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Here we investigate mechanisms underlying the diversifi-
cation of biological forms using crucifer leaf shape as an
example. We show that evolution of an enhancer element
in the homeobox gene REDUCED COMPLEXITY (RCO)
altered leaf shape by changing gene expression from the
distal leaf blade to its base. A single amino acid substitu-
tion evolved together with this regulatory change, which
reduced RCO protein stability, preventing pleiotropic ef-
fects caused by its altered gene expression. We detected
hallmarks of positive selection in these evolved regulatory
and coding sequence variants and showed that modulat-
ing RCO activity can improve plant physiological per-
formance. Therefore, interplay between enhancer and
coding sequence evolution created a potentially adaptive
path for morphological evolution.

Supplemental material is available for this article.
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Understanding the genetic basis for evolutionary change
is a fundamental problem in biology. Morphological
diversity is often underpinned by cis-regulatory diver-
gence of developmental genes and consequent spatiotem-
poral modification of their expression (Gompel et al. 2005;
Hay and Tsiantis 2006; Prud’homme et al. 2006; Carroll
2008; Chan et al. 2010; Frankel et al. 2011; Studer et al.
2011; Arnoult et al. 2013; Rast-Somssich et al. 2015;
Indjeian et al. 2016). However, the origin of specific cis-
regulatory elements underlying morphological diversity
is still poorly understood (Rebeiz et al. 2015). For example,
it is unclear whether such cis elements tend to arise de
novo from rapidly evolving sequences or through the co-
option of existing conserved regulatory sequences (Rebeiz
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et al. 2011; Boyd et al. 2015; Villar et al. 2015). Further-
more, it has not been investigated whether and how cod-
ing sequences evolve in concert with regulatory changes
to optimize gene function in a new expression domain. Fi-
nally, links between regulatory changes underlying mor-
phological change and organismal physiology and fitness
remain scarce.

Plant leaves present a useful genetic model to tackle
these questions because they show substantial morpho-
logical variation (Shleizer-Burko et al. 2011; Bar and Ori
2014) and have considerable eco—physiological impor-
tance as the major site of photosynthetic carbon fixation
in terrestrial ecosystems (Givnish 1978). The REDUCED
COMPLEXITY (RCO) gene played a key role in leaf shape
diversification in the crucifer family (Sicard et al. 2014;
Vlad et al. 2014), to which the reference plant Arabidopsis
thaliana belongs. RCO arose through gene duplication
and encodes a class I homeobox leucine zipper protein.
Its function was discovered in Cardamine hirsuta, where
it acts to divide the leaf into distinct leaflets by locally re-
pressing growth at the leaf margin, creating a complex
shape. This species-specific activity of RCO arose by neo-
functionalization following gene duplication of its ances-
tral paralog, LMI1, which is conserved in seed plants.
Specifically, RCO acquired a novel expression domain
within the growth zone at the base of the leaf, where
growth repression—a conserved function of the RCO/LMI
protein—exerts a greater effect on leaf shape (Fig. 1A).
RCO was secondarily lost in A. thaliana, leading to leaf
simplification, and its reintroduction in the A. thaliana
genome was sufficient to increase leaf complexity (Vlad
et al. 2014). Thus, RCO is a large effect gene underlying
morphological diversity and offers an excellent system
to explore the causes and consequences of morphological
evolution. Here, we identify the specific molecular events
underpinning the evolution of RCO function and provide
evidence that modulating RCO activity can improve plant
physiological performance.

Results and Discussion

To understand whether discrete enhancer sequences ex-
plain the difference in expression between RCO and its
ancestral paralog, LMI1, we analyzed the upstream se-
quences of LMI1 and RCO using transgenic assays. We
first investigated whether discrete enhancer sequences
are sufficient to explain the evolutionary shift in RCO ex-
pression with respect to its paralog, LMI1, and what their
origin might be. We reasoned that if such enhancer ele-
ments exist in RCO, their introduction in LMI1 via chi-
meric constructs should recapitulate evolution and
convert the ancestral distal expression pattern into the
proximal one of RCO. We first defined upstream noncod-
ing DNA fragments of RCO and LMI1 that were sufficient
to drive reporter gene expression in the proximal and dis-
tal domains of the leaf lamina that characterize each gene
(Supplemental Fig. 2A-E; Supplemental Table 3). Subse-
quently, we assayed the expression pattern of chimeric re-
porter genes where three individual segments (regions
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A, B, and C) of RCO and LMI1 upstream sequences
were swapped between the two genes. (Fig. 1B-C;
Supplemental Table 3). We conducted these reporter
gene assays in A. thaliana, as the upstream regulatory re-
gions of C. hirsuta LMI1 and RCO recapitulate their re-
spective distal and proximal expression patterns in the
leaf lamina of A. thaliana (Fig. 1D,E; Supplemental Fig.
2B,D; Vlad et al. 2014).

These chimeric reporters had a binary readout: Each re-
porter yielded either the LMI1-type or the RCO-type ex-
pression pattern (Fig. 1F-K). The LMI1-type pattern was
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(CNSs; identity >70% within 100 base pairs [bp]). (Bottom)
Subdivision of LMI1 and RCO upstream sequences into re-
gions A, B, and C based on CNSs. ChLMI1 and ChRCO
gene models (blue and black lines, respectively) with the
CNS enhancer element of ~500 bp indicated. (Orange)
BM; (magenta) BRC. (C,C’) Chimeric GUS reporter con-
structs (1-8) used to identify critical cis-regulatory elements
in ChLMI1 and ChRCO upstream regions. (D-S) Representa-
tive A. thaliana (D-M) and C. hirsuta (N-S) GUS-stained
leaves carrying reporter constructs depicted in C and C’ or
full-length 3.8-kb ChLMI1 (D,N) and 3.2-kb ChRCO (E,O)
upstream regions (see also Vlad et al. 2014). In each image,
the construct used is indicated (1-8). The A. thaliana leaf de-
picted in L is more mature, hence the higher number of serra-
tions. Each image contains at least one stipule (black star) to
visualize the presence (LMI1)or absence (RCO) of expression.
In each case, at least two independent T2 lines were analyzed
with n> 5. Bar, 100 pm.

defined by expression in stipules and hydathodes, with
weaker expression in the leaf margin. In comparison
with this, the RCO-type pattern was expressed only at
the base of the leaf blade. These observations indicated
that specific sequences contributing to LMI1 expression
might have been modified through evolution to produce
the RCO expression pattern. In support of this idea, ex-
changing region BR¢© for the corresponding LMII se-
quence converted the LMI1 expression pattern into the
RCO pattern in both A. thaliana and the endogenous C.
hirsuta context (Fig. 1K,Q). Conversely, introducing
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region B"™! into the RCO sequence resulted in an LMI1
expression pattern in both the A. thaliana and C. hirsuta
contexts l\?g 17, 3 Moreover, a reporter containing only
region BX™ or BR© coupled to a 50-base-pair (bp) CaMV
35S minimal promoter was sufficient to drive specific
LMI1-type or RCO-type eXpressmn in A. thaliana (Fig.
1C,L,M) and, in the case of BX°©, also in C. h1rsuta (Fig.
1R S) Notably, the correspondmg region B! from
Aethionema arabicum, an early divergent crucifer, is nec-
essary for correct LMI1 gene expression (Supplemental
Fig. 2G-H), also indicating that it was already functional
before the divergence of Aethionema from other crucifers
(Vlad et al. 2014). Thus, the 500-bp region B! or BR¢©
has a key function in determlmng the expression pattern
of its respective downstream gene. Consequently, we
call this re%mn the RCO or LMI1 500-bp enhancer
(ChRCOenh% or ChLMI1enh®%).

To test to what degree gene expression conferred by
ChRCOenh®? is phenotypically relevant, we used it to
express the RCO-coding sequence both in the LMI1 regu-
latory sequence context and using a 35S minimal promot-
er (Supplemental Table 3). Strikingly, both constructs
increased leaf complexity in A. thaliana and rescued the
rco mutant leaf phenotype in C. hzrsuta (F1g 2B-F). These
findings demonstrate that ChRCOenh®% is necessary and
sufficient to drive RCO function and that this sequence
imparts morphologically relevant transcriptional infor-
mation even in the context of a heterologous promoter.
ChRCOenh®%’ must interact with additional sequences
to ensure the correct level of RCO transcription, as the
2.3-kb fragment drives higher expression (Figs. 1M, 2C-
F; Supplemental Fig. 2E). In summary, ChRCOenh®® re-
Capltulates the RCO expression pattern, and its activity
is sufficient to increase leaf complexity when transferred
between two reproductively isolated species that diverged
~30 million years ago (Vlad et al. 2014). Our findings dem-
onstrate that a specific enhancer element in LMI1, which
directs distal gene expression, neofunctionalized in the
RCO duplicate gene to yield a novel expression pattern
at the leaf base, resulting in a novel leaf form.

Next, we 1nvest1gated the evolutionary forces that led
to the d1vers1f1cat10n of RCOenh®” from its LMI1 coun-
terpart by comparing their sequence divergence patterns
in a phylogenetic framework. We observed a significantly
higher base substitution rate for this enhancer within the
RCO clade than within the LMI1 clade (Fig. 2A). Using a
modified branch site likelihood model adapted for non-
coding regions (Wong and Nielsen 2004), we demonstrat-
ed that this accelerated evolution of RCOenh®% likely
reflects the action of positive selection. These analyses,
coupled with our functional data (Fig. 1B-S), are consis-
tent with the idea that positive selection helped shag
the RCO expression domain via acting on ChRCOenh®?’

RCO/LMII proteins are potent growth repressors, and
their broad expression results in miniature plants (Vlad
et al. 2014). This raises the question of whether RCO en-
hancer evolution involved concomitant coding sequence
diversification to alleviate potentially pleiotropic effects
resulting from altered RCO expression. To address this
question, we analyzed RCO-coding sequence diversifica-
tion patterns from seven species. A phylogeny-based max-
imum likelihood ratio test (Yang 2007) identified signals
of positive selection centered on the alanine and tyrosine
residues at positions 48 (A48) and 56 (Y56), N-terminal to
the homeodomain (Fig. 3A; Supplemental Table 1). To
test the functional importance of these D48A and S56Y
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Figure 2. ChRCOenh®” evolved nonneutrally and is sufficient to
increase leaf complexity when driving RCO in A. thaliana and C. hir-
suta. (A) The RCO enhancer (magenta; depicted on a black gene mod-
el) experienced an increased base substitution rate (likelihood ratio
test: AlnL =9.64; P <0.005) compared with the LMI1 enhancer (yel-
low; depicted on a blue gene model), consistent with positive selec-
tion (see the Supplemental Material for detailed analysis). Base
substitution rates are indicated next to individual branches. (B) Con-
structs (1-3) used to express RCO in the RCO domain contain the up-
stream sequence of ChLMI1 (blue line), ChRCO (black line), or the
CaMV 35S minimal promoter (red line) with enhancer BX°© (magen-
ta). (C,E) Representative leaf 8 silhouettes from A. thaliana (C)and C.
hirsuta (E) wild-type and transgemc plants. Bar, 1 cm. (D,F) Leaf dis-
section index ([LDI| perimeter/area?) calculated from A. thaliana (D)
and C. hirsuta (F) leaf 8 silhouettes. Graphs indicate average LDI and
standard deviation. Letters indicate significant differences between
groups as indicated by ANOVA and post-hoc Tukey’s test. P <0.01.
For constructs 2 and 3, at least three independent T2 lines were ana-
lyzed with n > 12.

changes in the RCO protein, we generated A. thaliana
plants expressing modified RCO genes (RCOgA48D/
RCOgY568/RCOgA48D-Y56S) where the native promot-
er drives RCO with the A48D and Y56S mutations indi-
vidually or in combination. The leaf phenotype of plants
expressing RCOY56S was indistinguishable from plants
expressing RCO (Supplemental Fig. 3). However, plants
expressing RCOA48D or RCOA48D-Y56S had more dis-
sected leaves (Supplemental Fig. 3) and resembled plants
expressing LMI1 in the RCO domain (Fig. 3B,C), indicat-
ing that the A48D mutation has a major effect on leaf
form. The stronger effect of the A48D versus the Y568
change in RCO is consistent with a greater contrast be-
tween the properties of the derived and ancestral amino
acids: Alanine (A) is nonpolar, neutral, and hydrophobic,
and aspartic acid (D) is polar, acidic, and hydrophilic,
whereas tyrosine (Y) and serine (S) are very similar. How-
ever, the possibility that the Y56S mutation might cause
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Figure 3. Positive selection dampened RCO protein function via a
D> A transition that decreased protein stability. (A) Structure of
LMI1/RCO protein in A. arabicum and C. hirsuta. (B-D) Silhouettes
(B), leaf dissection index (C), and leaf area (D) of leaves 7 to 10 of A.
thaliana wild-type, RCOg, RCOgA48D, and RCO::ChLMI1 plants.
Error bars represent standard deviation based on at least 15 indepen-
dent T1 lines. Letters indicate significant differences between groups
as indicated by ANOVA and post-hoc Tukey’s test. P<0.01. (E) Sil-
houettes of rosette and cauline leaves of C. hirsuta wild type, rco,
and rco; RCOgA48D. (F,G) Quantitative analysis of RCO-3HA and
RCOA48D-3HA protein levels after cyclohexamide (CHX) treatment
at the indicated time points. (F) Coomassie blue staining (SDS-PAGE
slice containing a 57-kDa band) and anti-Actin immunoblotting indi-
cate equal loading. (G) Protein level quantification of samples shown
in F. Error bars represent standard deviation of the mean protein level
using three biological replicates.

phenotypic effects under different growth conditions can-
not be excluded.

The increased leaf complexity in transgenic RCO-
8A48D and RCO::ChLMI1 plants was accompanied by a
significant decrease in leaf area (Fig. 3B-D) compared
with RCOg plants. Thus, the RCOA48D and LMII pro-
teins are more potent than RCO, resulting in not only al-
tered leaf shape but also compromised organ growth when
expressed in the RCO domain. In contrast, the native
RCO protein changes A. thaliana leaf shape without in-
curring an organ growth penalty (Fig. 3B-D). RCOA48D
showed consistently higher potency than RCO in the en-
dogenous C. hirsuta context: It rescued the rco mutant
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phenotype more effectively, increased wild-type leaf com-
plexity, and reduced leaf size (Fig. 3E; Supplemental Fig.
4A-D). Reduction in cell size contributes to the reduced
leaf surface of RCOgA48D (Supplemental Fig. 5), indicat-
ing that RCO/LMII proteins may repress growth at the
whole-organ level by repressing cell growth. Taken to-
gether, these observations indicate that diversification of
gene expression after duplication of the ancestral LMI1
gene entailed a risk of pleiotropic effects, detrimental to
growth. We propose that these effects were counteracted
by the D48A amino acid change, which dampened RCO
protein potency. Two lines of evidence indicate that this
dampening involved reduced protein stability. First, HA-
tagged RCOA48D (RCOA48D-3HA) accumulated to high-
er levels in transgenic plants than HA-tagged RCO (RCO-
3HA) (Supplemental Fig. 6A-C). Second, the degradation
rate of RCO-3HA is higher than RCOA48D-3HA follow-
ing de novo protein synthesis inhibition by cycloheximide
(Fig. 3F,G). These findings highlight the importance of co-
ordinated coding and regulatory sequence evolution for
morphological variation. They also indicate that coupling
protein and cis-regulatory evolution (Prud’homme et al.
2006; Stern and Orgogozo 2008; Chan et al. 2010; Frankel
et al. 2011; Indjeian et al. 2016) can effectively minimize
the pleiotropic effects of mutations in developmental
genes. Notably, regulatory sequence variation in humans
may minimize the detrimental effects of deleterious cod-
ing sequence mutations in highly expressed haplotypes
(Lappalainen et al. 2011). Thus, coevolution of enhancers
with their cognate coding sequences may be of broad sig-
nificance across complex eukaryotes and at different evo-
lutionary scales.

The hallmarks of positive selection in RCO indicate
that it may have evolved adaptively. To investigate this
hypothesis, we tested whether changes in RCO activity
affected plant physiological performance. rco mutants
showed reduced CO, fixation (Fig. 4A), and introducing
RCO into A. thaliana (RCOg genotype) was sufficient to
increase CO, fixation by 20%-25% (Fig. 4A). Further-
more, RCO positively influenced seed yield in both C. hir-
suta and A. thaliana (Fig. 4B,C). RCO has a restricted
expression pattern during plant development (Vlad et al.
2014) and is not expressed in the nutritive endosperm tis-
sue of the seed but influences its size (Supplemental Fig.
7A-E). Therefore, the stimulatory effects of RCO on pho-
tosynthesis may ultimately influence resource allocation
to seeds. Taken together, these findings strengthen the hy-
pothesis that RCO evolved adaptively. These findings do
not imply that complex leaves are superior to simple
ones, as both forms occur readily in nature. Rather, they
highlight the potential for complex leaves to perform bet-
ter under certain conditions that may have been relevant
during the evolutionary history of the species that we
studied here (Piazza et al. 2010). Complex leaves are
more prevalent under lower mean annual temperatures
(Royer and Wilf 2006). Therefore, leaf margin geometry
may influence the interplay between temperature and
photosynthesis. The effects of RCO and leaf complexity
on photosynthesis are unlikely to involve stomatal densi-
ty (Supplemental Fig. 7F) but might arise from conditional
improvement in some or all of the following processes: gas
exchange, due to reduced air boundary layer thickness, as
in other complex leaves (Royer and Wilf 2006); light cap-
ture, owing to reduced shading by older leaves (Niklas
1988); and hydraulics, owing to vasculature properties in
a complex blade (Dengler and Kang 2001). Notably,
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Figure 4. Alterations in RCO activity influence plant physiological
performance. (A-C) Level of photosynthesis (CO, absorbed per sec-
ond, normalized to rosette area) after 14 and 21 d of growth (A), total
seed mass per plant (B), and seed area (C) for A. thaliana wild type
and RCOg and C. hirsuta control (Ctrl) and rco. Five replicates
were measured per genotype at each time point to analyze photosyn-
thetic activity. Total seed mass was estimated from five plants per ge-
notype. The seed area was obtained from 50 seeds per genotype
derived from five plants. Error bars represent standard deviation. A
t-test was used to calculate significance. (N.S.) Not significant; (*)
P <0.05; (**) P<0.01; (***) P<0.001.

okra-leaf cotton shows increased photosynthesis and leaf
complexity (Wells et al. 1986) together with altered
LMI1 expression (Chang et al. 2016). Therefore, our find-
ings highlight the potential to improve photosynthesis
via modulating RCO/LMI1 activity.

In conclusion, we show that neofunctionalization of an
enhancer element coupled with targeted coding sequence
diversification was instrumental in generating an altered
leaf form with potential physiological benefits while at
the same time minimizing pleiotropic effects. This type
of trade-off —where molecular level functions are damp-
ened to facilitate development of tissue- or organism-level
traits—may be a pervasive feature of morphological evolu-
tion. For example, the activity of a key developmental en-
hancer in Ciona was found recently to be constrained by
trade-offs between the specificity of gene activation and
the level of transcriptional activity (Farley et al. 2015).

Materials and methods

Plants were cultivated in growth chambers under long-day (16-h d/8-h
night) or short-day (8-h d/16-h night) conditions. A. thaliana and C. hirsuta
were transformed using Agrobacterium tumefaciens floral dip transforma-
tions as in Hay et al. (2014). Histochemical detection of f-glucoronidase ac-
tivity and subsequent visualization of samples were essentially according
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to Bilsborough et al. (2011). Selection tests on the promoter and coding se-
quences were conducted using a modified likelihood ratio test and phylo-
genetic analysis by maximum likelihood (PAML), respectively. Protein
stability was determined after treatment with cycloheximide to inhibit
protein synthesis. Gas exchange assays were conducted according to the
LICOR 6400 xt manufacturer’s protocol. A detailed description of the Ma-
terials and Methods is in the Supplemental Material.
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