiveness of possible PE-based nano-vices, comprised of two

clenching planes connected by PEs and exposed to an external electric field. We

exploit Cundall-Struck solid friction model to describe the friction between a particle

and the clenching planes. We compute the self-diffusion coefficient of a clenched

particle and show that it drastically decreases even in weak applied fields. This

demonstrates the efficacy of the PE-based nano-vices, which may be a a possible

alternative to the existing nano-tube nano-tweezers and optical tweezers.
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I. INTRODUCTION

Future nanotechnology will use molecular devices executing various manipulations with

nano-size objects, such as colloidal particles, vesicles, macromolecules, viruses, small bac-

teria, cell organelles, etc. Such objects, however, can not stay at rest on their own due to

heat, manifesting itself in a form of thermal fluctuations. To execute highly precise ma-

nipulations with these objects one needs to keep them immobilized. Therefore, the devices

that can clench and unclench nano-size objects under an external control will be massively

demanded. These devices, which can be termed as "nano-vices" or "nano-nippers" should

be able to operate in solutions, including aqueous solutions, where manipulations with bi-

ological nano-size objects are expected. Recently, nano-tube nano-tweezers operated by an

electric field, that can clench a nano-size object, has been proposed1. Such devices, how-

ever, can not work effectively in aqueous solutions; moreover, the range of forces, as well

as the range of operating distances, is relatively narrow for such devices1. Optical tweezers

require specific optical properties of an immobilized object which also restricts their applica-

tions2. Therefore it seems reasonable to consider polyelectrolyte-based nano-vices, operated

by an electric field, which could be a very promising alternative to existing nano-tube nano-

tweezers and optical tweezers. These can operate in aqueous solutions and demonstrate a

wide range of operating forces and distances. They also overcome limitations imposed by

the optical properties of nano-objects2.

In very simple terms the nano-vices may be comprised of a few charged polymer chains

the so-called polyelectrolytes (PE) that are linked to two surfaces and exposed to an electric

field that serves as a control signal. Varying the field one can alter the length of the non-

adsorbed part of the chains and hence the distance between the planes, see Fig.1. In this way

one can clench and unclench a nano-size object (target body) placed between the planes.

Recent technological achievements, e.g. the production of nano-sheets3 enables a practical

realization of such devices, hence it is very important to develop a theory of the respective

devices and quantitatively describe the basic physical processes there. Hence one needs to

(i) develop a theory of a conformational response of a PE, with one end linked (grafted) to

a charged surface and the other one to a deformable target body, to a varying electric field

and (ii) quantify the ability of nano-vices to clench a nano-size object.

The response of PEs to external electric fields has been extensively studied the last few
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Figure 1. (a) Charged polyelectrolyte (PE) chains are linked to two planes. They are attracted

to the one, oppositely charged plane, which causes the chains’ contraction, as indicated by the

downwards arrows. This leads to the clenching of the target body (e.g. a colloidal particle, virus,

etc.) and gives rise to the restoring force f , indicated by the upward arrows. (b) In the numerical

simulations the target body is modelled by a spring with a given force-deformation relation, which

is linked to the free end of the PE chain. (c) Typical simulation snapshot of a PE chain in the

electric field perpendicular to the charged plane (shown by the upward arrow) and linked to the

target body. Illustration of the Cundall-Struck model.

decades4–12, including the adsorption of PEs on oppositely charged surfaces of different

geometries13,14. In particular, the conformational response of a PE in an electric field, under

an action of a constant force, has been analysed in Ref.8. In the context of nano-vices,

however, this problem has been addressed only recently4–6. Moreover, the quantification of

the clenching ability of PE-based nano-vices has not been studied yet. In Ref.4 a theory of

the phenomenon, based on a model "physical" approach has been developed for the case of

a constant force acting on a free (non-grafted) end of a PE. Later, in Ref.5, a generalization

of this theory for the case of force depending on deformation has been reported. In Ref.6

a first-principle theory of this phenomenon has been elaborated; all the theoretical studies

were accompanied by extensive molecular dynamics (MD) simulations4–6.
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Figure 2. (a) Solid friction force grows linearly with the displacement x as for a linear spring.

(b) When x exceeds d, the "spring" breaks and particle moves to a new potential well, shifted by

d. (c) Particle’s positions in the potential well, associated with the solid friction force, obey the

equilibrium distribution.

In the present paper we first discuss the theoretical approach of4–6 and give a shorter

and more straightforward derivation of the main result of the first-principle theory 6. Then

we analyse the efficacy of nano-vices calculating the self-diffusion coefficient of a clenched

particle. In particular, we show that for rather weak electric fields the PE-based nano-vices

can effectively immobilize a clenched Brownian particle, reducing its self-diffusion coefficient

by a few orders of magnitude.

II. CONFORMATION OF A POLYELECTROLYTE LINKED TO A

TARGET BODY IN AN EXTERNAL ELECTRIC FIELD

A. Model

We consider a system comprised of a chain of N0 + 1 monomers, which is anchored to a

planar surface at z = 0. The anchoring end-monomer is uncharged. Each of the remaining

N0 beads carries the charge −qe (e > 0 is the elementary charge) and N0 counterions of
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charge +qemake the system neutral. For simplicity we consider a salt-free solution. However

it may be shown15 that for intermediate and strong electric fields, the presence of salt ions

(up to physiological concentrations) leads to a simple renormalization of the external field,

so that the qualitative nature of the phenomenon remains unchanged? . Hence a salt-free

case, which allows an analytical treatment, is generic.

We use the freely joint chain model with the length of the inter-monomer link equal to

b. The MD simulations4–6 justify the application of this model to the analysed phenomena.

We consider a salt-free system, so that no other microions present in the solution, which has

the dielectric permittivity ε. The chain is grafted (linked) to a charged plane so that the

external electric field E acts perpendicular to the plane, favoring the chain adsorption. The

free end of the PE is linked to a deformable body, modeled by a spring, Fig.1(b).

The deformation energy of the spring Usp = Usp(h−h0) depends on the deformation h−h0,

where h0 and h are the sizes of an undeformed and deformed target body respectively. The

restoring force acting on the free end of the chain then reads,

Usp = Usp(h− h0) f = − ∂

∂h
Usp(h− h0). (1)

In Refs.4–6 the following dependencies have been studied in detail theoretically and nu-

merically: Usp = fh, Usp = (1/2)κ(h − h0)2, Usp = (κ/γ)|h − h0|γ−1 and Usp = (2/5)κ(h −

h0)
3/2θ(h0−h), which refer accordingly to the constant force, linear, non-linear and Hertzian

spring. Here κ is the elastic constant of the spring and θ(x) is the Heaviside step function.

For the values of the external field and system parameters addressed in the present study,

the counterions are practically decoupled from the chain, being accumulated near the upper

plane, see Fig.1(c). Hence the interaction of the chain with the external field as well as

interactions between the chain monomers are not screened by the counterions. To find the

conformational response of the PE to the external electric field and the force arising in the

target body, one needs to find the free energy of the system and minimize it with respect to

relevant parameters.

B. Free energy of the chain

We first calculate a conditional free energy of the chain Fch with the following conditions

imposed: (i) N monomers of the chain are desorbed and Ns = N0 −N are adsorbed on the
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charged plane; (ii) the distance between the free chain end, linked to the target body, and

the grafting plane is ztop and (iii) the end-to-end distance of the adsorbed part of the chain

is R. Minimizing the conditional free energy Fch(N, ztop,R) with respect to these variables

one can find the equilibrium values of N , ztop and R; using these quantities we then compute

the force acting on the target body.

For the freely joint model the location of all monomers of the chain are determined by N0

vectors bi = ri−ri+1, which join centers of (i+1)-st and i-th monomer; each of these vectors

has the same length b. We enumerate the monomers starting from the free end linked to the

target body. Then the beads with numbers 1, 2, . . . N refer to the bulk part of the chain,

while with numbers N + 1, N + 2, . . . N0 to the surface part. The N0 + 1st neutral bead,

located at the origin, rN0+1 = 0, is anchored to the surface. We assume that the adsorbed

part of the chain forms a flat structure, so that the centers of the adsorbed beads lie at the

plane z = 0. In other words, we ignore the off-surface loops of this part of the chain. Then

the location of the kth bead of the chain and the distance between centers of ith and jth

bead read,

rk =

N0∑
s=k

bs rij =

j∑
s=i

bs (2)

The orientation of each vector bs is characterized by the polar θs and azimuthal ψs angles,

where the axis OZ is directed perpendicular to the grafting plane, see Fig.1(c). Therefore

the distance between the grafting plane at z = 0 and the kth bead of the bulk part of the

chain as well as the hight of the top bead for k = 1 read:

rk =

N0∑
s=k

bs rij =

j∑
s=i

bs (3)

zk = b
N∑
s=k

cos θs; ztop = z1 = b

N∑
s=1

cos θs. (4)

The location of the top bead, linked to the target body determines the deformation energy

of the target body and the according force which acts on the chain:

Usp(ztop) = Usp(ztop − ztop, 0), f = − ∂Usp

∂ztop
, (5)

where ztop, 0 is the coordinate of the top bead for the case when the target body is not

deformed. Since the chain is not screened by the counterions, the potential associated with
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the external field E is ϕext(z) = −Ez. Hence the interaction energy of the bulk part of the

chain with the external potential reads,

Hext =
N∑
k=1

−qeϕext(zk) = bqeE
N∑
k=1

N∑
s=k

cos θs = bqeE
N∑
s=1

s cos θs.

The interaction energy with the external field of the adsorbed part of the chain, located at

z = 0, is equal to a constant which we take equal to zero.

The electrostatic interactions between the chain monomers are also unscreened and may

be written using the Fourier transform of a Coulomb potential q2e2/εr as6

Hself =
1

2

N0∑
l=1

N0∑
m=1m 6=l

q2e2

εrlm
=
q2e2

2ε

∑
l 6=m

∫
dk

(2π)3

(
4π

k2

)
ei

∑m
s=l k·bs , (6)

where we exploit Eq. (3). Taking into account that the end-to-end vector of the adsorbed

part of the chain has the form R =
∑N0

i=N+1 bi, we can finally write the conditional free

energy as

βFch(N, ztop,R) = − logZch(N, ztop,R) (7)

where β = (kBT )−1 with kB and T being respectively the Boltzmann constant and temper-

ature and Zch is the conditional partition function:

Zch =

∫ 1

0

d cos θ1 . . .

∫ 1

0

d cos θN

∫ 2π

0

dψ1 . . .

∫ 2π

0

dψN0e
−βUsp−βHself−βHext

× b3δ

(
ztop − b

N∑
s=1

cos θs

)
δ

(
R−

N0∑
i=N+1

bi

)
,

where the factor b3 keeps Zch dimensionless and ψi and θi are respectively the azimuthal and

polar angles of an inter-monomer vector bi (see Fig.1(c)). We also take into account that

θN+1 = θN+2 . . . = θN0 = π/2, since the adsorbed part of the chain forms a flat structure.

Note that R is a two-dimensional vector on the plane and the vectors bi, for i = N+1, . . . N0

have zero z-component.

Using the integral representation for the delta function,

δ(r) = (2π)−3
∫
eip·rdp = (2π)−1

∫ ∞
−∞

eipzzdpz · (2π)−2
∫
dp⊥e

−ip⊥·r⊥

where the vector r has a lateral and z components, r = (r⊥, z), we recast Eq. (8) into the

form

Zch
b3

(2π)3

∫ ∞
−∞

dpze
−ipzztop−βUsp(ztop)

∫ 1

0

dη1 . . .

∫ 1

0

dηN e
∑N
s=1(ipz−Ẽ)ηs
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×
∫
dp⊥e

−ip⊥·RZψ
〈
e−βHself

〉
ψ
,

where ηs = cos θs and we define

Zψ =

∫ 2π

0

dψ1 . . .

∫ 2π

0

dψN0e
ip⊥

∑N0
s=N+1 bs = (2π)N

N0∏
s=N+1

∫ 2π

0

eip⊥b cosψsdψs

= (2π)N0 [J0(p⊥b)]
Ns .

Here we take into account that p⊥ ·bs = p⊥b cosψs, that Ns = N0−N , and use the integral

representation of the zeroth-order Bessel function, J0(x) = (2π)−1
∫ 2π

0
cos(x cosψ)dψ. We

also define the averaging over the azimuthal angles ψs as

〈(. . .)〉 =
1

Zψ

∫ 2π

0

dψ1 . . .

∫ 2π

0

dψN0e
ip⊥·

∑N0
s=N+1 bs(. . .). (8)

Taking into account the long-range nature of the Coulomb interactions in Hself , one can ex-

pect that the mean-field approximation will have a good accuracy. The mean-field approxi-

mation deals with the average quantities and neglects fluctuations. The average quantities

are described by the first-order cumulants, while fluctuations by the higher order cumulants.

Hence we adopt the following mean-field approximation:〈
e−βHself

〉
ψ
≈ e−β〈Hself〉ψ . (9)

Performing integrations over ψ1, . . . ψN0 and then over k, we arrive at (see e.g.6 for detail,

where similar quantities have been computed):

〈βHself〉ψ'
l̃B
2

N∑
s1 6=s2

1

B(s1, s2)
+
l̃B
2

Ns∑
s1 6=s2

ep
2b2|s2−s1|/8√
|s2 − s1|

+
N∑
l=1

Ns∑
m=1

l̃B√
B2(l, N)− 1

4
b2p2m2

,

where lB = e2/(εkBT ) is the Bjerrum length, l̃B = lBq
2/b and B(s1, s2) =

∑s2
s=s1

ηs. Next,

integration in Eq. (8) over p⊥ yields,∫
dp⊥e

−ip⊥·RZψ
〈
e−βHself

〉
ψ
≈ (2π)N0

4π

Nsb2
e−R

2/Nsb2e〈Hself〉ψ(p∗⊥), (10)

where we use Zψ from Eq. (8) together with the approximation J0(p⊥b) = exp[log J0(p⊥b)] ≈

exp[log(1− p2⊥b2/4)] ≈ exp(−p2⊥b2/4), which is justified for the range of p⊥, that contribute

to the integral. We also use the steepest descent method, justified for N � 1 and Ns � 1,

to evaluate the integral with the saddle point at p∗⊥ = −2iR/Nsb
2.

8



Finally, we integrate over η1, . . . ηN in Eq. (8), applying the mean-field approximation,

s2∑
s=s1

ηs ≈
s2∑
s=s1

〈ηs〉 = |s2 − s1| 〈ηs〉 = |s2 − s1|
ztop
N

,

and using again the steepest descend method in the integration over pz; this eventually leads

to the following expression for the conditional free energy:

βFch(N, ztop,R) = βUsp(ztop) +
l̃BN

2

z̃top
(logN − 1) + p∗z̃top −W (p∗)

+
R2

Nsb2
+
π
√

2bl̃BN
2
s

R
+W1(N, ztop, R)− log πNs −N0 log 2π

where z̃top = ztop/b and p∗ ' Ẽz̃top is the saddle point. We also define

W (p∗) =
1

Ẽ
[Ei(ζ0)− Ei(ζN) + log |ζ0/ζN |] , (11)

with Ei(x) being the exponential integral function, ζ0 = p∗ − Ẽ, and ζN = p∗ − ẼN and

W1(N, ztop, R) =
lBNNs

R

[
log
(

1 +
√

1 + z∗ 2top

)
+

1

z∗top
log
(
z∗top +

√
1 + z∗ 2top

)
− log z∗top

]

− lBN

Rz∗top
log(2Nsz

∗
top), (12)

where z∗top = ztop/R.

The impact of counterions on the conformation of the bulk part of the chain may be

estimated as a weak perturbation. Referring for the computational detail to Ref.6 we give

here the final result:

βFcount(ztop) ' − ztop
2µGC

N, (13)

where µGC = 1/(2πσclBq) is the Gouy-Chapman length based on the apparent surface charge

density σc = qN0/S associated with the counterions and S is the lateral area of the system.

C. Dependence of the force and deformation on the external field

Now we can determine the dependence on the electric field of the PE dimensions as well as

the deformation of target body. Simultaneously one obtains the dependence on applied field

of the force that arises between chain and the target body. This may be done minimizing

the total free energy of the system F (N, ztop, R) = Fch(N, ztop, R) +Fcount(ztop) with respect
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to N , ztop and R and using Ns = N0 − N and the constraint ztop ≤ bN . This allows to

find N , ztop and R as functions of the applied electric field, that is, to obtain N = N(E),

ztop = ztop(E) and R = R(E). Then one can compute the force acting onto the target body.

It reads,

f̃(z̃top) = Ẽz̃top −
l̃BN

2(logN − 1)

z̃2top
− Nb

2µGC
+
∂W1

∂z̃top
, (14)

where f̃ = βbf(ztop), with f(ztop) = −∂Usp/∂ztop being the reduced force for a particular

force-deformation relation. In the above equation we exploit p∗ = Ẽz̃top and the saddle

point equation, iztop − ∂W (pz)/∂pz = 0, valid for pz = p∗.

III. CLENCHING EFFICIENCY OF NANO-VICES

To quantify the efficiency of clenching by nano-vices we analyse self-diffusion of a particle

squeezed by the planes of the device. One can say that the body is effectively kept at

rest if the self-diffusion coefficient of the clenched particle drops down by a few orders of

magnitude, as compared to this value of a free particle.

For simplicity we assume that both planes are kept parallel and that two equal, normal

to the plane, forces act on the top and bottom of the particle. We neglect twisting and

rolling motion of the clenched particle and consider only sliding, that is, the tangential

motion. When the particle moves tangentially, it experiences the following set of forces: (i)

A viscous force from the surrounding fluid, Fvis = −γv, that acts against the velocity v

with the friction coefficient γ = 6πηRp, where η is the fluid viscosity and Rp is the radius

of the particle. (ii) A random force from the surrounding fluid ~ξ(t), related to the viscous

friction. We assume that this is a δ- correlated force, that obeys the fluctuation-dissipation

theorem:

〈ξi(t)ξj(t′)〉 = 2kBTγδijδ(t− t′) i, j = x, y z.

(iii) A "solid friction" force between the planes and the particle Fsol.fr. Hence one can write

the stochastic equation of motion for the Brownian particle between the planes:

m
d2r

dt2
+ γ

dr

dt
= Fsol.fr + ~ξ(t). (15)

The microscopic derivation of the force Fsol.fr is rather challenging, therefore we exploit

here the Coulomb friction model in the microscopic interpretation of Cundall and Struck19.
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Figure 3. (a) The reduced force generated by the external field, f̃ = fb/kBT , as a function of

the reduced electric field, Ẽ = qeEb/kBT . The equilibrium length of the Hertzian spring, that

corresponds to the diameter of an undeformed nano-particle is l0 = 40b, 60b and 80b. The reduced

force constant is κ̃ = kb5/2/kBT = 1. The length of the chain is N0 = 320. (b) The dependence

of the diffusion coefficient of a clenched nano-particle D/D0, on the external reduced field Ẽ for

different particles sizes. (For a better visibility f̃ and Ẽ are shown on the axes without tildes)
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Note that this model has been used for the tangential friction between colloidal particles20.

In the Cundall-Struck model it is assumed that the solid friction force, that counteracts

an externally applied force is equal to a harmonic spring force −κ∆, where ∆ = (r − r0)

and r0 is the initial position of a body, before the external force started to act. After the

displacement from the initial position reaches some quantity d, the springs breaks down and

the body remains displaced by ∆ = d in the direction of the acting force. For the next

action of the external force the new initial position r0 corresponds to the shifted one. The

maximal force in this model is κd, while the average force is equal to (1/d)
∫ d
0
κxdx = κd/2.

On the macroscopic scale L� d the body moves smoothly with the average resistance force

equal to Fsol.fr = µF⊥ = κd/2, which yields, κ = 2µF⊥/d. One can also write the solid

friction force, in the regime of acting spring as the derivative of the according potential,

Fsol.fr = −∇U with U = µF⊥(r − r0)
2/d. Since the solid friction force always acts against

the applied force, we can write the above Eq. (15) as the one-dimensional equation in the

direction of the applied stochastic force ξ. Moreover, if we assume that the viscous force is

large, m/γ � 1, we recast the above Langevin equation into the overdamped form:

ẋ = γ−1
dU

dx
+ ξ̃(t) (16)

with
〈
ξ̃(t)ξ̃(t′)

〉
= 2D0δ(t − t′), where D0 = kBT/γ is the diffusion coefficient of a non-

constrained particle.

Note, that in contrast to conventional overdamped Langevin equation, the above Eq. (16)

describes the potential U(x), centered after each jerk of size d, at a new position. Hence the

random tangential motion of a particle occurs as following: If a displacement of the particle

due to the action of the stochastic force ξ(t) does not exceed d, the particle performs a

Brownian motion in the harmonic potential U(x), centered at r0, with zero self-diffusion

coefficient. If at some moment t0 the displacement becomes equal to d, the particle shifts

to r = r0 + d and starts to perform Brownian motion in the potential U(x), centered at

r = r0 +d. Let the critical displacements by vectors d0, d1, . . ., dk, occur at times t0, t1, . . .,

tk. Due to the Markovian properties of the random force ξ(t) all the vectors dk and the

instances tk are independent. Moreover, we can assume that the sequence of times t1, . . ., tk

obeys the Poisson distribution

Pk(t) =
1

k!

(
t

τ

)k
e−t/τ ,
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where τ is the average time between the successive jerks. Then the mean square displacement

during time t reads,

〈
∆r2(t)

〉
=
∞∑
k=0

kd2Pk(t) = d2
∞∑
k=0

k
1

k!

(
t

τ

)k
e−t/τ =

(
d2/τ

)
t = 2Dt , (17)

which implies that the diffusion coefficient is D = d2/2τ . In the above equation we take into

account that 〈di · dj〉 = δijd
2, due to independence of the displacements di and dj for i 6= j.

Hence, to find the diffusion coefficient one needs to compute the average waiting time

τ . This may be done if we find the so-called "mean-first-passage time" for the potential

U(x)21,22. The equation for the average time T (x), needed for a particle, initially located

at a point x, within a potential well U(x), to reach the point x = ±d, where the jerk takes

place, reads21:

D0
d2T (x)

dx2
− γ−1dU(x)

dx

dT (x)

dx
+ 1 = 0

T (−d) = T (d) = 0 (18)

where U(x) = µF⊥x
2/d = α(x2/d2), with α = µF⊥d

kBT
and we choose r0 = 0. The boundary

conditions at x = ±d are obvious. The solution to Eq. (18) may be expressed in terms of

the hypergeometric function H(z) = 2F2(1, 1; 3/2, 2; z):

T (x) =
d2

2D0

[
H (α)− x2

d2
H

(
α
x2

d2

)]
. (19)

Now we average T (x) over the starting point x, using the equilibrium distribution of starting

points within the potential well, ∼ e−βU(x). The results then read,

τ = 〈T (x)〉eq =

∫ d

−d
Ce−βU(x)T (x) =

d2

2D0

[
H (α) +

e−α√
παErf(

√
α)
− 1

2α

]
,

where C−1 =
∫ d
−d e

−βU(x)dx is the normalization constant and in the last expression we

expand H(x) around x = 0 and keep only the leading term. If the potential well is deep

enough, that is, βU(d)� 1, then the above expression may approximated by its asymptotic

value for α� 1. Taking into account that H(x2) '
√
πex

2
/2x3 for x� 1 and using Eq. (17)

we find the effective self-diffusion coefficient:

D(E) =
2D0√
π

(
µF⊥d

kBT

)3/2

e−µF⊥d/kBT . (20)

Here D depends on the field E since F⊥ = F⊥(E) = 2f(ztop), that has been computed in the

previous section. Using the value of µ = 0.2, which is motivated by the friction coefficients
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between polymer surfaces (e.g. µ = 0.5 for polystyrene-polystyrene, µ = 0.15 − 0.25 for

nylon-nylon, etc.), and taking into account that the friction force acts on the top and bottom

part of a clenched particle, which duplicates the friction force, we calculate D as a function

of the electric field. The results for D(E) are shown in Fig.3(b). For simplicity in our

calculation we use d = b for the microscopic parameter of the Cundall-Struck friction model.

IV. MD SIMULATIONS

The MD simulations have been performed for a freely joint bead-spring chain. All N0 =

320 beads, except to the one, bound to the plane at z = 0, carry one (negative) elementary

charge. N0 monovalent free counterions of opposite charge make the system electroneutral.

We assume the implicit good solvent which implies short-ranged, purely repulsive interaction

between all particles, described by a shifted Lennard-Jones potential. Neighboring beads

along the chain are connected by the standard FENE potential, e.g.16,17. The bond length

at zero force is b ' σLJ with σLJ being the Lennard-Jones parameter. All particles except

the anchor bead interact with a short-ranged repulsive potential with the grafting plane at

z = 0 and upper plane at z = Lz. The charged particles interact with each other and the

external field with unscreened Coulomb potential, quantified by the Bjerrum length. We

set lB = σLJ and use a Langevin thermostat to hold the temperature kBT/εLJ = 1, where

εLJ is the Lennard-Jones energy parameter. More simulation details are given in Refs.16,17.

The free end of the chain is linked to a deformable target body, which is modeled by springs

with various force-deformation relations. We use the Hertzian force, which can describe

the "core" interactions between nano-particles18. For simplicity, we assume that the anchor

of a spring is fixed and aligned in the direction of the applied field. The footprint of the

simulation box is Lx×Ly = 424× 424 (in units of σLJ) and the box height is Lz = L = 160.

A typical simulation snapshot is shown in Fig.1(c). We observed that already for relatively

weak fields, starting from the field of about Eqeb/kBT ≈ 0.1 and higher fields, the adsorbed

part of the chain is almost flat, while the bulk part of the PE chain in strongly stretched

along the field. Moreover, in sharp contrast to the field-free case23–25 the countertions are

decoupled from the PE and accumulate near the upper plane.
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V. RESULTS AND DISCUSSION

In Fig.3(a) we show the results of MD simulations and compare them to the theoretical

predictions. In particular, the dependence of the field-induced force, acting on the target

body is shown as the function of the external electric field. As it may be seen from the figure

a very good agreement between the theory and MD data is observed in the absence of any

fitting parameters. Note however, that the theory has been developed for a highly charged

chain with a relatively strong self-interactions and interactions with the charged plane. Some

systematic deviations are observed for large fields for the largest nano-particle. This may

be probably attributed to a possible elongation of the bond length for strong forces, which

is not accounted in the freely joint chain model with the fixed bond length b. Note that for

aqueous solutions at the ambient conditions, the characteristic units of the force and field

are kBT/b ≈ kBT/lB ≈ 6 pN and kBT/be ≈ kBT/lBe ≈ 35 V/µm, respectively; the latter

value is about an order of magnitude smaller than the critical breakdown field for water.

Also note that the range of electric fields roughly corresponds to a surface charge density of

0.1− 10 jC/cm2, typical for charged graphite surfaces26.

In Fig.3(b) the dependence of the diffusion coefficient of the clenched particle on the

external field is shown. One can see a dramatic decrease of D even for relatively weak fields.

The effect becomes even more pronounced for larger particles, where the characteristic field

of Ẽ = 1 reduces the diffusion coefficient by nine orders of magnitude. This proves the

effectiveness of the PE-based nano-vices.

VI. CONCLUSION

We investigate the generation of a mechanical force by a polyelectrolyte (PE) chain grafted

to a plane and exposed to an external electric field, when it is linked to a deformable target

body. The MD simulations are performed and an analytical theory of this phenomenon is

elaborated. The focus is made on the case, when the force-deformation relation corresponds

to that of a Hertzian spring, which quantifies repulsive interactions between nano-size ob-

jects, like colloidal particles. The theoretical dependencies for the generated force, acting

on the target body, on the external field are in a very good agreement with the simulation

data.
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Based on the developed theory of the force-to-field response we analyse the efficacy of

PE-based nano-vices, comprised of two planes connected by PEs and exposed to an external

electric field. By varying the electric field one can clench and unclench a nano-size particle

placed between the planes. We apply Cundall-Struck solid friction model to describe the

friction between a particle and clenching planes and develop a theory for self-diffusion co-

efficient of a clenched particle. It is shown that the self-diffusion coefficient of a clenched

particle drastically decreases even at relatively small electric fields. This proves that PE-

based nano-vices may be effectively used to clench nano-size objects as a possible alternative

to the existing nano-tube nano-tweezers and optical tweezers. Such devices may find a wide

application in future nano-industry, when it is needed to keep a nano-size object immovable,

say in various assembly processes. Among important advantages of the discussed nano-vices

are (i) their possibility to operate in aqueous solutions, including solutions with salt, (ii) a

wide range of operating forces and distances, which may be realized within a single de-

vice and (iii) a large variety of molecular structures of PEs that may be used to produce

nano-vices.
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