
author’s	email:	Wolfgang.Treutterer@ipp.mpg.de	

Configuration-defined control algorithms
with the ASDEX Upgrade DCS

Wolfgang Treutterera, Richard Coleb, Alexander Grätera, Klaus Lüddeckeb, Gregor Neua, Christopher
Rapsona, Gerhard Rauppa, Thomas Zehetbauera and the ASDEX Upgrade Teama

a Max-Planck-Institut für Plasmaphysik, Boltzmannstr. 2, 85748 Garching, Germany

 b Unlimited Computer Systems, Seeshaupter Str. 15, 82393 Iffeldorf Germany

The ASDEX Upgrade Discharge Control System (DCS) is a distributed real-time control system executing

complex control and monitoring tasks. Up to now, DCS control algorithms have been implemented by coding
dedicated application processes with the C++ programming language. Algorithm changes required code
modification, compilation and commissioning which only experienced programmers could perform. This was a
significant constraint of flexibility for both control system operation and design.

The new approach extends DCS with the capability of configuration-defined control algorithms. These are
composed of chains of small, configurable standard function blocks providing general purpose functions like
algebraic operations, filters, feedback controllers, output limiters and decision logic. In a later phase a graphical
editor could help to compose and modify such configuration in a Simulink-like fashion.

Building algorithms from standard functions can result in a high number of elements. In order to achieve a
similar performance as with C++ coding, it is essential to avoid administrative bottlenecks by design. As a
consequence, DCS executes a function block chain in the context of a single real-time thread of an application
process. No concurrency issues as in a multi-threaded context need to be considered resulting in strongly simplified
signal handling and zero performance overhead for inter-block communication. Instead of signal-driven
synchronization, a block scheduler derives the execution sequence automatically from the block dependencies as
defined in the configuration. All blocks and connecting signals are instantiated dynamically, based on definitions in
a configuration file. Algorithms thus are not defined in the code but only in the configuration.

The concept has been developed in view of Simulink block libraries and MARTe General Application Modules
(GAM) but extends these with the DCS virtues of distributed computing and multi-threading.

With growing diversity of general-purpose blocks the DCS framework will reach an unprecedented degree of
universality and flexibility. Configuration-defined algorithms will gradually replace many existing DCS
applications. Finally, the concept might also become of interest for the upcoming ITER plasma control system.

Keywords: plasma control system, function block, configurable functionality, multi-threading

1. Introduction

Thermo-nuclear fusion reactors are envisaged as
future options for large-scale power generation.
Currently, research is performed on experimental
devices to explore operational aspects like material
aptitude, optimal operating conditions, stability and
controllability. Given the complex matter of the
underlying physics and the large number of involved
actuator and diagnostic plant systems the control system
of such an experimental device must connect to a large
number of heterogeneous subsystems and process huge
amounts of sensor data with sophisticated algorithms but
at the same time provide flexibility for evolution and a
clear structure for operation.

The ASDEX Upgrade Discharge Control System
(DCS) addresses this challenge building on a framework
concept that supplies infrastructure services and connects
pluggable user-defined control and monitoring modules
called Application Processes (AP) [1].

Up to now, control algorithms have been coded
directly into dedicated application processes. While

algorithm properties such as gains, dimensions and the
linkage to signals were configurable, changes in the
algorithm required code modification and subsequent
iterations of testing and correction. DCS already
employs libraries with re-usable function blocks for
frequently used code patterns to reduce the effort of
coding and the risk of introducing new errors. An even
higher efficiency paired with better user experience
could be gained, however, when application algorithms
were formulated entirely in terms of such blocks and
could be instantiated dynamically on user demand. This
approach would extend the scope of configuration data
from parameterization of algorithms further to the
definition of algorithms. In the final goal of this vision,
also physics operators without programming knowledge
would be able to formulate and deploy control
algorithms assisted by Simulink-like graphical editors.
Potential application fields range from measurement pre-
processing over state identification and control to event
detection and exception handling.

To reach this goal, DCS is being extended with the
capability of configuration-defined control algorithms.

	

These are no longer implemented in terms of individual
C++ code but are composed of linked, configurable
building blocks providing general-purpose functions like
algebraic operations, filters, comparators, feedback
controllers, output limiters and decision logic. The DCS
approach is inspired by Simulink block libraries [2],
which allow to build complex simulation models from a
repository of standard function blocks by interconnection
with signal lines and translates this paradigm into
distributed and multi-threaded real-time control context.

The MARTe control system framework [3] also
makes use of this idea. It implements function blocks in
terms of Generic Application Modules (GAM), connects
them via the Dynamic Data Buffer (DDB), employs a
scheduler to sequentially execute the GAMs and
provides dynamic instantiation based on a configuration
file - concepts which are paralleled also in the new DCS
approach. MARTe, however, does not yet provide a
comprehensive library of standard function blocks such
that GAM algorithms usually are custom codes
programmed in C++. DCS block libraries are rather
focussed on standard functions and in addition comprise
handling of sample metadata like timestamp, quality and
activity states, which are integral parts of DCS' local
exception handling concept [4]. Moreover, DCS
seamlessly integrates block-based algorithms with other
control modules in a multi-threaded and distributed
computation environment by virtue of its Shared Sample
Buffer and sample-driven synchronisation features [5].

Compared to traditional application processes,
algorithm decomposition in such standard blocks results
in a considerably finer granularity and care must be
taken to avoid performance penalties caused by
scheduling and data transfer with a potentially large
number of blocks. Such considerations have
considerable impact on design choices, which are further
detailed in section 2. Section 3 explains the integration in
the global DCS context, while the status of
implementation, and future plans and challenges are
discussed in the outlook.

2. Building Blocks
Building blocks form the backbone of the

configuration-defined algorithm approach. They are
derived from existing DCS function libraries. Their
function class elements are wrapped into a building
block base class defining the uniform interface of all
blocks for cloning, customisation, input/output signal
administration, initialisation and execution. The block
algorithms include local exception handling based on the
quality state, which is part of the signal sample metadata.
A filter block, for example, thus shows adequate
behaviour even in the case of outlier samples marked as
invalid. Division blocks react smartly, if the numerator
approaches zero. Utilizing general-purpose blocks has
the advantage that their correct functionality needs to be
tested and commissioned just once but the validated
block can be re-used arbitrarily often.

Like application processes also blocks communicate
via signals. Major aspects of proven signal concept

publish/subscribe based automatic wiring have been
adopted from the DCS core framework [6]. Owing to the
before-mentioned performance considerations, however,
block connection signals are subject to a number of
simplifying restrictions:

• Algorithm entities formed by blocks are executed in
the scope of an Application Process, which occupies
only a single real-time thread. This limitation avoids
additional safety measures for thread concurrency
and resource locking. Thus, a ring-buffer for sample
exchange, associated with extra copy operations, is
dispensable. It is sufficient to pass references to the
output signal of a block to the consumers.

• Signals between blocks have only internal visibility
within the containing Application Process.
Therefore, they are called Local Signals. This is a
consequence of the lack of accessibility by
concurrent threads.

• Sample-driven synchronisation based on
semaphores becomes obsolete. Instead, a block
scheduler can call the block execution method as
soon as the previous block has finished.

• Grouping of Local Signals is not supported. Signal
groups play a major role in the overall network
exchange of global signals between Application
Processes. But their rationales, efficient sample
packaging and thread context switching are not
relevant in a single thread context.

Currently, a block scheduler derives a static
execution sequence automatically from the block signal
dependencies as defined in the configuration before the
real-time phase. This ensures, that input signals are
always updated before they are used for calculation.
Algebraic loops are not permitted. The sorting algorithm
follows rules outlined in the documentations of Simulink
[7] and acslX [8] simulation tools. In a later stage, when
support for conditional block workflows will be added,
this design might change, because the optimal sequence
could be state dependent and scheduling in real-time
might become an attractive alternative despite the
overhead it implies.

3. Integration in DCS Application Processes
In the DCS concept Application Processes have the

role of algorithmic entities whose execution is solely
defined by the availability of input data. The execution
order of dependent Application Processes is thus
determined by the dependency chain of their input and
output signals. Independent algorithms, on the other
hand, can be run concurrently. Therefore, the framework
assigns them separated real-time execution threads,
which might run on different CPU cores and even on
distributed nodes. The framework supplies signal data
transport across CPU and network boundaries
transparent to the Application Processes and establishes
a synchronising signal sample flow that automatically
determines the thread scheduling such that the overall
workflow is data-driven.

	

Building blocks can be used to define the algorithm
of an Application Process. However, algorithm inputs
and outputs need to be transferred from the global signal
domain of the Application Process to the domain of
Local Signals exchanged among blocks and vice versa.

Ports, a dedicated class of blocks assume this
interface task. They comprise both a classical DCS
signal or signal group with synchronisation, time-stamp
based sample lookup and inherent signal archiving, and a
set of corresponding Local Signals. Thus, they do not
only act as gateways between function blocks and the
external world but they also can provide convenient
services like triggering application execution or
externalising intermediate algorithm results for archiving
and inspection. Figure 1 shows an example where
neutral density calculation from ionization gauge current
measurements is modelled in a block diagram of 11

standard function blocks. Figure 2 illustrates, how the
block diagram translates to DCS building blocks in an
Application Process, which communicate with each
other facilitated by a Local Signal Exchange Layer and
with other control tasks via port blocks and the
framework's Shared Sample Buffer.

The Application Process is also responsible for
dynamically instantiating and customising blocks as
specified by the configuration. Their configuration is
specified in a dedicated XML style called AP_CONF,
which, apart from support for basic DCS elements like
parameters and signals, also allows specification of
composite types called DcsObjects [1]. As the Block
class is derived from this base it can easily make use of
the associated generic parsers and object factories. To
complete the picture, each Application Process built
from blocks features a block scheduler and a Local
Signal Agent for setting up signal data exchange as
described below. After the AP configuration has been
parsed, block objects are dynamically instantiated by the
DcsObject factories, and stored in an AP inventory for
further management.

Subsequently, all blocks announce their local signals
to the Local Signal Agent which is in charge of the
"wiring" from block output to input signals. This task is
analogous to the one that Signal daemon (SignalDM in
Fig. 2) performs for global signal communication across
network boundaries. The block scheduler re-uses the
signal map computed by the Local Signal Agent to
compute the execution order sorting input ports to the
beginning of the sequence and output ports to the end.
Finally, the global signal components of the ports are
registered at the framework's signal routing service for

Shared'Sample'Buffer'

Local'Signal'Exchange'

AP'

Block(
AP(

Con7'
stant'

Gain'
K2' Sum' Diffe7

rence'
Pro7
duct'

Pro7
duct'

Signal(DM(

AP(AP'

Input(
Port(

Output(
Port(

Input(
Port(

Local'Signal'
Agent'

RaAo' Gain'
K1'

Block'
Scheduler'

Iel' Iion' n0'

Iel'main,'Iion'main'
'

n0'main'

10'

11'1' 2'

3' 4' 5' 6' 7' 8' 9'

non#real(me*real(me*

global*
signal*
scope*

local*
signal*
scope*

setup*local*signal*
exchange,**

publish/subscribe*

determine*block*
execu(on*sequence*

reference#based*
local*signal*sharing*

control*tasks,*
concurrent*real#
(me*threads*

network#wide*
signal*rou(ng,*

publish/subscribe*

*signal*communica(on,*
thread*synchronisa(on*

Building*Block:*
func(on*unit*

Fig. 2: DCS with Application Process consisting of building blocks

!! != !
!!!!!"!!"#

!!" − !!"# !!!!" + 1

Fig. 1: Example algorithm (neutral density calculation from
ionization gauge currents) and corresponding block diagram

	

connections with other control applications.

During runtime operation, the first input port,
designated as pacemaker, synchronises the application
by waiting for its inputs, while the block scheduler will
sequentially call each block's execution method
according to the previously determined order. Output
ports conclude the block chain execution and publish the
algorithm outputs such that they become visible to the
external world. Other control application threads waiting
for the results can now be scheduled.

4. Outlook
Major parts of the configuration-defined algorithm

concept such as the DcsObject base class, the AP
inventory, Local Signals and the Local Signal Agent, as
well as an initial stock of standard function blocks have
been already implemented. The block scheduler and the
factories will follow by September 2015. First operation
is envisaged for the end of 2015.

Future development is foreseen to augment the
variety of functions in the block library. Advanced
features like conditional branching and super-blocks
consisting of other blocks will pose novel challenges. It
is also planned to develop graphics-based and text-based
editing tools, to ease the construction of configuration
files even for non-expert users making rapid
development and on-the-fly modifications of control
algorithms feasible.

Given the tempting possibility of accelerated
development, however, the risk of introducing semantic
errors in configuration-defined algorithm should not be
underestimated. The fact that individual block behaviour
is tested must not distract from the possibility that the
combination of blocks can be defective. Thus, careful
validation and commissioning of modified
configurations using e.g. flight simulators is still
indispensable.

The new concept will further boost the universality
and flexibility of the DCS framework. Control processes
composed from building blocks will gradually replace
many of the current DCS applications.

Acknowledgement
This work has been carried out within the framework

of the EUROfusion Consortium and has received
funding from the Euratom research and training
programme 2014-2018 under grant agreement No
633053. The views and opinions expressed herein do not
necessarily reflect those of the European Commission.

References

[1] W. Treutterer, R. Cole, K. Lüddecke, G. Neu, C. Rapson,
G. Raupp, D. Zasche, and T. Zehetbauer, “ASDEX
Upgrade Discharge Control System—A real-time plasma
control framework”, Fusion Eng. Des., vol. 89, no. 3, pp.
146–154, Mar. 2014.

[2] The Mathworks Inc. , Simulink product website, 2015,
http://www.mathworks.com/products/simulink.

[3] A. C. Neto, F. Sartori, F. Piccolo, R. Vitelli, G. De

Tommasi, L. Zabeo, A. Barbalace, H. Fernandes, D. F.
Valcarcel, and A. J. N. Batista, “MARTe: A
Multiplatform Real-Time Framework”, IEEE Trans.
Nucl. Sci., vol. 57, no. 2, pp. 479–486, Apr. 2010.

[4] W. Treutterer, G. Neu, C. Rapson, G. Raupp, D. Zasche,
and T. Zehetbauer, “Event detection and exception
handling strategies in the ASDEX Upgrade discharge
control system”, Fusion Eng. Des., vol. 88, no. 6–8, pp.
1069–1073, Oct. 2013.

[5] W. Treutterer, G. Neu, G. Raupp, D. Zasche, T.
Zehetbauer, R. Cole, and K. Lüddecke, “Management of
complex data flows in the ASDEX Upgrade plasma
control system”, Fusion Eng. Des., vol. 87, no. 12, pp.
2039–2044, Dec. 2012.

[6] W. Treutterer, G. Neu, G. Raupp, T. Zehetbauer, D.
Zasche, K. Lüddecke, and R. Cole, “Real-time signal
communication between diagnostic and control in
ASDEX Upgrade”, Fusion Eng. Des., vol. 85, no. 3-4,
pp. 466 – 469, 2010.

[7] The Mathworks Inc. , Simulink documentation, 2015,
http://www.mathworks.com/help/simulink/ug/controlling
-and-displaying-the-sorted-order.html.

[8] AEgis Technologies Group, Inc., "acslX Language
Reference Guide", Version 3.0, 2010,
http://www.acslx.com/support/Documentation/Language
%20Reference%20Manual.pdf, Chapter 3.3, p. 25.

