
Lamm, T., and J. Metzger. (2010) “Small Surfaces of Willmore Type in Riemannian Manifolds,”
International Mathematics Research Notices, Vol. 2010, No. 19, pp. 3786–3813
Advance Access publication February 24, 2010
doi:10.1093/imrn/rnq048

Small Surfaces of Willmore Type in Riemannian Manifolds

Tobias Lamm1 and Jan Metzger2,3

1Department of Mathematics, University of British Columbia,
1984 Mathematics Road, Vancouver, BC V6T 1Z2, Canada,
2Albert-Einstein-Institut, Am Mühlenberg 1, 14476 Potsdam, Germany,
and 3Universität Freiburg, Institut für Reine Mathematik,
Eckerstr. 1, 79104 Freiburg, Germany

Correspondence to be sent to: tlamm@math.ubc.ca

In this paper, we investigate the properties of small surfaces of Willmore type in

three-dimensional Riemannian manifolds. By small surfaces, we mean topological

spheres contained in a geodesic ball of small enough radius. In particular, we show that

if there exist such surfaces with positive mean curvature in the geodesic ball Br(p) for

arbitrarily small radius r around a point p in the Riemannian manifold, then the scalar

curvature must have a critical point at p. As a byproduct of our estimates, we obtain a

strengthened version of the non-existence result of Mondino [9] that implies the non-

existence of certain critical points of the Willmore functional in regions where the scalar

curvature is non-zero.

1 Introduction

In a previous paper [7], Willmore type surfaces were introduced, and foliations of asymp-

totically flat manifolds by such surfaces were studied. In this paper, we turn to the

local situation and consider Willmore type surfaces in small geodesic balls in three-

dimensional Riemannian manifolds. The focus is on a priori estimates for such sur-

faces under the assumption of positive mean curvature and a growth condition for the
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Lagrange parameter. As an application of these estimates, we derive a necessary condi-

tion for the existence of such surfaces.

By surfaces of Willmore type, we mean surfaces � that are critical for the

Willmore functional

W(�) = 1

2

∫
�

H2 dμ

subject to an area constraint |�| = a, where a is some fixed constant. These surfaces are

solutions of the Euler–Lagrange equation

�H + H | ◦
A|2 + H Ric(ν, ν) + λH = 0, (1.1)

where λ ∈ R is the Lagrange parameter, H the mean curvature of �,
◦

A denotes the trace-

less part of the second fundamental form, Ric refers to the Ricci curvature of the ambient

manifold, ν is the normal of �, and � denotes the Laplace–Beltrami operator on �. In

particular, these surfaces are a generalization of Willmore surfaces that are critical for

W without constraint and therefore satisfy the equation

�H + H | ◦
A|2 + H Ric(ν, ν) = 0.

We note here that there are other functionals that can be considered as generalizations

of the Willmore functional in Riemannian manifolds, for example, the functional U
introduced in Section 2 could be used (see [13]).

The precise statement of the main result of this paper is the following:

Theorem 1.1. Assume that (M, g) is a three-dimensional Riemannian manifold such

that the curvature and the first two derivatives of the curvature are bounded. Then there

exist ε0 > 0 and C < ∞, depending only on these bounds, with the following properties.

Given p in M and assume that there is r0 > 0 such that for each r ∈ (0, r0], there

exists a surface �r of Willmore type in Br(p), that is, on �r , we have

�H + H | ◦
A|2 + H Ric(ν, ν) + Hλr = 0,

such that, in addition, the following conditions are satisfied for some ε < ε0:

1. �r is a topological sphere,

2. λr ≥ −ε/|�r|, and

3. H > 0 on �r .
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Then

lim
r→0

|λr + 1

3
Sc(p)| = 0.

Here, Sc(p) denotes the Scalar curvature of M at the point p. Furthermore,

∇ Sc(p) = 0,

where ∇ Sc(p) denotes the gradient of the scalar curvature of M at p. �

The first claim is proved in Section 3 as a consequence of the a priori estimates for

surfaces of Willmore type derived there. Section 4 is devoted to the proof of the second

claim.

For surfaces of constant mean curvature (CMC), that is, surfaces satisfying

H = const, analogous properties have been derived. Ye showed that if there locally exists

a regular foliation by CMC surfaces near a point p, then p is necessarily a critical point

of the scalar curvature. For the detailed statement including the technical conditions,

we refer to [14, Theorem 2.1] (see also [15]). There are further results in this direction

by Druet [3] and Nardulli [10] where the expansion of the isoperimetric profile of a

Riemannian manifold is computed. This computation shows that isoperimetric surfaces

also concentrate near critical points of the scalar curvature.

Indeed, it has been shown by Ye in [14] that near the non-degenerate critical

points of the scalar curvature, there exist spherical surfaces with arbitrarily large mean

curvature or, equivalently, arbitrarily small area. We expect that a similar statement is

true for surfaces of Willmore type, namely that near a non-degenerate critical point of

the scalar curvature, there exist surfaces of Willmore type with arbitrarily small area.

We will address this elsewhere.

An immediate corollary of Theorem 1.1 is the following strengthened version

of the non-existence result of Mondino [9, Theorem 1.3] for Willmore surfaces. These

surfaces are of Willmore type with multiplier λ = 0, and thus, the previous theorem is

applicable.

Corollary 1.2. Let (M, g) be a three-dimensional Riemannian manifold as in Theorem

1.1, and let p ∈ M. If Sc(p) 	= 0 or ∇ Sc(p) 	= 0, then there exists r > 0 such that Br(p)

does not contain spherical Willmore surfaces with positive mean curvature. �
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We conclude the paper with Section 5, where the a priori estimates are used to calculate

the expansion of the Willmore functional on surfaces as in Theorem 1.1. More precisely,

we show that for these surfaces, we have

W(�) = 8π − |�|
3

Sc(p) + O(r|�|). (1.2)

This is analogous to the expansion derived by Mondino [9, Proposition 3.1] for perturbed

spheres.

2 Preliminaries

In this section, we describe our notation, and we provide some tools in order to analyze

small surfaces in a Riemannian manifold.

2.1 Notation

We consider surfaces � in a three-dimensional Riemannian manifold (M, g), where g

denotes the metric on M. We denote by ∇ the induced Levi–Civita connection, by Ric its

Ricci curvature, and by Sc its scalar curvature.

If p ∈ M and ρ < inj(M, g, p), the injectivity radius of (M, g) at p, we can intro-

duce Riemannian normal coordinates on Bρ(p), the geodesic ball of radius ρ around p.

These are given by the map

	 : BE
ρ (0) → Bρ(p) : x 
→ expp(x),

where BE
ρ (0) is the Euclidean ball of radius ρ in R3 ∼= TpM. In these coordinates, the

metric g satisfies

g = gE + h, (2.1)

where gE denotes the Euclidean metric and h satisfies

|x|−2|h| + |x|−1|∂h| + |∂2h| ≤ h0 (2.2)

for all x ∈ BE
ρ (0). Here, h0 is a constant depending only on the maximum of | Ric |, |∇ Ric |,

and |∇2 Ric | in Bρ(p). More detailed expansions are not needed here but can be found in

[11, Lemma V.3.4]. For our purposes, it is sufficient to consider M = BE
ρ (0) to be equipped

with the two metrics g and gE . We will denote Bρ = BE
ρ (0) in the sequel.
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If � ⊂ Bρ(p) is a surface, we denote its normal vector by ν. Later, it will be clear

that the surfaces � which we consider will bound a compact set in Bρ and then we

choose the outward pointing normal. For the moment, we just assume that one choice is

made. The induced metric on � is denoted by γ and its second fundamental form by A.

Our conventions for the sign of A is that

A(X, Y) = 〈∇X, Y〉.

The mean curvature of � is denoted by H = trγ A and the traceless part of the second

fundamental form by
◦

A = A− (1/2)Hγ . Furthermore, dμ denotes the measure on �. Note

that also the Euclidean metric induces a full set of geometric quantities on �, which

will be distinguished by the superscript E , for example, νE , AE , H E , etc. All geometric

quantities which we leave undecorated correspond to the metric g.

2.2 The Willmore functional

Assume that � ⊂ M. Then we consider the Willmore functional on �, that is, the

functional

W(�) = 1

2

∫
�

H2 dμ.

We say that a surface is of Willmore type with multiplier λ ∈ R if it satisfies the equation

�H + H | ◦
A|2 + H Ric(ν, ν) + λH = 0. (2.3)

Here, � denotes the Laplace–Beltrami operator on �, and Ric refers to the Ricci cur-

vature of the ambient metric g as before. Equation (2.3) arises as the Euler–Lagrange

equation for the following variational problem:

⎧⎨
⎩

Minimize W(�)

subject to |�| = a

where a is a given constant. The parameter λ in (2.3) is then just the Lagrange parameter

of the critical point. For a derivation of this and further motivation, we refer to [7].

Denoting by �Sc the scalar curvature of �, the Gauss equation implies that

�Sc = Sc −2 Ric(ν, ν) + 1

2
H2 − | ◦

A|2. (2.4)
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Integrating this equation on � yields the identity

W(�) = 8π(1 − q(�)) + U(�) + V(�) (2.5)

where q(�) denotes the genus of �,

U(�) =
∫

�

| ◦
A|2 dμ, and

V(�) = 2
∫

�

G(ν, ν) dμ.

Here, G = Ric −(1/2) Sc g denotes the Einstein tensor of M. This splitting was used in [7]

to obtain a priori estimates for the position of Willmore-type surfaces in asymptotically

flat manifolds and shall also play an important role in Section 4.

2.3 Small surfaces

Since we compare the geometry of a surface � with respect to the ambient metrics g and

gE , we need the following lemma.

Lemma 2.1. Let g = gE + h on Bρ be given. Then there exists a constant C depending

only on ρ and h0 from Eq. (2.2) such that for all surfaces � ⊂ Br with r < ρ, we have

|γ − γ E | ≤ C |x|2,

| dμ − dμE | ≤ C |x|2,

|ν − νE | ≤ C |x|2, and

|A− AE | ≤ C (|x| + |x|2|A|). �

In the sequel, we will use the big-O notation. By the statement f = O(rα), we mean that

for any r0 > 0, there exists a constant C < ∞ such that | f | ≤ Crα provided that r < r0.

Observe that the area of a surface in Bρ is bounded in terms of ρ and the Willmore

functional. This lemma is a slight generalization of [12, Lemma 1.1].

Lemma 2.2. Let g = gE + h on Bρ be given. Then there exist 0 < ρ0 < ρ and a constant

C depending only on ρ and h0 such that for all surfaces � ⊂ Br with r < ρ0, we have

|�| ≤ Cr2
∫

�

H2 dμ. �
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Proof. Let � ⊂ Br be a hypersurface for some r ≤ ρ. We consider the position vector

field x on Bρ . Then we have

div� x = 2 + O(|x|),

where div� means the tangential divergence along �. Integrating this relation yields

2|�| =
∫

�

div� x dμ + |�|O(r).

Since

∣∣∣∣
∫

�

div� x dμ

∣∣∣∣ =
∣∣∣∣
∫

�

H〈x, ν〉 dμ

∣∣∣∣ ≤
(∫

�

H2 dμ

)1/2 (∫
�

|〈x, ν〉|2 dμ

)1/2

and |〈x, ν〉| ≤ r, we find that

|�| ≤ Cr|�|1/2
(∫

�

H2 dμ

)1/2

+ Cr|�|.

Now we can fix ρ0 small so that for all 0 < r < ρ0, the second term on the right can be

absorbed to the left. This yields the claimed inequality. �

For the subsequent curvature estimates, we also need a version of the Michael–Simon–

Sobolev inequality suitable for our situation. The extension by Hoffman and Spruck [5]

of the Euclidean version of the inequality [8] in conjunction with Lemma 2.2 implies the

following.

Lemma 2.3. Let g = gE + h on Bρ be given. Then there exist 0 < ρ0 < ρ and a constant

C depending only on ρ and h0 such that for all surfaces � ⊂ Bρ0 with ‖H‖L2(�) < ∞ and

all f ∈ C ∞(�), we have

(∫
�

f2 dμ

)1/2

≤ C
∫

�

|∇ f | + |H f | dμ. �
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2.4 Almost umbilical surfaces

Subsequently, it is necessary to approximate a given surface � by a Euclidean sphere.

The main tool will be the following theorem from [1] and [2]. We denote the L2-norm of

the trace-free part of the second fundamental form by

‖ ◦
AE‖2

L2(�,γ E )
=

∫
�

| ◦
AE |2E dμE ,

where all geometric quantities are with respect to the Euclidean background. In addi-

tion, we denote by

‖ ◦
A‖2

L2(�,γ )
=

∫
�

| ◦
A|2 dμ

the norm of the same tensor, where all geometric quantities are calculated with respect

to the background metric g. The following theorem is a purely Euclidean theorem.

Theorem 2.4. There exists a universal constant C with the following properties.

Assume that � ⊂ R3 is a surface with ‖ ◦
AE‖2

L2(�,γ E )
< 8π . Let RE := √|�|E/4π be the

Euclidean area radius of � and aE := |�|−1
E

∫
�

x dμE be the Euclidean center of gravity.

Then there exists a conformal map F : S := SRE (aE ) → � ⊂ R3 with the following prop-

erties. Let γ S be the standard metric on S, N the Euclidean normal vector field, and φ

the conformal factor, that is, F ∗γ E = φ2γ S. Then the following estimates hold

‖H E − 2/RE‖L2(�,γ E ) ≤ C‖ ◦
AE‖L2(�,γ E )

‖F − idS ‖L∞(S) ≤ C RE‖ ◦
AE‖L2(�,γ E )

‖φ2 − 1‖L∞(S) ≤ C‖ ◦
AE‖L2(�,γ E )

‖N − νE ◦ F‖L2(S) ≤ C RE‖ ◦
AE‖L2(�,γ E ). �

To apply the previous theorem, we need to estimate ‖ ◦
AE‖L2(�,γ E ) in terms of ‖ ◦

A‖L2(�,γ ).

This is the content of the following lemma.

Lemma 2.5. Let g = gE + h on Bρ be given. Then there exist 0 < ρ0 < ρ and a constant

C depending only on ρ and h0 such that for all surfaces � ⊂ Br with r < ρ0, we have

‖ ◦
AE‖2

L2(�,γ E )
≤ C‖ ◦

A‖2
L2(�,γ )

+ Cr4‖H‖2
L2(�,γ ) �
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Proof. In a first step, we estimate

∣∣∣∣
∫

�

| ◦
A|2 − | ◦

AE |2 dμ

∣∣∣∣
≤

∫
�

| ◦
A|| ◦

A− ◦
AE | + | ◦

AE || ◦
A− ◦

AE | dμ

≤
(∫

�

| ◦
A|2 dμ

)1/2 (∫
�

| ◦
A− ◦

AE |2
)1/2

+
(∫

�

| ◦
AE |2 dμ

)1/2 (∫
�

| ◦
A− ◦

AE |2 dμ

)1/2

Next, we use the last estimate from Lemma 2.1 and 2.2 to get

∫
�

| ◦
A− ◦

AE |2 dμ ≤ C
∫

�

|A− AE |2 dμ

≤ C
∫

�

|x|2 + |x4||A|2 dμ

≤ Cr4(‖H‖2
L2(�,γ )

+ ‖A‖2
L2(�,γ )

)
≤ Cr4(‖H‖2

L2(�,γ )
+ ‖ ◦

A‖2
L2(�,γ )

)
.

Putting this together with the first estimate, we find that

‖ ◦
AE‖2

L2(�,γ )
≤ ‖ ◦

A‖2
L2(�,γ )

+ Cr2(‖H‖L2(�,γ ) + ‖ ◦
A‖L2(�,γ )

)(‖ ◦
A‖L2(�,γ ) + ‖ ◦

AE‖L2(�,γ )

)
.

Via Cauchy–Schwarz, we can absorb the term containing
◦

AE on the right to the left and

arrive at

‖ ◦
AE‖2

L2(�,γ )
≤ C (1 + r2 + r4)‖ ◦

A‖2
L2(�,γ )

+ Cr4‖H‖2
L2(�,γ )

.

The remainder of the proof consists of changing the metric when taking norms and the

area element to the Euclidean version. Indeed, for any tensor T , we have the estimate

∫
�

|T |2gE dμE ≤ (1 + Cr2)

∫
�

|T |2g dμ.

This then proves the claim. �
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3 A Priori Estimates

A crucial ingredient in the proof of Theorem 1.1 is an estimate for the L2-norm of the

traceless part of the second fundamental form of �. This allows us to control the shape

of the surface � in view of Theorem 2.4.

Throughout this section, we assume that the metric g = gE + h is fixed on Bρ .

We furthermore assume that ρ is chosen so small that Lemmas 2.1, 2.2, and 2.3 can be

applied to any surface in Bρ . We allow ρ to shrink as it becomes necessary. All surfaces

we consider here are of Willmore type, that is, they satisfy Eq. (1.1) for some λ and are

furthermore contained in Bρ .

Subsequently, all constants C may depend on ρ and h0 without further notice. In

addition, these constants are allowed to change from line to line.

3.1 The initial estimate for U

Lemma 3.1. Let g = gE + h on Bρ be given. Then for each ε0 ∈ [0, 1), there exist 0<ρ0 <ρ

and a constant C with the following properties. If ε < ε0 and � is of Willmore type with

multiplier λ in Br with r < ρ0 and

1. � is a topological sphere,

2. λ ≥ −ε/|�|,
3. H > 0 on �.

Then

∫
�

| ◦
A|2 + |∇ log H |2 dμ ≤ Cr2 + ε,

∣∣∣∣
∫

�

H2 dμ − 16π

∣∣∣∣ ≤ C (ε + r2),

|�| ≤ Cr2, and

|λ| ≤ C (1 + ε/|�|). �

Note that in Eq. (1.1), the term �H scales like |�|−3/2, so that the assumption on λ implies

that the negative part of the term λH is of the same order of magnitude as this leading

order term but small in comparison. There is no assumption on the positive part of

this term.

The proof is similar to the proof of Lemmas 3.1 and 3.3 in [7] although the role

of the individual terms is somewhat different.
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Proof. Multiplying Eq. (1.1) by H−1 and integrating by parts give

∫
�

|∇ log H |2 + | ◦
A|2 + Ric(ν, ν) + λ dμ = 0. (3.1)

In view of the assumption on λ and the fact that Ric is bounded, this yields the estimate

∫
�

|∇ log H |2 + | ◦
A|2 dμ ≤ C |�| + ε. (3.2)

Inserting this back into (3.1), we get

|λ| ≤ C (1 + ε|�|−1),

which yields the last claim of the lemma.

Integrating (2.4) over � and using (3.2) and the Gauss–Bonnet theorem, we find

that

∣∣∣∣1

2

∫
�

H2 dμ − 8π

∣∣∣∣ ≤ C (|�| + ε).

In view of the area estimate from Lemma 2.2, this yields an estimate of the form

|�| ≤ Cr2
∫

�

H2 dμ ≤ Cr2(1 + |�|).

If r < ρ0 is chosen small enough, we can absorb the term Cr2|�| on the right to the left

and obtain the estimates

∣∣∣∣
∫

�

H2 dμ − 16π

∣∣∣∣ ≤ C (ε + r2)

and

|�| ≤ Cr2

which are the second and third claims. Plugging this into estimate (3.2), we obtain the

remaining estimate. �

3.2 An improved estimate for U

The initial estimate from Lemma 3.1 allows to apply the a priori estimates from section

3 in [7] to get higher order estimates and to improve on the initial estimate.
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Theorem 3.2. Let g = gE + h on Bρ be given. Then there exist ε > 0, 0 < ρ0 < ρ and a

constant C with the following properties. If ε < ε0 and � is of Willmore type with mul-

tiplier λ in Br with r < ρ0 and

1. � is a topological sphere,

2. λ ≥ −ε/|�|,
3. H > 0 on �.

Then

∫
�

|∇2 H |2
H2 + |∇ A|2 + |A|2| ◦

A|2 dμ ≤ C
∫

�

|ω|2 + (
Ric(ν, ν) + λ

)2 dμ.

Here, ω = Ric(ν, ·)T , the 1-form which results from projecting Ric(ν, ·) to �. �

Proof. This is a consequence of the calculation in Section 3 of [7]. Note that the cal-

culation there makes use of the fact that ‖ ◦
A‖L2 + ‖∇ log H‖L2 can be made arbitrarily

small (cf. Lemma 3.8 there), and this is where the initial estimate from Section 3.1

enters. In particular, the procedure used to prove Theorem 3.9 in [7] implies that in the

local situation, we have the following estimate.

∫
�

|∇2 H |2
H2 + |∇ A|2 + |A|2| ◦

A|2 dμ

≤ C
∫

�

|ω|2 + (
Ric(ν, ν) + λ

)2 dμ

+ C sup
Bρ

| Ric |
∫

�

| ◦
A|2 + |∇ log H |2 dμ. (3.3)

The only difference to [7] is that there, we were able to use the decay of the curvature,

which is the origin of the factors Cr−3
min, which have to be replaced by C supBρ

| Ric | here.

Next, we use the Michael–Simon–Sobolev inequality to estimate

∫
�

| ◦
A|2 dμ ≤ C

(∫
�

|∇ ◦
A| + H | ◦

A| dμ

)2

≤ C |�|
∫

�

|∇ A|2 + H2| ◦
A|2 dμ. (3.4)

Similarly, we get

∫
�

|∇ log H |2 dμ ≤ C
(∫

�

|∇2 H |
H

+ |∇ log H |2 + |∇H | dμ

)2

≤ C |�|
∫

�

|∇2 H |2
H2 + |∇ A|2 + |∇ log H |4 dμ.
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Applying the Michael–Simon–Sobolev inequality once more, we have

∫
�

|∇ log H |4 dμ

≤ C
(∫

�

|∇2 H |
H

|∇ log H | + |∇ log H |3 + H |∇ log H |2 dμ

)2

≤ C‖∇ log H‖2
L2(�)

∫
�

|∇2 H |2
H2 + |∇ log H |4 + |∇ A|2 dμ.

Using Lemma 3.1, we know that for ε and r < ρ0 small enough, we get

∫
�

|∇ log H |4 dμ ≤ C ||∇ log H ||2L2(�)

∫
�

|∇2 H |2
H2 + |∇ A|2 dμ. (3.5)

Inserting this into the above estimate for
∫
�

|∇ log H |2 dμ, we conclude

∫
�

|∇ log H |2 dμ ≤ C |�|
∫

�

|∇2 H |2
H2 + |∇ A|2 dμ. (3.6)

Hence, we see that for r < ρ0 small enough, we can absorb the second term on the right-

hand side of (3.3). �

The remaining task is to estimate the term on the right-hand side in Theorem 3.2. We

start with the following calculation.

Lemma 3.3. Assume that the metric g = gE + h on Bρ is given. Then there exists a con-

stant C such that for all surfaces � ⊂ Br , we have

∣∣∣∣
∫

�

Ric(ν, ν) dμ − |�|
3

Sc(0)

∣∣∣∣ ≤ C |�|(‖ ◦
A‖L2(�) + r

)
�

Proof. Note that if either ‖ ◦
A‖L2(�) or r is large, the estimate is trivially satisfied, so

that it is sufficient to show it in the case where Theorem 2.4 is applicable, and we are

furthermore allowed to assume that 0 < r < 1. We use Theorem 2.4 to approximate � by

a Euclidean sphere S = SaE (RE ) with aE ∈ Br(0) and RE = √|�|E/4π . Since

∣∣|�|E − |�|∣∣ ≤
∫

�

| dμE − dμ| dμ ≤ Cr2|�|, (3.7)
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we infer that

|RE − R| ≤ CrR,

where R = √|�|/4π . It is well known that

∫
S

Ric0(N, N) dμE = |�|E
3

Sc(0)

where we use the notation of Theorem 2.4, that is, N is the Euclidean normal of S.

Furthermore, Ric0 denotes the Ricci tensor of M evaluated at the origin.

The first step is to estimate

∣∣∣∣
∫

S
Ric(N, N) dμE −

∫
S

Ric0(N, N) dμE
∣∣∣∣

≤ |�|E sup
p∈S

| Ricp(N, N) − Ric0(N, N)| ≤ C |�|Er

and therefore,

∣∣∣∣
∫

S
Ric(N, N) dμE − |�|E

3
Sc(0)

∣∣∣∣ ≤ Cr|�|.

In the next step, we estimate
∫
�

Ric(ν, ν) in terms of
∫

S Ric(N, N) dμE . To this end,

note that

∣∣∣∣
∫

�

Ric(ν, ν) dμ −
∫

�

Ric(ν, ν) dμE
∣∣∣∣ ≤ C |�|r2.

The resulting integral can be evaluated using the conformal parametrization F : S → �

from Theorem 2.4. We can express

∫
�

Ric(ν, ν) dμE =
∫

S
Ric ◦F (ν ◦ F, ν ◦ F )φ2 dμE .
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The estimates of Theorem 2.4 and the Cauchy–Schwarz inequality imply that

∣∣∣∣
∫

�

Ric(ν, ν) dμE −
∫

S
Ric(N, N) dμE

∣∣∣∣
≤

∣∣∣∣
∫

S

(
Ric ◦F − Ric)(ν ◦ F, ν ◦ F )φ2 dμE

∣∣∣∣
+

∣∣∣∣
∫

S
Ric(ν ◦ F − N, ν ◦ F )φ2 dμE

∣∣∣∣
+

∣∣∣∣
∫

S
Ric(N, ν ◦ F − N)φ2 dμE

∣∣∣∣ +
∣∣∣∣
∫

S
Ric(N, N)(φ2 − 1) dμE

∣∣∣∣
≤ C |�|‖F − id ‖L∞(S) + C |�|1/2‖ν ◦ F − N‖L2(S) + C |�|‖φ2 − 1‖L∞(S)

≤ C |�|‖ ◦
AE‖L2(�,γ E ).

In combination with Lemma 2.5, we infer

∣∣∣∣
∫

�

Ric(ν, ν) dμE −
∫

S
Ric(N, N) dμE

∣∣∣∣ ≤ C |�|(‖ ◦
A‖L2(�) + r2)

.

Collecting all the above estimates results in the estimate

∣∣∣∣
∫

�

Ric(ν, ν) dμ − |�|
3

Sc(0)

∣∣∣∣ ≤ C |�|(‖ ◦
A‖L2(�) + r

)

which is precisely the claim. �

In the following lemma, we derive an estimate for the Lagrange parameter λ.

Lemma 3.4. Assume that the metric g = gE +h on Bρ is given. Then there exist ε0, r0 <ρ,

and a constant C such that all surfaces � ⊂ Br as in the statement of Theorem 3.2 with

ε < ε0 and r < r0 satisfy

∣∣λ + 1

3
Sc(0)

∣∣ ≤ C |�|−1(‖ ◦
A‖2

L2(�)
+ ‖∇ log H‖2

L2(�)

) + Cr.

In particular,

|λ| ≤ C |�|−1(‖ ◦
A‖2

L2(�)
+ ‖∇ log H‖2

L2(�)

) + C . �
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Proof. Equation (3.1) implies that

∣∣∣∣λ + 1

|�|
∫

�

Ric(ν, ν) dμ

∣∣∣∣ ≤ |�|−1(‖ ◦
A‖2

L2(�)
+ ‖∇ log H‖2

L2(�)

)
. (3.8)

Apply Lemma 3.3 to calculate

∣∣∣∣ 1

|�|
∫

�

Ric(ν, ν) dμ − 1

3
Sc(0)

∣∣∣∣ ≤ C
(‖ ◦

A‖L2(�) + r
)
,

and note that

‖ ◦
A‖L2(�) = |�|1/2|�|−1/2‖ ◦

A‖L2(�) ≤ 1
2 |�| + 1

2 |�|−1‖ ◦
A‖2

L2(�)
.

Since |�| ≤ Cr2 by Lemma 3.1, this implies the claim in combination with Eq. (3.8). �

Theorem 3.5. Assume that the metric g = gE + h on Bρ is given. Then there exist ε0 > 0,

r0 < ρ, and a constant C such that all surfaces � ⊂ Br as in the statement of Theorem 3.2

with ε < ε0 and r < r0 satisfy

∫
�

|∇2 H |2
H2 + |∇ A|2 + |A|2| ◦

A|2 dμ ≤ C |�|. �

Proof. In view of Theorem 3.2 and the fact that Ric and ω are bounded, we infer the

estimate

∫
�

|∇2 H |2
H2 + |∇ A|2 + |A|2| ◦

A|2 dμ ≤ C |�|(1 + λ2). (3.9)

The crucial term to estimate, thus, is λ2|�|. We use the estimate from Lemma 3.4 to get

λ2|�| ≤ C |�|−1(‖ ◦
A‖4

L2(�)
+ ‖∇ log H‖4

L2(�)
) + C |�|. (3.10)

Combining (3.4) and (3.6) with (3.9) and (3.10), we infer

∫
�

|∇2 H |2
H2 + |∇ A|2 + |A|2| ◦

A|2 dμ

≤ C |�| + C |�|
(∫

�

|∇2 H |2
H2 + |∇ A|2 + |A|2| ◦

A|2 dμ

)2

. (3.11)
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To proceed, note that by Eq. (3.9) and Lemma 3.1, we find that

∫
�

|∇2 H |2
H2 + |∇ A|2 + |A|2| ◦

A|2 dμ ≤ C |�|(1 + λ2) ≤ C (|�| + ε2|�|−1)

Using this in Eq. (3.11) to estimate part of the right-hand side, we get

∫
�

|∇2 H |2
H2 + |∇ A|2 + |A|2| ◦

A|2 dμ

≤ C |�| + C (|�|2 + ε2)

(∫
�

|∇2 H |2
H2 + |∇ A|2 + |A|2| ◦

A|2 dμ

)
.

Thus, choosing 0 < ε and r < r0 small enough, we can absorb the second term on the

right to the left and infer the claimed estimate. �

Corollary 3.6. Assume that the metric g = gE + h on Bρ is given. Then there exist ε0 > 0,

0 < r0 < ρ, and a constant C and such that all surfaces � ⊂ Br as in the statement of

Theorem 3.2 with ε < ε0 and r < r0 satisfy

‖ ◦
A‖L2(�) + ‖∇ log H‖L2(�) ≤ C |�|

and

|λ + 1
3 Sc(0)| ≤ Cr. �

Proof. The first claim follows from (3.4), (3.6), and Theorem 3.5, whereas the second

claim follows from the first one in view of Lemma 3.4. �

Note that this corollary yields the first claim in Theorem 1.1.

3.3 Estimates in the L∞-norm

To proceed further, we need an estimate for the size of H−1 in the L∞-norm. To this end,

we recall Lemma 4.7 from [7].
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Lemma 3.7. Assume that the metric g = gE + h on Bρ is given. Then there exist ε0 > 0,

r0 < ρ, and a constant C < ∞ such that for all surfaces � ⊂ Br as in the statement of

Theorem 3.2 with ε < ε0 and r < r0 and for all smooth forms φ on �, we have

‖φ‖4
L∞(�) ≤ C‖φ‖2

L2(�)

∫
�

|∇2φ|2 + |H |4|φ|2 dμ. �

Proof. This lemma is a variant of [6, Lemma 2.8]. The proof from there can be carried

over to our situation, since it mainly relies on the Michael–Simon–Sobolev inequality

which is also available in this situation, cf. Lemma 2.3. �

Proposition 3.8. Assume that the metric g = gE + h on Bρ is given. Then there exist

ε0 > 0, r0 < ρ, and a constant C < ∞ such that for all surfaces � ⊂ Br as in the statement

of Theorem 3.2 with ε < ε0 and r < r0, we have

‖H−1‖L∞(�) ≤ C |�|1/2 �

Proof. The idea is to apply Lemma 3.7 to the function H−1. We thus estimate

‖H−1‖2
L2(�)

≤ |�|‖H−1‖2
L∞(�) (3.12)

and calculate

∇2(H−1) = −H−2∇2 H + 2H−3∇H ⊗ ∇H.

Thus,

∫
�

|∇2(H−1)|2 dμ ≤ C
∫

�

H−6|∇H |4 + H−4|∇2 H |2 dμ

≤ C‖H−1‖2
L∞(�)

∫
�

|∇2 H |2
H2 + |∇ log H |4 dμ. (3.13)

From (3.5), we get for ε and r small enough

∫
�

|∇ log H |4 dμ ≤ C
(∫

�

|∇ log H |2 dμ

) (∫
�

|∇2 H |2
H2 + |∇ A|2 dμ

)
.
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By Theorem 3.5 and Corollary 3.6, we therefore conclude

∫
�

|∇ log H |4 dμ ≤ C |�|3. (3.14)

Together with Eq. (3.13) and Theorem 3.5, this yields

∫
�

|∇2(H−1)|2 dμ ≤ C‖H−1‖2
L∞(�)|�|. (3.15)

Plugging estimates (3.15) and (3.12) into the estimate from Lemma 3.7, we find that

‖H−1‖4
L∞(�) ≤ C |�|‖H−1‖2

L∞(�)

(‖H−1‖2
L∞(�)|�| +

∫
�

H2 dμ
)

≤ C |�|2‖H−1‖4
L∞(�) + C |�|‖H−1‖2

L∞(�)

≤ (C |�|2 + 1
2 )‖H−1‖4

L∞(�) + C |�|2.

If r < r0 and thus |�| is small, the first term on the right can be absorbed, and the claim

follows. �

4 Proof of Theorem 1.1

This section is devoted to the proof of Theorem 1.1. Note that the first claim already

follows from Corollary 3.6; hence, it remains to show the second claim.

Throughout this section, we assume that the surface � in question is of Willmore

type with multiplier λ. We assume further that H > 0 on �, λ ≥ −ε|�|−1, and � ⊂ Br(0)

where ε < ε0 and r < r0. Here, ε0 > 0 and r0 > 0 are chosen so that all the estimates from

Section 3 are applicable.

To get started, we recall the splitting (2.5) of the Willmore functional:

W(�) = 8π(1 − q(�)) + U(�) + V(�). (4.1)

Since the first term on the right is a topological constant, we infer that the variation of

W, when � is varied by the normal vector field fν for f ∈ C ∞(�), satisfies

δ fW(�) = δ fU(�) + δ fV(�).

Equation (1.1) implies that the variation of W is given by

δ fW(�) = λ

∫
�

H f dμ,
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whenever � is of Willmore type with multiplier λ. Thus, on such a surface, we have

λ

∫
�

H f dμ = δ fU(�) + δ fV(�). (4.2)

We shall evaluate these terms when the normal velocity f of the variation is given by

f = H−1g(b, ν), (4.3)

where b ∈ R3 is a fixed vector with |b| = 1. We start with the left-hand side of Eq. (4.2).

4.1 The left-hand side of (4.2)

We have

∫
�

H f dμ =
∫

�

g(b, ν) dμ. (4.4)

To evaluate this expression, note that since � is assumed to be a topological sphere in

Bρ , it must bound a region �. We wish to estimate the volume of �. To this end, we

approximate � by a Euclidean sphere S = SRE (aE ). With x the position vector field in Bρ ,

we define the vector field

X = x − aE (4.5)

such that

divgE X = 3, (4.6)

in �. On �, we have

|X| = |F − aE | ≤ ‖F − idS ‖L∞(S) + ‖ idS −aE‖L∞(S)

≤ C |�|1/2(
1 + ‖ ◦

AE‖L2(�,gE )

)
,

since ‖ idS −aE‖L∞(S) = RE . Here, idS : S → Bρ denotes the standard embedding of S

into Bρ .

We integrate the relation (4.6) over � and use partial integration to conclude that

3 VolE (�) =
∫

�

gE (X, νE ) dμE .
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Replacing the integral over � by an integral over S introduces an error of the form

∣∣∣∣
∫

�

gE (X, νE ) dμE −
∫

S
gE (X, N) dμE

∣∣∣∣
≤ C

(|�|‖F − id ‖L∞(S) + |�|3/2‖φ2 − 1‖L∞(S) + |�|‖νE ◦ F − N‖L2(S)

)
≤ C |�|3/2‖ ◦

AE‖L2(�,gE ).

In view of Lemma 2.5, we thus obtain the estimate

∣∣∣∣VolE (�) − (|�|E )3/2

6π1/2

∣∣∣∣ ≤ C |�|3/2(‖ ◦
A‖L2(�) + r2)

.

The assumption (2.2) implies that for the volume elements of g and gE , we have that

∣∣dVg − dVgE

∣∣ ≤ C |x|2.

Combining the last two estimates with (3.7), we get

∣∣∣∣Vol(�) − |�|3/2

6π1/2

∣∣∣∣ ≤ C |�|3/2(‖ ◦
A‖L2(�) + r2)

. (4.7)

Using Corollary 3.6, we finally conclude

∣∣∣∣Vol(�) − |�|3/2

6π1/2

∣∣∣∣ ≤ Cr2|�|3/2. (4.8)

The right-hand side of (4.4) can be expressed as a volume integral

∫
�

g(b, ν) dμ =
∫

�

divM bdV,

and since |∇b| ≤ Cr, we estimate

∣∣∣∣
∫

�

divM bdV

∣∣∣∣ ≤ Cr Vol(�) ≤ Cr|�|3/2

Thus, since λ is bounded in view of Corollary 3.6, we obtain

∣∣∣∣λ
∫

�

H f dμ

∣∣∣∣ ≤ Cr|�|3/2. (4.9)
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4.2 The variation of U

A fairly straight forward calculation shows that the variation of U is given by

δ fU(�) = −
∫

�

2〈 ◦
A,∇2 f〉 + 2 f〈 ◦

A, RicT 〉 + f H | ◦
A|2 dμ, (4.10)

where RicT denotes the tangential projection of the Ricci curvature of M on to �. With

f as in Eq. (4.3), the second and third term are easily bounded as follows

∫
�

2 f〈 ◦
A, RicT 〉 + f H | ◦

A|2 dμ

≤ C |�|1/2 sup
�

| f |
(∫

�

| ◦
A|2 dμ

)1/2

+ C
∫

�

| ◦
A|2 dμ ≤ C |�|2 (4.11)

where we used the fact that |g(b, ν)| ≤ C together with Corollary 3.6 and Proposition 3.8.

To treat the first term in (4.10), we calculate the first and second derivatives of f .

Choosing a local ON-frame {e1, e2} on �, we obtain

∇ei f = H−1g(∇ei b, ν) + H−1g(b, ej)Aj
i − H−2∇ei Hg(b, ν), (4.12)

and thus in view of the estimates from Theorem 3.5, Proposition 3.8, and the fact that

|∇b| ≤ Cr, we find

∫
�

|∇ f |2 dμ ≤ Cr2.

Differentiating Eq. (4.12) once more, we obtain

∇ei ∇ej f = −Ak
i Ajk f + 2H−3∇ei H∇ej Hg(b, ν) − H−2∇2

i, j Hg(b, ν)

+H−1(
g(∇ei∇ej b, ν) + g(∇ei b, ek)Ak

j + g(∇ej b, ek)Ak
i + ∇ej Ak

i g(b, ek)
)

−H−2(∇ei H(g(∇ej b, ν) + g(b, ek)Ak
j) + ∇ej H

(
g(∇ei b, ν) + g(b, ek)Ak

i

))
. (4.13)

Our goal is to estimate
∫
�

〈 ◦
A,∇2 f〉 dμ so that all we need of ∇2 f is its traceless part.

Note that the leading order term in expression (4.13) is the first one on the right-hand

side, all others decay faster as r → 0. Its contribution consists mainly of the trace part.

When removing the trace, we find that we can estimate

|(∇2 f)◦| ≤ C
(|A|| ◦

A|| f | + H−1|∇2b| + H−1|A||∇b| + H−1|∇ A|
+ H−2|∇H ||∇b| + H−2|∇H ||A| + H−2|∇2 H | + H−3|∇H |2)

.
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In view of the fact that |∇b| ≤ Cr and |∇2b| ≤ C , and using the estimates from

Theorem 3.5, Corollary 3.6, and Proposition 3.8, we infer that

∫
�

|(∇2 f)◦|2 dμ ≤ Cr2|�|, (4.14)

Here, we also used that by the estimates from Section 3, (3.14), and the fact that |A|2 =
(1/2)H2 + | ◦

A|2, we have

∫
�

H−4|∇H |2|A|2 dμ ≤ C
(∫

�

|∇ log H |4 dμ

)1/2(∫
�

H−4(H4 + | ◦
A|4) dμ

)1/2

≤ C |�|3/2(|�|1/2 + |�|3/2) ≤ C |�|2.

In view of the Cauchy–Schwarz inequality, Corollary 3.6, and estimate (4.14), we infer

that

∫
�

〈 ◦
A,∇2 f〉 dμ ≤

(∫
�

| ◦
A|2 dμ

)1/2 (∫
�

|(∇2 f)◦|2 dμ

)1/2

≤ Cr|�|3/2. (4.15)

The estimates (4.11) and (4.15) imply the desired bound on (4.10), namely

|δ fU(�)| ≤ Cr|�|3/2. (4.16)

4.3 The variation of V(�)

In Section 5.5 of [7], the following expression for δ fV(�) was derived:

δ fV(�) =
∫

�

− f HG(ν, ν) − 1

2
f H Sc +2 f〈 ◦

A, GT 〉 − 2ω(∇ f) dμ (4.17)

where as before, G = Ric −(1/2) Sc g denotes the Einstein tensor of M and ω = Ric(ν, ·)T .

Recall that we chose f = H−1g(b, ν) above. In the expression (4.12), we split A = ◦
A+

(1/2)Hγ and obtain

∇ei f = 1

2
g(b, ei) + H−1g(∇ei b, ν) + H−1

◦
Aj

i g(b, ej) − H−2∇Hg(b, ν).

Plugging this expression into Eq. (4.17) yields

δ fV(�) =
∫

�

−G(b, ν) − 1
2 g(b, ν) Sc +2 f〈 ◦

A, GT 〉

−2w(ei)
(
H−1g(∇ei b, ν) + H−1

◦
Aj

i g(b, ej) − H−2∇Hg(b, ν)
)

dμ. (4.18)
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Using Theorem 3.5, Corollary 3.6, and Proposition 3.8, we estimate

∣∣∣∣
∫

�

2 f〈 ◦
A, GT 〉 − 2w(ei)

(
H−1g(∇ei b, ν)

+ H−1
◦

Aj
i g(b, ej) − H−2∇Hg(b, ν)

)
dμ

∣∣∣∣ ≤ Cr|�|3/2. (4.19)

In [7] the Pohozaev identity was used to estimate the term
∫
�

G(b, ν) dμ. This is not really

necessary here; the following simpler approach is sufficient. Recall that the divergence

of G with respect to the g-metric is zero due to the Bianchi identity. Define the vector

field X by the requirement that g(X, Y) = G(b, Y) for all vector fields Y on Bρ . Then the

fact that G is divergence-free implies that

divM X = 〈G,∇b〉. (4.20)

In Section 4.1, we used that � bounds a region � with Vol(�) ≤ C |�|3/2. To proceed, we

integrate the relation (4.20) over �, and after integration by parts, we get (recall that

|∇b| ≤ Cr)

∣∣∣∣
∫

�

G(b, ν) dμ

∣∣∣∣ =
∣∣∣∣
∫

�

divM XdV

∣∣∣∣ ≤ Cr Vol(�) ≤ Cr|�|3/2.

In combination with Eq. (4.18) and estimate (4.19), we infer that

∣∣∣∣δ fV(�) + 1
2

∫
�

g(b, ν) Sc dμ

∣∣∣∣ ≤ Cr|�|3/2.

The final task is to estimate
∫
�

g(b, ν) Sc dμ. As before, we express this surface integral

as a volume integral. To this end, we consider the vector field X = Sc b and calculate

divM X = g(b,∇ Sc) + Sc divM b.

Since ∇ Sc = ∇ Sc(0) + O(r), ∇b = O(r), and g = gE + O(r2), we infer

divM X = gE (b,∇ Sc(0)) + O(r).

Thus, we can calculate

∫
�

g(b, ν) Sc dμ =
∫

�

divM XdV = Vol(�)gE (b,∇ Sc(0)) + O(r Vol(�)).
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This finally leaves us with the estimate

∣∣∣∣δ fV(�) + 1

2
Vol(�)gE (b,∇ Sc(0))

∣∣∣∣ ≤ Cr|�|3/2. (4.21)

4.4 The conclusion

To prove Theorem 1.1, we combine the results from the previous sections. Combining

Eq. (4.2) with the estimates (4.9) and (4.16) yields that for f as in (4.3), we have

∣∣δ fV(�)
∣∣ ≤ Cr|�|3/2.

In combination with (4.21), this gives

∣∣∣Vol(�)gE (b,∇ Sc(0))

∣∣∣ ≤ Cr|�|3/2,

and since Vol(�) ≥ C −1|�|3/2, we infer

∣∣∣gE (b,∇ Sc(0))

∣∣∣ ≤ Cr.

Setting b = ∇ Sc(0)/|∇ Sc(0)|E finally shows that

|∇ Sc(0)|E ≤ Cr.

Since we can let r → 0 by the assumptions of Theorem 1.1, we infer the claim, namely

that ∇ Sc(0) = 0.

5 Expansion of the Willmore Functional

In this section, we calculate the expansion of the Willmore functional on small sur-

faces using the estimates from Section 3. We wish to emphasize here that similar expan-

sions for the Willmore functional have been computed previously for geodesic spheres

in [4, Section 3], where also the subsequent term in the expansion is calculated, and for

perturbations of geodesic spheres in [9].

The calculation here has the advantage that it works under much more general

conditions. Namely, we have the following theorem which holds in particular for sur-

faces as in Theorem 1.1 due to the estimates of Lemma 3.1 and Corollary 3.6.
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Theorem 5.1. Let g = gE + h on Bρ be given, and let c < ∞ be a constant. Then there

exists a constant C depending only on c, ρ, and h0 as in Eq. (2.2), such that the following

holds.

Let � ⊂ Br be a spherical surface with r < ρ such that

U(�) ≤ cr|�| and |�| ≤ cr.

Then the following estimate holds:

∣∣∣∣W(�) − 8π + |�|
3

Sc(0)

∣∣∣∣ ≤ Cr|�|. �

Proof. We use the Gauss equation to express the Willmore functional as in Eq. (2.5)

W(�) = 8π + U(�) + V(�).

By the first assumption, the term U(�) is a lower order term and can be neglected.

Furthermore,

V(�) = 2
∫

�

G(ν, ν) dμ =
∫

�

2 Ric(ν, ν) − Sc dμ.

In view of the assumptions of the theorem, Lemma 3.3 implies that

∣∣∣∣
∫

�

Ric(ν, ν) dμ − |�|
3

Sc(0)

∣∣∣∣ ≤ Cr|�|.

Since Sc = Sc(0) + O(r), we furthermore have

∫
�

Sc dμ = |�| Sc(0) + O(r|�|)

so that in combination

V(�) = −|�|
3

Sc(0) + O(r|�|).

Altogether, this yields

W(�) = 8π − |�|
3

Sc(0) + O(r|�|),
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which is the desired expansion. �

Corollary 5.2. Let g be as in Theorem 5.1, and assume that � is a spherical surface in

Br satisfying

U(�) ≤ c|�|2 and |�| ≤ cr.

If � denotes the region bounded by �, then the Hawking mass of �,

mH (�) = |�|1/2

(16π)3/2

(
16π − 2W(�)

)

satisfies

mH (�)

Vol(�)
= Sc(0)

16π
+ O(r). �

Proof. This is a simple consequence of the expansion in Theorem 5.1 which holds also

under the stronger assumption of the corollary. In addition, we use the fact that the

volume of � satisfies

∣∣∣∣Vol(�) − |�|3/2

6π1/2

∣∣∣∣ ≤ Cr|�|3/2

which follows from Eq. (4.7). �
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