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I. INTRODUCTION 

1. Model and Reality 

Physical chemists are well aware of the usefulness of models. An under- 
standing of the fundamental properties of matter can hardly be gained from 
watching reality, requiring instead the posing of if-then questions that can be 
answered only by models. The nature of pressure or temperature of a gas as a 
collective property of its individual atomic or molecular constituents became 
obvious only through the billiard ball models of Clausius, Maxwell, and 
Boltzmann, despite our later insights that true atoms or molecules have 
quantized motion. 

In trying to understand the physical behavior of viable matter, we are 
facing a quite similar situation today as did our forerunners the physical 
chemists in the late-nineteenth century, when they started to look into the 
nature of inanimate matter. What is the kind of physical problem that we are 
really concerned with? Analyzing life at the molecular level, we realize the 
fundamental dichotomy of a genotypic legislative and phenotypic executive 
represented by particular forms of macromolecular organization. Asking how 
such an order became established, we are referred to Darwin’s principle of 
natural selection. There is general consensus among biologists that this 
principle not only has guided the evolution of species but must also have been 
as instrumental in the evolution of the molecular forms of organization, up to 
a state that might be called “the first living species.” As we have learned more 
about the details of this organization, it has seemed more difficult to provide 
any answer to the question of the physical nature of life. Indeed, what stands 
out from our increasingly detailed perspective is the tremendous complexity 
of molecular organization in even the most primitive viable system. We are 
facing questions such as: why did that particular organization proving viable 
come about while myriads of alternative states of the system, structurally just 
as stable, do not share the property of being alive and is there a guiding 
principle that narrows down the number of alternatives so as to render the 
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appearance of life on our planet possible with meaningful physical ex- 
pectation? Another, not less stringent, question then immediately comes up: 
Why is this molecular organization of life, which historically evolved, so 
perfect? Why, for instance, are enzymes optimal catalysts? The number of 
structurally stable alternatives that could have been assembled from the same 
monomeric material is so large that one could not accommodate it within the 
spatial and temporal limits of our universe. If, as a consequence, we must 
conclude that all these alternatives never could be tested, why is it that the 
particular choice of nature turns out to be optimal in its dynamical per- 
formance? Half a century of enzyme kinetics has clearly demonstrated this 
fact. The performance of enzymes can hardly be improved. Nature’s solution 
for the enzymes represents the optimum of what can be achieved with this 
type of macromolecular organization. 

In this chapter we shall try to give answers to these questions concerning 
an understanding of the physics basic to life. We shall use defined models in 
order to derive quantitative results, and we shall discuss the relevance of 
those models for realistic scenarios that can be simulated in laboratory 
experiments. We shall not, however, present hypotheses regarding the histori- 
cal origin of life. The historical process of evolution depends not only on 
physical principles but also on historical boundary conditions. These render 
the historical process unique. Physics, as Eugene Wigner [l] once stated 
clearly, cannot deal with such unique events. Physics can deal only with 
regularities among events. The regularity “life,” not the historical reality 
“life,” will be the subject of this Chapter. 

2. Darwinian Systems 

The logic of life may be condensed into four statements: 

1. Life came about through evolution. 
2. Evolution is the result of variation and natural selection under con- 

ditions far from thermodynamic equilibrium. 
3. a) Natural selection is a consequence of self-reproduction under con- 

b) Variation is due to imprecise reproduction or other modifications 

4. Self-reproduction is based on structural complementarity of a particu- 

Systems adhering to this scheme may be called Darwinian because Charles 
Darwin was the first to reason along this line. Statements such as the 
preceding are too general to be of more than heuristic value. Let us therefore 

ditions far from thermodynamic equilibrium. 

involved in the processing. 

lar class of molecules. 
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apply this logic to a defined model and then analyze its consequences in more 
depth. 

The central issue will be Darwin’s principle .of natural selection. In its 
original formulation as “survival of the fittest,” it does not provide much new 
insight and it was promptly misunderstood. We really have to define the 
terms survival andfittest independently of this principle in order not to  get 
caught in the tautological loop of “survival of the survivor.” 

Survival certainly is to be measured in terms of population numbers or, to 
use the language of the physical chemist, in terms of concentrations. A 
surviving type has to be present with a nonzero number of copies. Fittest, on 
the other hand, refers to a value parameter that characterizes the surviving 
type, for example, the one most efficient in producing offspring. For complex 
living beings with all their mutual interferences, it may be quite difficult to 
express it through numbers. For a self-reproductive molecular entity Zi, such 
as an RNA or DNA molecule possibly in combination with enzymic ma- 
chinery, a selective value Wi can be precisely defined given that the reaction 
mechanism has been established. Then the quantitative correlation between 
Wi and the population number Ni is the essence of the selection problem. 
Survival of the fittest means that all types but the one with maximum 
selective value are bound to die out. In this form the selection principle is 
certainly only a zero-order approximation. In other words: there is no real 
correlation between population numbers and selective values except for the 
“fittest,” which represents the entire system. 

It is obvious that such a ruthless “all-or-none’’ decision could neither be a 
consequence of random production nor result from interactions as they are 
responsible for chemical equilibrium, which always settles on finite concen- 
tration ratios. It is indeed the peculiar mechanism of the reproduction process 
far from equilibrium that accounts for the fact of survival, and this mechan- 
ism is even active when the competitors are degenerate in their selective 
values, that is, if they are neutral competitors. In this limiting case, considered 
to be very important for the evolution of species, Darwin’s principle indeed 
reduces to the mere tautology: survival of the survivor. Nevertheless, there 
are, even here, systematic quantitative regularities in the way that macro- 
scopic populations of wild types rise and fall in a deterministic manner (as far 
as the process, not the particular copy choice, is concerned), which make it 
anything but a trivial correlation. This case of neutral selection has been 
called non-’Darwinian. It should be emphasized, however, that Darwin was 
well aware of this possibility and described it verbally in a quite adequate 
way. The precise formulation of a theory of neutral selection, which then 
allows us to draw quantitative conclusions on the evolution of species is an 
achievement of the second half of this century. Kimura [2] has pioneered this 
new branch of population genetics. 
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We have called this all-or-none type of selection a zero-order approxima- 
tion. As such, and wherever the boundary conditions allow for selection 
rather than for coexistence, it may hold only for competitors that do not have 
close kinship relations in their genetic inheritance. In fact, even with strong 
differences in selective value, evolution would not have proceeded very far if it 
were based on such a correlation for natural selection. For instance, we could 
not explain why the enzymes are catalysts of optimal efficiency. Evolution 
would soon have come to a standstill on a minor hill in the value landscape, 
waiting for an advantageous mutation that would appear much too rarely 
considering the huge number of possible alternatives. It is common to rely on 
Darwin’s principle as a deterministic tool for selection of the advantageous 
mutant, while at the same time assuming that this advantageous mutant 
could come about by nothing but pure chance. One could shock today’s 
biologists by saying that there must exist also some guidance, assuring that 
the advantageous mutants will appear with much higher rates than the 
disadvantageous ones, and indeed it is considered a heresy to say that 
evolution can be guided other than by chance. 

We shall show that in a Darwinian system evolution indeed is guided to 
the peaks in the value landscape through biased mutations. To be sure, there 
is no correlation between the (intrinsically stochastic) act of mutation and the 
fitness of the product; yet there is bias provided by the fitness-dependent 
population distribution of mutants - so to speak a mass action guidance of 
probabilities of mutations. To appreciate this, we have to look at  the higher 
approximations of the selection principle. The target of selection is not a 
singular wild-type sequence. The fact that sequence analysis as carried out for 
complete viral genomes yields unique primary structures is no proof that the 
individual sequence as such is really present to a major extent. It only 
confirms that at each position the found symbol (nucleotide or amino acid 
residue) is the prevailing one. A typical RNA virus has lo4 different one-error 
copies. If each of them would appear with equal frequency, a population 
consisting solely of mutants would yield the wild-type sequence at each 
position with an accuracy of 0.9999 despite the fact that this particular 
sequence as an individual may not be present at all. It has been shown by 
Weissmann [3] and co-workers through cloning and rapid amplification of 
single mutants that wild-type distributions consist predominantly of mutants, 
the wild type as an individual remaining below the limit of detectability. 
These mutants-even a diluted test tube fraction usually contains some 
109-1012 such individuals-must be included if we ask how are population 
numbers related to selective values. Each mutant in the wild-type population, 
though inferior to the wild type, must be assigned a selective value too. Hence 
mutants are produced not only as error copies of the wild type but also 
through self:replication, and this will bias the distribution of mutants accord- 
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ing to their selective values. Value peaks will be clustered as mountains are in 
any landscape on earth. Evolutionary optimization then may be viewed as a 
hill-climbing process that proceeds to the mountain areas, eventually finding 
the highest peaks. How much this process is biased by the detailed structure 
of the mountain distribution came out as a true surprise from the rigorous 
treatment of the selection problem. In this chapter we shall start with the 
formulation and detailed analysis of a particular deterministic model, the 
quasi-species [4-71. 

11. DETERMINISTIC APPROACH TO SELECTION 

In conventional chemical kinetics, time changes of concentrations are de- 
scribed deterministically by differential equations. Strictly, this approach 
applies to infinite populations only. It is justified, nevertheless, for most 
chemical systems of finite population size since uncertainties are limited 
according to some ,,/% law, where N is the number of molecules involved. In 
a typical experiment in chemical kinetics N is in the range of lo’* or larger, 
and hence fluctuations are hardly detectable. Moreover, ordinary chemical 
reactions involve but a few molecular species, each of which is present in a 
very large number of copies. The converse situation is the rule in molecular 
evolution: the numbers of different polynucleotide sequences that may be 
interconverted through replication and mutation exceed by far the number of 
molecules present in any experiment or even the total number of molecules 
available on earth or in the entire universe. Hence the applicability of 
conventional kinetics to problems of evolution is a subtle question that has to 
be considered carefully wherever a deterministic approach is used. We 
postpone this discussion and study those aspects for which the description by 
differential equations can be well justified. 

1. The Sequence Space 

We consider a set of sequences of uniform length comprising v monomeric 
subunits of which IC classes exist. If the model is applied to single-stranded 
RNA or double-stranded DNA sequences - as throughout this chapter - IC 
assumes the value 2 or 4, depending on whether only purines (R = G, A )  and 
pyrimidines (Y = C, U, or T )  or the four individual bases (G, A, C, U, or T, 
respectively) are specified. The total number of different sequences in such a 
set amounts to icy. To give some examples: a particular tRNA ( v = 7 6 )  
represents one choice out of a particular ribosomal 5s mRNA ( v =  120) 
one out of lo’’, and a particular viral genome such as Q/? ( v  = 4200) one out 
of alternative sequences of the given length. We specify now two 
sequences Zi and lk in such a set. The Hamming distance d ( i ,  k )  counts how 
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many positions in these sequences are occupied by different monomers 
(symbols: R and Y or G, A, C and U/T).  For any given reference sequence I,,, 
(which later will usually be the master sequence of the wild type) the 
Hamming distance d = d ( m ,  k ) ~ (  1,2, . . . , v )  partitions the mutants into 
classes, each comprising Nd different sequences [cf. eqn. (Al . l )  in 
Appendix 1). A correct ordering of mutants according to their mutual 
Hamming distances requires a v-dimensional space, in which each dimension 
consists of K equivalent points (Figure 1). Equivalent here means that one can 
jump to any of the K points within a given dimension according to a one-error 
mutation. (It does not necessarily mean that all such jumps occur with equal 
probabilities.) In nucleic acids, transitions, which are mutations that conserve 
the base class R or Y, respectively, indeed do occur more frequently than 
transversions, which are mutations that change those classes. Considering 
only transversions leads to the simpler limiting case of binary sequences 
( K  = 2). 

An important feature of this high-dimensional sequence space, as is 
obvious from Figure 1, is the enormous increase in the number of shortest 
mutational routes between two given mutant sequences with increasing 
Hamming distance d .  There are d !  such connecting 2' states. Another related 
effect of high dimensionality is that many states become confined to a close 
neighborhood. In other words all distances among such an enormous num- 
ber of states remain small so that a target state can be reached in relatively 
few steps provided a guiding gradient exists. Moreover, all states are con- 
nected through many alternative routes, which may pass through saddle 
points of higher order, that is, points where the selective value may increase in 
k and decrease in v - k directions. In fact, each point is linked to v neigh- 
boring points, thereby yielding a multiply looped network. The value func- 
tion, or landscape, of such a space looks quite different from what we are used 
to with the topographical landscape over the two-dimensional surface of 
earth. Such a landscape would appear very bizarre, typically showing drastic 
changes on short distances. This will be of importance if we look at the 
(selective) value and population landscapes over such a sequence space. 

Now consider the sequences to be self-reproductive. Mutants will appear 
through copying errors. We introduce a fidelity qi as the probability that a 
symbol i is copied correctly (0 < qi < 1) .  Correspondingly, the probability of 
producing an error at that position is 1 - qi. The probability of copying a 
complete sequence I correctly then is q1 * q 2  * * * qy  = $"' where 4 is the 
geometric mean taken over the fidelities for all positions of the sequence and 
4' defines a quality of sequence copying and is identical with the Qd value for 
d = 0, as listed in Appendix 1. 

In order to characterize the average mutational behavior, we now assume 
uniform fidelities q for all positions and obtain for the probabilities of 
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Figure 1. “Lexicographic” ordering of sequences through successive duplications of se- 
quence space. As shown, for binary sequences the sequence space of dimension n can be 
constructed by duplication of sequence space of dimension n - 1. This iterative procedure is used 
in Appendix 2 to construct mutation matrix in such a way that eigenvalues and eigenvectors can 
be computed easily [8]. Each of 2’ points specifies binary ( R ,  Y )  sequence. If, in addition, two 
alternative base classes ( R  = G or A, Y = C or U)  are specified, then to each of points in binary 
sequence space another subspace of binary specification is added, yielding total of 4’ points or 
dimension of hypercube of 2v. 

producing mutants with Hamming distances d the expressions in Appendix 1. 
(By this procedure we neglect, of course, inhomogeneities such as hot or cold 
spots.) Note that the probability of producing a particular mutant Zi from a 
reference copy 1, strongly decreases with increasing Hamming distance 
d(i ,  k )  [Eqn. (A1.5) in Appendix l)] since q is usually close to 1. 

The mutation frequencies between all pairs ( I i ,  I,) of the K’ sequences of 
chain length v are best given a matrix representation 

Q = { Q i k ;  i, k = 1, 2, . . . , K ’ }  

Q being called the mutation matrix. 
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For the uniform error model it is suggestive to order the individual 
elements according to classes defined by their Hamming distances. Rumsc- 
hitzki [S], however, has proposed a different procedure, which constructs the 
mutation matrix for chain length v from that for v - 1 recursively (cf. 
Appendix 2). In this way it is possible to calculate the eigenvalues and 
eigenvectors of Q for arbitrary chain lengths v ,  which in this particular model 
are all real and positive. 

Physically, the elements Qik are associated with the production rates of the 
mutants (i.e., producing Ii by miscopying Zk), They do not resemble the 
frequencies by which these mutants appear in the population, First, these 
frequencies depend also strongly on the value topology of the mutant space, 
that is, on the individual efficiencies of reproduction. Second, in order to 
arrive at population numbers, we have to solve the kinetic equations. 

2. The Kinetic Equations 

The model is based on the following assumptions [9]: 

(i) Sequences as defined in Section 11.1 form and decompose steadily. 
Any individual type Zi of sequence is present with ni( t )  copies per unit 
volume. This concentration may vary with time t ,  the rate being 

(ii) Sequences form exclusively through either faithful or erroneous copy- 
ing of sequences already present. The rates are first order in the 
concentrations of thoss sequences that act as templates. 

(iii) The substrates of the formation reaction, that is, the energy-rich 
monomers from which new sequences are to be assembled, are as- 
sumed to be present in large excess and hence are buffered. Their 
constant concentration terms then can be included in the rate coeffic- 
ients of the formation reactions. (This assumption may be relaxed 
later on if systems under constant-flow conditions are considered. 
This assumption turned out not to be decisive for the main behavior of 
the model.) 

(iv) Sequences decompose according to a first-order rate law. The corre- 
sponding constant half-lives refer to a constant environment. 

Conditions (ii)-(iv) allow the definition of two types of rate terms of a 
linear system: a diagonal term Wiini ( t )  and a nondiagonal term q t n k ( t ) ,  
referring to a value matrix W = { Wik; i, k = 1,2, . . . , ic”}. The diagonal 
term comprises the effects of faithful replication and of decomposition, both 
being proportional to ni(t):  Wii = A,Qii - D i .  Here, A ,  describes autocataly- 
tic amplification, that is, replication catalyzed by template Z,, of which only 
the fraction Qii (cf. Section 111.1) leads to replica that are identical with the 

r i i ( t )  = dni(t)/dt* 
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template i. The decomposition term Di counts the average number of decays 
of template i per unit time. The inverse of Di is the average lifetime of i (cf. 
Figure 2). 

The nondiagonal terms refer to the fraction of erroneous copying pro- 
cesses for which the conservation relation must hold 

HAMMING 

0 

1 

2 

DISTANCE d 

(11.1) 

Figure 2. Reaction scheme of quasi-species. Index zero is assigned to the master copy, Woo 
being rate coefficient for correct (excess) production of master copy. Likewise Wii refers to correct 
(excess) production of mutant copy i. Off-diagonal rate coefficients refer to mutation rates. Wij  
represents the production of mutant i by miscopying template j .  Rate coefficients are always 
associated with relative concentration terms x, that refer to second of two subscripts (in 
agreement with conventional matrix notation). Hamming distances in this scheme are relative to 
master copy. It is important to note that diagonal coefficients are by an order of magnitude 
( k  - l)/(q-' - 1) larger than off-diagonal coefficients that refer to one-error miscopying, and that 
these in turn are correspondingly larger than coefficients for two-error miscopying, and so on. 
Error matrix may be ordered recursively in way similar to that demonstrated for buildup of 
sequence space (Figure 1) such that the antidiagonal represents mutation terms with extreme 
errors. Following this procedure explicit solutions could be obtained for certain rate coefficient 
schemes in uniform error model [S]. 
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This conservation is a consequence of assumption (ii), namely, that mutants 
originate exclusively through erroneous replication and not through external 
interferences such as radiation or chemical attack. (If this assumption is 
relaxed, destruction terms must be subtracted in the conservation law to 
balance the additional first-order off-diagonal mutation terms.) The non- 
diagonal elements of the value matrix K k  depend strongly on the Hamming 
distance d (i, k )  between template i and erroneous replica k. For the uniform 
error rate model the expression reads 

(11.2) 

The conservation relation (11.1) allows for a simplification of the summed rate 
terms, in terms of the total excess production rates &, such that the quality 
factors Qii  no longer appear: as average excess production E ( t )  we define 

In addition to changes due to chemical reactions we must account also for 
changes caused by transport processes. Since we are not interested in spatial- 
ly inhomogeneous distributions (cf. the example of a stirred flow reactor), we 
introduce a general dilution flux term (3 = I?( t )  that removes material in 
proportion to the amount produced. 

With these assumptions we can write the kinetic ansatz as shown in 
Appendix 3. Selection represents a kinetic evaluation of sequences relative to 
one another. It is therefore appropriate to introduce relative population 
variables 

x E k n k ( t ) / x n k ( t ) .  

(11.3) 

As is seen from Appendix 2, the flux terms, in the form introduced in the 
preceding, do not appear in the rate equations referring to relative population 
variables. Instead the average excess production enters as a threshold of 
selection. This form of rate equations is not limited to a steady state but 
ra.ther holds also for the relative growth behavior in time-variable systems 
c41. 

3. How Realistic Is the Kinetic Ansatz? 

Replication is a multiple-step reaction that usually involves sophisticated 
enzymic machinery. Is such a process adequately described by a straightfor- 
ward linear autocatalytic model? 
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The kinetics of RNA replication by virus replicases have been studied 
recently in some more detail [10-123. Rates have been measured under a 
variety of conditions. These include variable concentrations of substrate, 
enzyme, and template; asymmetries of plus and minus strand concentrations; 
annealing processes; and the presence of competitor strands. The mechanisms 
have been elucidated analytically and reproduced through computer simu- 
lation. Although the reaction mechanism (Figure 3) turned out to be quite 
involved, the phenomenological description is largely in agreement with the 
linear autocatalytic ansatz used in this chapter. This holds generally for low 
concentrations of template where the linear dependence of rates on template 
concentrations applies throughout. A t  larger template concentrations satura- 
tion effects typical for enzymic reactions are observed. The upgrowth of new 
templates, even if the enzyme is saturated by other templates (selected in 
previous steps), is exponential until the new template has become dominant, 
that is, until it is selected. Neither the fact that the replication process involves 
many consecutive steps, of which one or a few may or may not be rate 
limiting, nor the cross-catalytic nature of the plus-minus strand instruction 

PRODUCT 

RELEASE 

Figure 3. Reaction scheme of complementary replication of single-stranded RNA. Reaction 
consists of four phases: initiation, elongation, product release, and template reactivation. 
Reaction product (replica) is complementary to template. Substrates are four nucleoside triphos- 
phates: ATP, GTP,  UTP, and CTP. Pyrophosphate (pp) is waste product at each step of 
incorporation. Symbols: I ,  RNA template chain; E, enzyme (replicase); P, growing RNA replica 
chain. Indexes: A, association; D, dissociaton; S, substrate; F, phosphate diester bond formation; 
PR, product release; the numbers 3', or 5' ,  refer to end of the RNA chain to which the enzyme 
binds or from which it dissociates (cf. ref. 10). 
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alters the overall dependence of the growth rate on template concentration 
from the model used here. All it does is to superimpose a spectrum of 
relaxation processes during an induction period of the reaction. During such 
an induction period the concentrations of the various intermediate states and 
also their sums for each of the plus and the minus strands assume fixed ratios. 
All states then grow concomitantly according to the linear autocatalytic rate 
law. This was verified with natural and artificial RNA sequences. It holds as 
well for complete virus particles. 

DNA replication, although a process that usually depends on much more 
sophisticated enzymic machinery [ 131, phenomenologically adheres to the 
same type of model. The various steps involved contribute to the magnitude 
of the overall rate, yielding under suitable reaction conditions a defined 
doubling time of the double-stranded molecule. Since cell division is linked 
with this replication mechanism, the linear autocatalytic mechanism even 
holds for autonomous organisms and thus found its way into population 
biology. 

There are, however, reproduction mechanisms that cannot be represented 
by the linear model. We have mentioned the case of saturation, which in 
many ways can be materialized, for example, through limited supply, in- 
hibitory interference, or blocking of machinery. The loss of autocatalytic 
amplification is accompanied by a (partial or total) loss of competition and 
selection, allowing different sequences to coexist. On the other hand, there are 
reproductive processes the rates of which depend stronger than linearly on 
the growing concentration. A virus, for instance, encodes important parts of 
its reproduction machinery, which is exclusively adapted to the virus tem- 
plate. Hence in the early phase of infection the buildup of the virus popu- 
lation depends on both the virus template and the virus replicase, which is 
encoded in the template. The growth rate thus depends stronger than linearly 
on the virus template concentration. We have classified a whole category of 
such hypercyclic reaction networks that under certain conditions may exhibit 
hyperbolic rather than exponential growth. The effect is a once-and-for-all 
type of selection of that compound which managed first to populate the 
reaction space [4]. 

Apart from the linear autocatalytic ansatz, the rate equation involves some 
further assumptions the relevance of which should be discussed. First, the 
neglect of production terms other than those due to template-instructed 
reproduction seems straightforward. Whenever template instruction can 
become effective, it soon will outgrow any other type of production as far as 
the formation of specific sequences is concerned. Second, the assumption of a 
buffered level of substrates may seem unnatural. We have studied the effect of 
exhaustion of substrates by the upgrowth of a more efficiently reproducing 
mutant in a medium for which the influx of substrate is kept constant. The 
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more efficient consumption of substrate causes a lowering of its concen- 
tration level. Selection under such conditions of constant flows remains 
qualitatively the same but requires quantitative modifications of the equa- 
tions involved [14]. The same is true for the assumptions made with respect 
to fluxes. The “proportional” dilution is most easily realized under exper- 
imental conditions. Under this condition the flux terms do not influence at all 
the relative population number and hence need not be specified further. 

4. Solutions of the Rate Equations 

In section 11.2 we arrived at the following form of the rate equations in 
relative (i.e., fractional) population variables: 

Due to the fact that the term E ( t )  is inherently nonlinear, these equations 
have been solved by approximations corresponding to second-order pertur- 
bation theory [9]. The solutions reflect the threshold nature of selection and 
the consequences on length limitations for sequences that can be selected and 
resist an accumulation of errors (i.e., an error catastrophy). 

Exact solutions can be derived for these equations [ lS,  161. We follow here 
essentially the method of Jones et al. [16]. 

The nonlinear term E( t )  can be removed through the following substitu- 
tion: 

xi( t )  = z , ( t ) f ( t )  with f ( t )  = exp , i = 1,2, . . . , K’, 
(11.5) 

yielding the differential equations in the coordinates z (  t ): 

(11.6) 

where the sum now includes the diagonal terms too. 
We realize from Eqn. (11.4) that with 1 xk(t) = 1, f ( t )  can be expressed as 

(11.7) 

The solution of Eqn. (11.6) follows the standard procedure of linear algebra. 
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This procedure and the solutions obtained are presented in Appendix 4. 
The solutions z i ( t )  have the form shown in Eqn. (A3.10) in Appendix 3. 

Using Eqs. (11.5) and (11.7), they can be transformed back to the x i (  t )  [cf. Eqn. 
(A4.12) in Appendix 41. The nature of these solutions becomes more obvious 
if we express them through the variables y i (  t )  as introduced in Appendix 3. 
The differential equations written in these variables assume the form 

(11.8) 

where the mean eigenvalue equals the mean productivity: I(t)  = X k l k y k ( t )  
= CkEkXk(t)  = E ( t ) .  The variables y i ( t )  are directly related to the normal 
modes of the relative population variables x i ( t ) .  They are, like the x i ( t ) ,  
normalized to 1, that is, Xkyk( t )  = 1. 

From the form of Eqn. (11.8) of the differential equations the nature of 
selection as a consequence of a self-organizing process becomes obvious. The 
target of selection is a quasi-species defined by the maximum or dominant 
eigenvalue Amax= ,lo and its attributed normal mode, the dominant eigenvec- 
tor, related to the composite population variable y o .  It is characterized by 
exclusively positive components, and therefore the quasi-species is not the 
equivalent of any single sequence. Nevertheless, the quasi-species may be 
dominated by a single sequence; we call it the master copy. The trans- 
formation from x to y coordinates may be physically viewed in the following 
way: Instead of looking at n single sequences, we look at n different clans, that 
is, combinations of sequences in which kinship relations are taken into 
consideration. These clans compete for selection, and the one with the largest 
eigenvalue no will win the competition. Equation (11.7) shows that the average 
of all eigenvalues [being equal to the average net productivity E( t ) ]  acts as a 
threshold. All eigenvalues li < x ( t )  yield a negative sign for y and hence 
cause that particular combination to die out. Likewise all eigenvalues 
li > x( t )  cause the corresponding populations to grow. Hence combinations 
with small eigenvalues disappear; those with large eigenvalues build up. What 
happens to the mean eigenvalue I( t )  = E( t )  during selection? Let us assume 
that we started with exclusively nonnegative variables yk.0) 2 0  and that all 
eigenvalues l k  are real. Both conditions need not be fulfilled in realistic 
systems, but for the sake of coherence we postpone a discussion of the general 
case to the next section (see also Appendix 5). The increase of I ( t )  will 
continue until it equals the maximum eigenvalue; the threshold increases 
until it reaches ,lo, where only one combination is left that can match it. We 
call this stable combination the quasi-species; it does not change with time 
any more: j o  ( t  ) --t 0. Hence selection is a self-organizing process inherently 
caused by the autocatalytic nature of the formation rates. It can be character- 
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ized - in analogy to other self-organizing processes, such as equilibration - 
by an extremum principle: 

E ( t )  = I(t)+Ao. (11.9) 

This principle holds as an absolute principle only for the quasi-linear case 
treated in the preceding, that is, for constant rate coefficients wik. As a local 
principle it covers also a larger group of nonlinear systems involving concen- 
tration- or time-dependent rate parameters. 

Explicit expressions for the eigenvalues I z i  and for the components of the 
eigenvectors belonging to Ai are to be obtained from Eqs. (A4.5)-(A4.7) in 
Appendix 4 for any specific set of rate parameters wik. If the nondiagonal 
elements are sufficiently small as compared to the diagonal terms and if the 
diagonal elements can be brought into some hierarchical order, where 
W,, > wkk for any k, second-order perturbation theory yields the following 
approximations for the largest eigenvalue I ,  and the corresponding eigen- 
vector lo (see also Section III.l), 

(11.10) 

and the dominant eigenvector I,, 

While in general these expressions are of only limited realistic value - since 
many mutants indeed are (nearly) degenerate - they show very clearly one 
fact. The surviving quasi-species for which Izi  = A,, is dominated by the 
sequence with the largest diagonal rate coefficient Wmm. We call it the master 
species. It is dominant as long as the sum term of Eqn. (11.10) is negligible, 
that is, W,, > wkk for any k # m. Since the products w,k wk, are usually 
very small, the differences between master Z, and mutants zk need not be 
large. Taking the known mutation rates of RNA viruses and their genome 
size of a few thousand nucleotides, an advantage of a tenth of a percent in 
W,, values is sufficient to clearly define the master. The mutants then are 
grouped around the master in such way that often their average sequence 
equals that of the master, which though being the most abundant individual 
sequence in the distribution may be present as only a very minor fraction of 
the total set of all mutants. 
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5. Potential Functions, Optimization, and Guided Evolution 

The results presented in the preceding section suggest the need for a funda- 
mental reinterpretation of Darwinian behavior for self-replicating macromol- 
ecules. First, selection can be shown as a mere (physical) consequence of 
constrained self-replication. It is a characteristic of biological systems since 
there is no other way for living entities to come about than through self- 
reproduction or recombinative reproduction, both being based on replication 
of DNA. Conversely, however, selection is not inherently linked to life and 
may occur wherever self-reproduction or complementary-reproduction or 
autocatalysis in general is involved. One well-studied example from physics is 
selection in laser modes [17]. 

In order to visualize the molecular selection process in the more general 
context of optimization of replication rates, we consider the simple case of 
replication with ultimate accuracy first. In this case we have Qik = h i k ,  the 
value matrix W is diagonal ( wik = Wkkhik = wk = - D,) and the corre- 
sponding system of differential equations is weakly coupled by the l?( t )  term 
only: 

The solutions of Eqs. (11.12) are of the form 

The system converges asymptotically to a homogeneous state in which the 
most efficiently replicating species is present exclusively: 

lim x , ( t )  = 1, lim x k ( t )  = O V k  # rn and W, = max[ Wj;J  = 1,2, .  . . , n] .  
t - t m  r - + m  

We calculate the time dependence of the average excess production and find 

In the case of time-independent rate constants the second term vanishes and 

(11.14b) 
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which is a nonnegative expression since xk 2 0 and wk, a combination of rate 
constants, is always real by definition. Thus, the average excess production l? 
is a nondecreasing function of time. It represents a quantity that is optimized 
during selection. 

A function V (  x ) ,  algebraically identical to the average excess production, 
can be shown to represent a potential for the selection process (Appendix 5): 

(11.15) 

Now we can visualize evolutionary optimization as a “hill-climbing” process 
on a “landscape” that is given by an extremely simple potential [Eqn. (II.15)]. 
This potential, an ( n  - 1 )-dimensional hyperplane in n-dimensional space, 
seems to be a trivial function at first glance. It is linear and hence has no 
maxima, minima, or saddle points. However, as with every chemical reaction, 
evolutionary optimization is confined to the cone of nonnegative concen- 
tration restricts the physically accessible domain of relative concentrations to 
the unit simplex ( x l  > 0, x 2  > 0, . . . , x n  > 0; X xk = 1). The unit simplex 
intersects the (n - 1)-dimensional hyperplane of the potential on a simplex (a 
three-dimensional example is shown in Figure 4). Selection in the error-free 
scenario approaches a corner of this simplex, and the stationary state 
corresponds to a “corner equilibrium,” as such an optimum on the inter- 
section of a restricted domain with a potential surface is commonly called in 
theoretical economics. 

Let us now consider replication with errors. For sufficiently accurate 
replication the system approaches a stationary mutant distribution. We do 
not observe selection of a single species. The target of the selection process is a 
unique combination of species determined by the dominant eigenvector of 
the value matrix W. We perform a linear transformation of variables and 
choose the eigenvectors of the matrix W a s  the new basis of the coordinate 
system: 

Herein the vectors ek are the unit eigenvectors of the Cartesian coordinate 
system and 1 ,  the right-hand eigenvectors of the value matrix Was discussed 
in Appendix 4. Formally the transformed differential equation is of the same 
general type as (11.12): 

- 
) j k = y k ( & - E ) ,  k = l , 2  , . . . ,  n, 
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Figure 4. Potential functions and “corner equilibria” in evolutionary optimization. (A) 
Trajectories and constant level sets of potential V [Eqn. (II.15)] for error-free replication in 
system with three molecular species. Constants W ,  = 3, W ,  = 2, and W ,  = 1 were chosen. In 
general, trajectories do not cross constant level sets at right angles. Generalization of definition 
of gradients based on Riemannian metric allows one to rescale angles such that all trajectories 
cross constant level sets at right angles (Appendix 5) .  (B) Demonstrates meaning of “corner 
equilibrium”. “Hill-climbing” process ends at corner of simplex since trajectories cannot cross 
boundaries. (C) Concentration simplex and triangle spanned by three eigenvectors of value 
matrix Wfor one particular choice of constants: n = 3, A ,  = 10, A ,  = 3, and A ,  = 1 ;  Qtk = 0.6 
and Qn = 0.2 for i # k and i, k = 1, 2, 3. Only dominant eigenvector I, lies inside concentration 
simplex. Entire domain of physically accessible values of relative concentrations is split into four 
zones. Two are characterized by monotonous behavior of average excess production: in the large, 
horizontally hatched area E ( t )  is nondecreasing function. In top zone, hatched vertically, E ( t )  is 
nonincreasing. No general predictions can be made for other two areas. (D) Behavior of average 
excess production E ( t )  illustrated by means of potential V. Now corner equilibrium lies inside 
concentration simplex since invariant lines that are not to be crossed by trajectories are given by 
boundaries of triangle spanned by eigenvectors of value matrix W: I,, I,, and I , .  
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and the same is true for the solutions, 

and the time dependence of the average excess production, 

When it comes to details, however, there are substantial differences between 
the two differential equations and their solutions (see e.g. ref. 18): 

1. The variables xk are relative concentrations and are nonnegative by 
definition: xk 2 0. No such relation holds for the variables yk. 

2. The coefficients W, are obtained from rate constants and mutation 
frequencies and hence represent real quantities. The #?k are the eigen- 
values of a nonsymmetric matrix and need not be real. 

As a consequence of 1 and/or 2, the average excess production is no longer 
a nondecreasing function of time. Optimization of the average excess pro- 
duction may still occur, but then it is restricted to certain choices of initial 
conditions (Appendix 5). Jones [ 191 derived a more complicated function E( t ) 
shown in Appendix 5 that represents a universal optimization criterion in the 
replication-mutation system, but the physical meaning of this Lyapunov 
function is unclear. 

The existence of complex eigenvalues of the value matrix W implies that 
the coefficients in Eqn. (11.15) are complex and rules out the existence of a 
real-valued potential function. Transient oscillations in the concentrations 
may occur, but in the limit of long times the system nevertheless converges 
toward the dominant eigenvector. The corresponding largest eigenvalue is 
real and positive, and hence all oscillations in concentrations have to fade out 
inevitably. 

The fact that the average excess production may decrease during a 
selection process can be illustrated by means of a simple example. Consider a 
homogeneous population consisting exclusively of the master sequence I,,, at 
time t = 0. Clearly the excess production is largest since the master sequence 
is characterized by the maximum selective value. During selection, mutants 
are formed that have smaller selective values, and finally when the system 
approaches the stationary distribution, which is the quasi-species, the average 
excess production reaches the stationary value from above, that is, from 
higher, total efficiency of replication. 
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For exclusively real eigenvalues of W the time dependence of the average 
excess production is determined by the choice of initial conditions. As shown 
in Appendix 5,  optimization of E ( t )  is restricted to initial conditions in the 
positive orthant [y , (O)  > 0; k = 0, 1, . . . , n ] .  These initial conditions are 
not difficult to fulfil, and they wil1,apply to many cases in reality. We should 
keep in mind, nevertheless, that there are other choices of initial conditions, 
such as the start with a pure master sequence, for which the simple principle 
does not hold. For one particular type of choice, y ,  (0) > 1 and yk(0) < 0 for 
all k # 1, the average excess production decreases monotonically. 

How likely is it to have a value matrix W with pairs of conjugate complex 
eigenvalues? Rumschitzki [S] showed that the value matrix W can be 
converted to a symmetric matrix W' by means of a similarity transformation 
provided the corresponding mutation matrix Q is symmetric ( Qij = Qji). 
Then all eigenvalue of W are real. Equal frequency of mutations in both 
directions, Zj + Zi and Ii + I j ,  is a realistic assumption unless the polynucleo- 
tide sequences under consideration contain so-called hot spots. These are 
positions at which point mutations are particularly frequent. It is unlikely 
that the reverse mutation leading to the sequence with the original hot spot is 
also an unusually frequent event. Therefore we expect a mutation matrix Q 
lacking symmetry in these cases. 

6. Population Structures 

The fundamental reinterpretation of Darwinian behavior to which we re- 
ferred in the preceding is a consequence of one central fact; namely, that not a 
single sequence but rather a master sequence and its entire quasi-species 
distribution appears to be the target of selection. Natural selection being the 
consequence of self-reproduction has been stressed already in population 
biology (mainly through the work of Fisher [20], Haldane [21], and Wright 
[22]). Hence an advantageous mutant appearing to any stochastically sig- 
nificant extent is bound to increase, making selection finally a deterministic 
event. On the other hand, the appearance of the particular mutant that 
proves to be selectively advantageous was assumed to be a stochastic event, 
having no target- or goal-directed bias. This view cannot be sustained any 
more as a result of the following argument. 

The chance of finding an advantageous mutant will increase with increas- 
ing Hamming distance (i.e,, the mutation distance from the wild type), the 
main reason being the large increase of the number of mutants and hence 
possible candidates with increasing distance. Whether a distant mutant can 
appear will depend on how its precursors are populated. If the precursors of a 
desired mutant are more populated than those of a nondesired one, there will 
be guidance of the evolutionary process along preferred routes. The theory 



170 MANFRED EIGEN, JOHN McCASKILL AND PETER SCHUSTER 

states that it is not the single master sequence representing the wild-type but 
rather the localized distribution in the sequence space that is the target of 
selection. Then it is very important to know how the various mutants are 
populated, The equations quoted in the preceding correlate population 
numbers with kinetic parameters called selective values,. Our problem now 
has two aspects: How are selective values distributed in sequence space and 
how does the value distribution map into a population distribution. 

It is immediately seen that guidance to optimal performance requires first 
that mutant population numbers critically depend on their own selective 
values (and not only on wild-type selective value) and that the value distribu- 
tion, as with the altitude distribution on earth, is not entirely random but 
rather clustered along more or less cohesive routes. The kinetic theory, as 
previously presented, makes quantitative assertions about the correlations 
between selective values and population numbers. 

According to Eqn. (A1.3) Qd describes (for a uniform error model) the 
probability of producing a mutant with Hamming distance d in terms of the 
normalized error rate E [Eqn. (A2.1)]. This probability decreases exponen- 
tially with increasing Hamming distance. The example of a virus with v 
= 4200 (discussed in Section V) yields an E value of about hence a 10- 
error mutant would occur only with a probability of A mutant, once it 
has been produced by miscopying of the wild type or of some intermediate 
precursor, may also replicate itself, possibly with a rate not too much smaller 
than that of the master copy. Hence the probability of making a given 
error copy is not identical with the stationary rate of appearance of that 
COPY. 

The appearance of a mutant copy li of the master copy I,,, in a stationary 
quasi-species can be calculated by the system of rate equations setting xi = 0. 
In the realm of second-order perturbation theory the explicit expressions can 
be obtained through recursion. The procedure is best explained with the help 
of Figure 1. Starting with the master copy, we assume that error copies form 
only along downhill routes including jumps of any length but neglecting any 
looped routes (i.e., routes in which Hamming distances do not monotonically 
increase). This entails the neglect of two kinds of processes: 

(i) consecutive change of symbols at a given position (e.g., A + G + U 

(ii) reversion of a change at a given position. 
instead of A + U) and 

Since any mutational process costs at least a factor E,  those looped routes 
are negligible unless mutants with increasing distance substantially increase 
in their population numbers (which would violate the validity of second- 
order perturbation expressions, for which Wii must not be too close to W,,,,,,). 
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The stationary solutions (i = 0) then yield for the relative population num- 
bers 

(11.1 7) 

where E is the quotient introduced with Eqn. (A2.1). The index di [abbreviated 
di in Eqn. (II.17)] refers to the ith sequence in the error class defined by 
Hamming distance d, and f d i  is obtained through recursion: 

j =  1 j =  1 
(11.18) 

In these expressions Wii always refers to the individual Zi in the corresponding 
error class under consideration, while the j ’ s  in the sums refer to the 
corresponding precursors of Zi, for example, inf,, to all d one-error precursors 
or inf, - 1, to all d of the (d - 1)-error precursors of Zi. Note that due to the 
iterative nature, the first sum term in f d i  contains d! d-fold products of 

In this approximation neutral mutants (i-e., Wii = W,,) and hence singul- 
arities in thefi’ terms are precluded. Most mutants will have selective values 
Wii that are small compared to W,, or that may even be zero (nonviable 
mutants). If all mutants in fact were of this kind (i.e., Wii 4 W,,), the mutant 
appearance would resemble the Poissonian-type distribution, yielding for any 
individual in error class d the probability ed. Expression (11.18) comprises all 
contributions of mutant states (classes d ranging from 1 to v, including 
stepwise mutations as well as any jumps up to length d (occurring in direction 
0 + d). Contributions from reverse mutations are neglected in this approxi- 
mation. They could occur if truly neutral or nearly neutral mutants were 
present that reversibly are populated with numbers that increase with in- 
creasing d. This approximation still allows for quite large terms Wii/(  W,, 
- Wii)  extending to several orders of magnitude. In fact, all that is required is 

wkk/( wmm - wkk) terms. 
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that these terms do not become as large as E -  Then the xdi decrease with 
increasing Hamming distance d ,  yet much less drastically than cd does (cf. 
Figure 5 and the more detailed discussion in Section IV.4). In the previously 
mentioned example of a virus, where for the 10-error mutant, cd drops to 
10- 40, such an individual mutant, if it were in a domain of precursors with 
Wii values within 1- of W,,, would be raised to a realistic probability of 
appearance, in contrast to corresponding mutants in low-value domains. 
This requires not only singular (nearly) neutral mutants in the distribution 
but also a clustering of such mutants in more or less cohesive domains, as in 
landscapes on earth where planar and mountainous regions are also clus- 
tered. 

On the other hand, a comparison with landscapes on earth may be 
misleading since the sequence space is of high dimension. All distances 
remain relatively small, while, as Figure 1 demonstrates, all states are highly 
interconnected. A mountain trip in such a space may proceed along ridges 
that are multiply interconnected and thereby link up the peaks. Those ridges 
and peaks are the points in sequence space that are most heavily populated 
by mutants, which thereby provide guidance to the evolutionary process. 
Here we come back to the other still unanswered question: how are values 
distributed in sequence space? If this distribution were entirely random, it 
could not guide the evolutionary process over any substantial length of path. 

Mandelbrot [23] has shown that the “most random” type of height 
distribution to be expected on earth is of a fractal type. The same should be 
true for a value distribution in the v-dimensional sequence space. Such a 
fractal distribution is highly connective, that is, anything but uncorrelated. 
Moreover, we know that functional efficiency is clustered around certain 
sequences. The functional efficiency of an enzyme depends on the correct 
spatial arrangement of certain amino acid residues that comprise the active 
center: this is achieved by three-dimensional folding of the polypeptide chain 
[24]. Hence there exists a correlation: 

Primary sequence 

I Protein folding 

Tertiary structures 

Functional efficiency 
i 

Similarities in primary sequences in general will map into similarities of 
folding, which in turn will lead to similarities in tertiary structures and 
functional efficiencies. 
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Figure 5. Importance of mutant bias in evolution. Simulation demonstrates role of ridges in 
selection value landscape in directing route of evolution. Binary sequence of complexity 50 is 
assumed. In upper part of picture, two value profiles are shown as functions of Hamming 
distances from reference master 0. Selective value maximum connected to particular mutant at d 
= 13 (excluded from stationary state calculation) by three different landscapes: (i) lowland where 
all intermediate mutants have inferiority of 0 (ii) plateau where all mutants have inferiority of0.2 
(open bars); and (iii) smooth mountain ridge with monotonous decrease of inferiority to 0.5: at d 
= { 6 , 7 )  followed by rise to 0.98 at d = 12 (filled bars). Adding sequence at d = 13 that is neutral 

with master (inferiority 1.0) would produce symmetric distribution between two maxima. For 
each profile two limiting scenarios have been calculated, and results for mutant populations 
plotted beneath. Curves b and d: elevated inferiorities (Wii/Woo) are found for only one 
particular route comprising 12 subsequent defined mutation steps. All other mutants have 
negligible inferiority values. Curves a and c: All mutants with same Hamming distance to nearest 
maximum have degenerate inferiority values ( Wdd/Woo); i.e., all direct routes are possible because 
succession of mutation steps is arbitrary. (Consult Figure 1 in order to correlate with routes. 
Note that routes for d = 12 comprise only minute fraction of possible connections in 
50-dimensional space, i.e., 212/150 = Solid curve d coincides with relative mutant 
populations according to Poissonian distribution ( Wdd/ Woo = 0). Curves c, d and a, b refer to 
inferiority value distributions of plateau and smooth ridge profiles, respectively. Following 
features are seen: Relative populations, around a peak in selection value landscape that rises 
abruptly from lowland, drop rapidly with increasing Hamming distance from master. Probabil- 
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Evidence for such a similarity transformation has been provided by 
experiments on site-directed mutagenesis. Changes in the primary sequence 
of enzyme molecules produced through site-specific genetic manipulation in 
many cases turned out to be of only minor consequence to the catalytic 
performance. Those changes, of course, must not occur at certain strategic 
positions that are determinants for the structure of the active site. Otherwise, 
there are many positions that are relatively insensitive to substitution, 
especially by related amino acids. The same conclusion can be reached by 
considering phylogenetic sequence relations. A well-studied case is the en- 
zyme cytochrome-c. Sequences in different species may be dishomologous in 
more than 70% of the positions, and yet the same reaction is catalyzed 
(almost) equally well. Hence there is no doubt that a similarity relation 
corresponding to a clustered-value distribution in sequence space does exist. 
However, the relation itself is anything but simple, and no straightforward 
method of calculating those relations seems to be at hand. For the quasi- 
species model the existence of a clustered-value distribution as such is of 
paramount importance. Since the theory shows how value distributions map 
into populatim distributions, a quantitative analysis of mutant distributions 
in selection experiments could provide the evidence and allow for quantitat- 
ively estimating the effect of mutational guidance in evolution. 

111. ERROR THRESHOLD FOR QUASI-SPECIES LOCALIZATION 

The organizing principle embodied in the kinetic equations presented in 
Section I1 is given a global character by the appearance of the off-diagonal 
mutational terms, which provide the variation necessary to the Darwinian 
logic. Thus, under the physical conditions, where every sequence may be 
reached by a succession of mutations, the model describes an evolutionary 
process capable of finding the fittest from arbitrary initial conditions and of 
returning to it after perturbation. The special feature of the organization 

ity of reaching another peak with Hamming distance of 12 is very low for typical laboratory 
populations. In case where sharp crest with low selection values is attached to peak, probability 
of finding 12-error mutant is only slightly higher. If peak is surrounded by low plateau (between 
d = 0 and d = 12), this probability rises by nearly seven orders of magnitude. Effect of higher 
selective values is drastic: Just one sharp crest with profile depicted above brings probability of 
occurrence of 12-error mutant up to such order of magnitude that population necessary to find 
one strand can be realized readily in laboratory. If all routes leading away from summit have 
same profile, large multiplicity of 12-error mutants will occur (deterministically) in laboratory 
population. Bias of selective values guiding evolutionary path along ridges in selective value 
landscape is clearly demonstrated. Note also cumulative effect of connected high-value regions in 
v-dimensional landscape. 
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allowing the selection of a particular sequence type is the relative weakness of 
mutational interactions. The nonequilibrium Darwinian organizing principle 
has a parallel in the existence of particular ordered states at equilibrium, such 
as the low-temperature phases of ferro- and antiferromagnets and ferro- and 
antiferroelectrics or the condensed states of nucleoside bases in stacks. There 
the temperature represents the equivalent of the mutation rate. At certain 
critical temperatures we observe order-disorder equilibrium transitions. 
Likewise, there is a threshold for selection of a particular wild-type sequence 
in the nonequilibrium Darwinian organizing principle. 

In this section we demonstrate the existence of a sharp error threshold in 
the kinetic model developed in the preceding and explore its dependence on 
the value topology of Darwinian fitnesses Wi and the mean fidelity q = ij of 
single-digit replication. The error threshold result delineates the domain 
where evolution proceeds to the survival of a stably localized quasi-species. 
With higher error rates, the class of sequences distinguished as fittest, by the 
stationary solution of the deterministic kinetic equations, becomes so large 
that it cannot be sampled by any biological population. A stochastic in- 
terpretation of the dynamics as a random drift covering this class is then 
called for. The character of the present discussion is then intermediate 
between a deterministic and stochastic account, and although we shall refer 
to statistical distributions of replication rates, the dynamics will be that of the 
deterministic kinetics. 

1. Error Threshold and Selective Advantage 

For a particular sequence I ,  to compete successfully with all the other 
mutants, it has to be produced at a (net) rate W,, faster than the excess 
production rate &#, of these other mutants. The latter rate is enhanced by 
the inclusion of inexact replication (leading mostly to further mutants and 
only rarely back to the wild type). Thus, not only does a sequence I,,, generally 
need to have the maximum net rate Wm for exact replication in order to be 
conserved indefinitely in a population, but it also needs to satisfy the more 
stringent requirement 

- E k x k  
k # m  

wmrn , 
X k  

k # m  

(111.1) 

where the X k  are the stationary relative population numbers. 
Indeed, the neglect of backflow of mutants to the wild type, that is, 

identification of W,, with the diagonal rate coefficient of the master se- 
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quence, is equivalent to a second-order perturbation result, and to this order 
a calculation of the wild-type population yields 

(111.2) 

where Em = A ,  - D, is the excess productivity of the wild type. 
According to Eqn. (111.2), the relative equilibrium concentration of the 

wild - type X,/X X, = X,/c ,  vanishes for some critical error rate at which W,, 
= E k + , .  This, of course, is merely a consequence of the perturbation 
approach that neglects backflow of mutations to the wild type. The phenom- 
enological calculation of X,, based on the use of i k  # ,, can be carried out 
exactly if we introduce a mean backflow rate: 

Then we obtain the relative equilibrium concentration of the wild type as the 
positive root of a quadratic equation: 

- 

-- - +(d -93 + J(d -93y + 4a) (111.3) X m  

1 :k 
k 

with 
WM and a = wmrn - - E k + m  

E m -  E k + m  
d =  

E m  - Ek # m *  

It is - readily seen that 2, does not vanish at the critical point d = 0, or W,, 
= Ek # ,, but is given by 

which is small, on the order of 
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The exact equation (111.3) may be solved if the phenomenological parameters 
d and 98 can be computed. For the special test case of a single advantageous 
master with homogeneously poorer competitors, d may be computed 
exactly and 98 computed as a function of ?,/&& under the assumption that 
all other mutants are equally populated. The solutions for X, given by (i) 
second-order perturbation theory Eqn. (111.2), (ii) the phenomenological Eqn. 
(111.3) with the above assumption for W, and (iii) the exact solution are 
presented in Figure 6 for sequence lengths 7 and 20. For large sequence 
lengths the results are not significantly different from the solution of 
Eqn. (111.3) with W = E (  1 - i , / & ? k ) ,  E -, 0 (two straight lines). 

Equation (111.2) may be rewritten to isolate the dependence on the copying 
fidelity q in order to demonstrate that for a given set of replication parameters 
there is an error-rate-dependent threshold sequence length for quasi-species 
instability. To this end the selective advantage or superiority parameter was 
introduced: 

06 lo:\ v.20 

\ 0.2-1 \ 

01 05 09 

(111.4) 

ERROR RATE, I -a, 

Figure 6. Relative wild-type concentrations as function of error rate 1 - Q o o ,  We show 
exact solution curve (upper full line) and compare it with result of perturbation theory [Eqn. 
(111.2); broken line) and exact solution of Eqn. (111.3) with B calculated as in text (lower full line). 
Following parameters and rate constants applied: A ,  = 10, Axto  = 5 ,  Do = D, = . = D, and 
v = I. n = 2’- 1. 
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which is not explicitly dependent on q and in terms of which the inequality 
(111.1) becomes Q, > o- ', or using Eqs. (Al.1-Al.4) in Appendix 1 to relate 
the quality factor to the sequence length: 

lno  lno  
v - <  v,,,= - ~ "- 

lnq 1 - 4 '  
(111.5) 

This relationship shows that the amount of information that can be main- 
tained in the form of a specific stable sequence is limited by the copying 
fidelity q. Thus the price that is paid for the global nature of the organization 
via variation is a limitation on the discrimination of fitness. Typical vpri- 
ations in fitness can only be selected for up to the critical sequence length v,,, 
since the fidelity of copying the whole sequence decreases exponentially with 
increasing sequence length. 

It should be briefly pointed out that simply decreasing the replication rates 
of other sequences to increase the superiority of the master does not in- 
definitely postpone the error threshold. Once the replication rates for mutant 
sequences fall below the destruction rate for the master sequence, the domain 
of viable existence for the quasi-species is limited by A,Q, > D,. In Section 
111.3 a more fundamental statistical argument restricts the effective superior- 
ity to a finite value of order 1. 

The dependence of the threshold on the replication rate parameters A,,  D, 
expressed through Eqn. (111.1) or (111.4) is dependent on the populations of 
each - of the mutants that appear to weight the average excess productivity 
E ,  + , [cf. Eqn. (III.l)]. In particular, mutants that are distant from the wild 
type may require a net exact replication rate much closer to that of the wild 
type than does a nearby mutant in order to reach a substantial fraction in the 
population and increase &+, above Wm,. On the other hand, a more 
detailed analysis of the error threshold in terms of the many rate parameters 
characterizing the different mutant sequences appears unwieldy, as it requires 
full solution of an extremely high-dimensional eigenvalue problem. 

One possible option is to adopt a statistical description of the kinetic 
parameters and to ask how likely it is for the quasi-species to be localized 
about the wild type. This undertaking requires an analysis beyond the second 
order in perturbation theory since a distant mutant with a selective value very 
close to that of the wild type may jeopardize the stability of the latter in the 
population. We were however encouraged by the progress that had been 
made with a problem of similar difficulty in the very different area of electron 
or spin localization in disordered solids. Indeed, it turns out that an ex- 
pression of the form of Eqn. (111.5) may be obtained, with an explicit 
expression for the superiority parameter C T ~ ,  dependent on the distribution of 
replication rates but not on any average involving population variables. 



THE MOLECULAR QUASI-SPECIES 179 

More exciting than this, the selective advantage of the wild type turned out to 
be nonzero even with a continuous distribution of selective values (for the 
different mutants) up to that of the wild type. These developments are 
reviewed in the following section. 

2. Localization Threshold for Statistically Distributed Replication Rates 

We consider once again the deterministic kinetic Eqn. (11.4) with the uniform 
error rate expression Eqn. (A1.5) relating mutation rates to replication rates: 

(111.6) 

If we ignore the destruction terms D k ,  the different mutants are fully charac- 
terized through their rates for exact replication wk. This assumption simpli- 
fies the following discussion by allowing a single distribution of value 
parameters f (  W )  to completely characterize the mutant spectrum, but this is 
not essential to the argument. Accordingly, we write 

(111.7) 

expressing the sharp dependence of mutation rate on the Hamming distance 
in the mutant space. 

In Appendix 6 we summarize the necessary modification of the Rayleigh- 
Schrodinger perturbation theory, which was applied to replication dynamics 
[lS, 161, in order to obtain explicit expressions for higher order terms. This 
Brillouin-Wigner approach yields a self-consistent expression for the domi- 
nant eigenvalue, Eqn. (A6.8), but one involving a perturbation series that may 
be immediately written down to arbitrarily high order [Eqn. (A6.3) evaluated 
at s = I.]. In particular, the wild-type fraction in the population is given by 
the reciprocal of Eqn. (A6.9) for k = m, the result being not restricted to 
second order. Localization of the quasi-species about the wild type Zm is then 
a question [29] of the convergence of Eqn. (A6.9), or equivalently of the series 

(111.8) 

determined by Eqn. (A6.3), or more conveniently by Eqn. (A7.1). Here, I I  
denotes the dominant eigenvalue of the matrix W (A > wi for all i). 

The question of convergence of this series in turn depends on the exact 
replication rates Wii of all the different mutants. If we describe these statis- 
tically in the absence of more detailed information, then convergence must be 
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discussed probabilistically. The question is then how probable localization of 
the quasi-species is for a given distribution of replication rates. 

In order to answer this question, a significant source of statistical correla- 
tion arising from mutation paths that visit a particularly advantageous 
mutant more than once must be considered. In the perturbation theory these 
paths are represented by products of factors involving the mutant replication 
rates, and it is necessary to remove the strong correlation that arises between 
these factors where repeated indices are present in order to obtain a tractable 
statistical analysis of convergence. The Watson renormalization procedure 
[29], the application of which to the steady-state quasi-species is summarized 
in Appendix 7, accomplishes just this [30]. The cost is a consecutive modifica- 
tion of the denominator, which may however be simplified to good approxi- 
mation, as in Eqn. (A7.5). 

The individual contributions to the series T, may then be shown, as 
outlined in Appendix 8, to have a narrow probability distribution about their 
logarithmic mean value provided the replication rates have no long-range 
correlations with respect to the Hamming distance. The contributions of 
paths involving products of N mutations may then be summed to an 
expression that lies with a probability approaching 1 in a narrow range of 
values about LN as N becomes large. Thus the convergence of the series T,, or 
the nonvanishing of the wild-type population, depends on whether the 
parameter L is greater than or less than 1. It is further possible to demon- 
strate that 2 is not significantly different from W,, even at threshold, which is 
then characterized by the equation 

W 

( w m m -  w),: 
1 = L( W,,) N (4 -”  - 1)  (111.9) 

where the logarithmic average defined in Eqn. (A8.9) is over a probability 
distribution f( W )  of replication rates taking values up to that of the wild 
type W,, . The maximum sequence length corresponding to the preceding 
threshold is 

In comparison with Eqn. (111.4) the result of the statistical analysis is to 
provide an expression for the effective superiority parameter oeff of the wild 
type in terms of the distribution of replication rates of its mutants. 

Some values of the logarithmic average appearing in Eqn. (111.9) and of 
In oeff are recorded for various replication rate distributions in Table I. For 
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the special case where all the mutants have identical replication rate W, the 
superiority parameter of Section 111.1 is independent of population variables 
and may be explicitly evaluated, agreeing with the effective superiority 
defined by Eqn. (111.10). At the opposite extreme, where all values less than or 
equal to the wild-type replication rate W,, are equally probable, a finite 
answer lna,,, = In2 = 0.69 , . . is obtained. As the replication rate distribu- 
tion becomes more weighted toward the wild-type value, a neutral mutant 
extreme is approached for which In aeff steadily decreased toward zero. These 
last two results are at first surprising because the continuous distributions 
imply the existence of mutants arbitrarily close in selective value to the wild 
type. That the effective superiority of the wild type is nonzero is a reflection of 
the crucial effect of mutational distance and the structured population of the 
quasi-species. 

The remaining three distributions in Table I are appropriate when the 
wild-type replication rate is regarded as the largest value of many sequences 
sampled. We shall focus on this view in the following section, which allows 
rather general conclusions to be made with the aid of extreme-value theory. 

It will be apparent that the probability distributions, upon which the 
localization threshold result of Eqn. (111.9) depend, contain no reference to 
possible correlations between the selective values of neighboring sequences in 
the mutant space. A consideration of the statistical argument summarized in 
Appendix 8 shows that the localization threshold depends only on the 
absence of long-range correlations between the selective values. We illustrate 
short- and long-range correlation by means of examples. Short-range correla- 
tion occurs in systems where the selective value of the mutant has always a 
fixed probability of a value near that of each of its neighbors. This would lead, 
for example, to those direct-track mutants, between the wild-type and an 
unusually good competitor, having a higher probability of a high selective 
value than others. A long-range correlation, which would jeopardize the 
result, occurs when the replication rate is dependent upon two properties 
determined by disjoint subsets of the sequence. Such correlations occur, for 
example, when a sequence codes for several proteins or when only a fraction 
of the sequence determines the fitness (cf. Section 111.4). 

3. Extreme-Value Theory for Effective Superiority 

The evaluations of the error threshold and effective superiority discussed so 
far [Eqn. (III.lO)] assume specific knowledge of the wild-type net rate of exact 
replication W,,. It is clear, however, that the wild type is distinguished from 
the other mutants only insofar as it has the maximum selective value, and so 
it is sensible to regard this value as the random extreme of n trials from the 
probability distribution f (  W )  [29]. We may then speak of the general 
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localization threshold properties of a quasi-species belonging to a particular 
distribution dependent upon n instead of Wmm. The results are of more than 
academic interest in their remarkable insensitivity to n for large populations. 
Clearly, n is the number of different mutant sequences sampled in the history 
of the quasi-species. 

The extreme value W g )  of n trials from a probability density f( W )  with 
the cumulant distribution F ( W )  satisfying the large W behavior 

(111.1 1) 

has, asymptotically, the extreme-value distribution of exponential type in that 

where I ,  depends on the underlying distribution F (  I , )  = 1 - l jn.  The prece- 
ding result is one form (due to van Mise, see ref. 32) of the extreme-value 
theorem, the (cumulant) distribution on the right of Eqn. (111.12) being known 
as the limiting extreme-value distribution of exponential type. 

The physically reasonable distributions in the absence of a specified 
maximum are not truncated but have diminishing probability for very high 
values satisfying Eqn. (111.1 1). The extreme-value parameter I,, which is the 
mode of the extreme, and nf( l,), which is related to its variance, are displayed 
for exponential, gamma, and normal distributions for large n in Table 11. The 
modal estimate becomes reliable for large n, and the error threshold may be 
estimated with Wo = I,, as the table indicates. The n dependence of the 
threshold through In (In n )  is so extremely weak that rather precise estimates 
can be made. Thus, in the Q/3 replicase in vitro evolution experiments of the 
Spiegelman type, the number of molecules limits n to 10l2 * even taking into 
account consecutive sampling of sequences (on a laboratory time scale of lo2 
generations), and ln(1nn) is then 3.3 & 0.3. At the other extreme of the 
maximum possible number of sequences sampled in the course of the evol- 
utionary history of the earth, n < los0, In (In n)  is only 4.75. The numbers in 
the table are for n = 10l2. The results completely confirm the original view 
that In a should be a number of order unity. In comparison with experiments, 
it should be emphasized that the threshold sequence length must be greater 
than the observed sequence length for a stably localized quasi-species. For 
example, a single independent measurement of v and 4 for a Q/3 viral RNA 
[34, 351 indicates lna,,, > 1.4 for this virus. 
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4. Relaxed Error Threshold and Gene Duplication 

So far we considered every part of the polynucleotide sequence as being 
equally important for the replication process. This very restrictive assump- 
tion will not be justified for most systems in reality. This is quite obvious for 
eukaryotes, where the larger fraction of the genome consists of noncoding 
intervening regions (introns). Though introns, depending on their functional 
role, may well require conserved sequences, the fidelity requirements will vary 
greatly and differ from those in expressed regions (exons). Even in the coding 
regions, mutations in some parts of the polymer have little or practically no 
influence on the “fitness” of the polynucleotide. In test tube replication 
experiments such unimportant parts are represented by bases outside the 
regions of enzymic recognition, when, in addition, they do not contribute to 
the secondary structure required for replication. In the genomes of organisms 
these mutations concern changes in the base sequence, which, when trans- 
lated into protein, yield enzymes that differ very little in catalytic efficiency 
from those of the wild type. Other mutations are “silent” and lead to identical 
proteins upon translation. Others may concern parts of the DNA that are not 
translated at all and that have no influence on replication as well. Such 
mutations are commonly considered as being selectively neutral. 

Selectively neutral mutants were observed in test tube evolution exper- 
iments [36]. They are much harder to detect with small viruses, which often 
have highly condensed genomes including overlapping genes, read-through 
positions, and so on. Neutral mutants were found in chemostat experiments 
with bacteria [37-391 and in higher organisms [2]. The latter have in 
addition large fractions of their genomes apparently unused for coding 
protein or regulation. Changes within these regions of the DNA will be 
selectively neutral provided they do not interfere with recombination. 

Given that such regions of little or no influence on the fitness of a 
polynucleotide sequence do exist, we expect intuitively a relaxation of the 
error threshold. Typical situations in which this relaxation appears to be of 
major importance are gene duplication, multigene messengers, and segmen- 
ted genes. In this section we present the results of a quantitative analysis of 
replication with partially relaxed constraints on accuracy [40]. The same 
approach can be applied also to related biological problems such as the 
occurrence of “selfish” RNA or DNA or the exon-intron structure of eukar- 
yotic genes. We consider a polynucleotide of chain length v that is built up 
from two segments A and B. The two segments are v A  and v B  bases long, 
respectively: v = v A  + vB. Both segments exist in various mutant forms, 
A , ,  A , ,  . . . , A ,  and B, ,  B,, . . . ,B, (Figure 7). We may visualize such a 
polynucleotide as a primitive genome consisting of two genes only. Both 
genes are present in several alleles. Segments A and B need not be joined 
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SEGMENT A SEGMENT B 

I v = v A * v g  4 

Figure 7. Structure of segmented polynucleotide sequences. Sequence is built from two 
segments of chain lengths v A  and vB, respectively; rs different sequences can be forded by 
combination of r segments of type A and s segments of type B. 

physically. For instance, segment B could be split into some or many parts 
that are inserted into A at different positions. We shall only assume that 
changes in all parts of A have a strong influence on the fitness of the 
polynucleotide, whereas those in the parts of B are of little or no influence. 

An individual polynucleotide sequence is labeled by two indices, i and j :  I i j  
denotes the combination A i - B j .  There are, of course, rs individual combina- 
tions of this kind, that is, rs polynucleotide sequences on which selection acts. 
We introduce relative concentrations (which carry double indices accord- 
ingly), cij= [Iij]: 

with O < x i j  and Z x i j =  1. The selection equation is of the form 

i i j  = f w i j ,  k l X k f -  E X i j ,  
k l = l  

(111.13) 

(111.14) 

The selective values and the rate constants are defined as before; in particular, 
we have 

W i j , k l = A k l Q i j ,  k l - D i j d i j ,  k l .  
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In principle, Eqn. (111.14) does not differ from the cases treated above in the 
preceding. 

Now, we shall focus upon individual regions of the polynucleotide se- 
quence A(i) and B,,, , We introduce new variables that represent summations 
over the distribution of the alleles in the other region: 

x i o =  2 x i j  and x o j =  2 x i j .  
j =  1 i = O  

(111.15) 

Usage of these variables requires definition of average selective values and 
average rate constants, which are summarized in Appendix 9. 

The analysis of the selection equation is based on two assumptions: 

1. We consider single-step mutations only. Precisely, we assume that 
either part A or part B may be changed during one act of replication. 
Simultaneous changes in both parts are neglected. 

2. We shall assume that the quality factors for replication of A and of B do 
not depend on the particular base sequences. We denote these general 
factors by Q A  and Q B .  

The second assumption is consistent with the uniform mutation frequency 
model discussed in previous sections. It is, however, less restrictive than that: 
Error rates need not be uniformly distributed in A or B as long as the total 
quality factors remain the same. 

With these two assumptions we derive separate selection equations for 
part A and part B (see Appendix 9 and ref. 39): 

with i , k = l , .  . . , r and  j , l = l , .  . . ,s. 

These two differential equations describe how selection acts on parts of the 
replicating unit. The equations are equivalent to the selection Eqn. (111.15) in 
so far as no simplifying assumptions were made except the two concerning 
the structure of the mutation matrix Q .  The interaction between the two parts 
of the polynucleotide occurs via the average rate constants J io ,  dio, Joj and 
boj as well as implicitly through the common average excess production: 

E =  c ( A i o - d i o ) x i o =  2 ( A o j - d o j ) x o j .  (111.18) 
i =  1 j =  1 
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Let us now compare the mathematical structures of the selection 
Eqn. (111.15) and the coupled systems of Eq. (111.16) and (111.17): The original 
equation had rs variables and one conservation relation and was linear apart 
from the mild nonlinearity caused by E. Equations (111.16) and (111.17) 
contain r + s variables only; they fulfil two conservation relations but are 
highly nonlinear through the coupling terms. We recall from Appendix 9 
that, For example, 

l S  Aio=- A j x i j .  
X i 0  j =  1 

Hence, solution of these equations will be rather involved in the general case, 
and one has to rely on numerical procedures. These are readily available 
because closely related problems are frequently encountered in numerical 
mathematics [41]. We dispense here with the details of the corresponding 
equation for the general case where the sequences in part B contribute 
differently to the fitness. As expected, it is not possible to remove the coupling 
terms completely. 

Let us now consider an important special case in which the coupling terms 
have a particularly simple structure. We shall assume that the individual base 
sequences in part B have no specific influence on the replication rate of the 
whole polynucleotide A-B. They are selectively neutral, and we may write 

wherein A i  is the sequence specific effect of part A andf, is the unspecific 
effect of part B on the rate of replication. This ansatz has the consequence 
that the two mean values are of different form: 

I .  I '  
A i o = A , f B  and Aoj=fB- C A i x i j ,  

X o j  j =  1 

which implies highly unsymmetric coupling of the two differential equations. 
For the sake of simplicity we assume equal rates of degradation for all 

sequences (Dij=D).  Then the contributions of D to W and E cancel in both 
differential equations, and we may simply neglect them. The selection 
equation of part A can now be written in a form that closely resembles the 
original differential equation (Appendix 3): 

(111.19) 
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with 

E ’ = C A i x i o  and Q $ = l - C  Q i  ( i , k = l , .  . . , r ) .  
i k + i  

In principle, the common factorf, can be absorbed into the time axis by 
means of a linear transformation: t = tf,. Apart from this scaling the differ- 
ential Eqs. (111.19) are completely independent of part B. The equations are 
now confined to part A of the polynucleotide, and the error threshold is 
determined by the quality factor Q:, This quality factor is substantially larger 
than the quality factor of the entire sequence, 

Q i j , i j = l -  C Q i + C Q j ” I  and Q$-Qij,ij=CQj”I* 
( k # i  I # j  l + j  

In other words, the formula derived for the maximum number of bases in 
the polynucleotide sequence (vmax) applies now to v, only and not to the total 
length. 

In general, chain lengths v are not conserved in polynucleotide replication. 
Insertions and deletions are common. Duplications of longer parts of se- 
quences occur as well. Every polynucleotide thus has to compete not only 
with molecules of the same chain length but also with longer and shorter 
sequences. 

Whether or not a given polynucleotide can compete successfully with 
competitors of different length is determined largely by the chain length 
dependence of the rate of replication. This dependence is rather complicated 
[ 10-123 and varies with environmental conditions. As an example, we 
consider the limit of long polynucleotide chains. If template concentrations 
are in vast excess of polymerase concentrations, a polynucleotide will bind 
one enzyme molecule or none. The mean time for the complete replication 
process increases linearly with the chain length, and the rates of replication 
are roughly proportional to v - ’ .  If the enzyme is available in excess of 
templates, however, many polymerase molecules can bind to the same 
template. The number of polymerase molecules operating on one polynucleo- 
tide strand is proportional to its length, and then the rate for the replication 
of sufficiently long chains becomes independent of the chain length. 

The factorf, is an appropriate measure of the fitness of polynucleotides 
that carry unused or redundant parts and compete with shorter and longer 
sequences. In case the rate of replication does not depend on the chain length, 
f, will be close to 1 and longer sequences may compete successfully with 
shorter ones. Rates of replication that are largely insensitive to chain lengths 
are particularly important for the process of gene duplication. A coding 
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sequence may be duplicated accidentally by a replication error. The longer 
polynucleotide formed has to compete with shorter sequences for some 
intermediate period of time during which its fitness remains practically 
unchanged (fB x 1). One part of the sequence is not required for replication 
and hence may vary unrestrictedly. If variation of the unused part leads to a 
sequence that has a positive effect on the fitness of the whole polynucleotide, 
it will proliferate and eventually become dominant in the population. An 
increase in fitness may be caused simply by changes in the secondary 
structure of the polynucleotide. More interesting is a case when the unused 
part is translated and the translation product gains catalytic activity. Success- 
ive gene duplications may lead to whole families of proteins with different 
substrate specificities. 

The new catalytic function may eventually improve the accuracy of 
replication. Then gene duplication represents a powerful evolutionary mech- 
anism to increase the catalytic capacity of a replicating system, which makes 
replication more precise whenever this is necessary and possible. 

Present-day structures of proteins provide some hints on the role of gene 
duplications in evolution. Proteins commonly occur in families. These are 
structurally related enzymes catalyzing reactions of the same class with 
different substrate specificities. Examples are families of proteases or de- 
hydrogenases. In addition to this, one observes interesting regularities in the 
structures of many globular proteins: Substructures (so-called motifs) are 
often repeated exactly or with minor modifications only. Such repetitions 
were found in the same protein molecule as well as in different protein 
molecules. Both the modular structure of polymers as well as the existence of 
protein families can be explained by a gene duplication mechanism. 

Last but not least, we may mention the exon-intron structure of eukaryotic 
genomes. Though error rates are generally adapted to the full genome size 
and throughout found to be smaller than lo-", fidelity requirements may 
differ for exons and introns and even vary within both. For instance, part of 
the intron regions may have signal character and therefore ought to be highly 
conserved. The relations referred to in this section will allow a quantitative 
treatment of such cases. 

5. Analogies to Phase Transitions 

Numerical studies on quasi-species localization [42]-as they will be pres- 
ented and discussed in Section IV-showed a sharpening of error thresholds 
with increasing chain lengths v. Sharpening means here that the transition 
zone from localized quasi-species to delocalized sequence distributions be- 
comes narrower. This phenomenon is reminiscent of cooperative transitions 
observed with conformational equilibria in biopolymers. We shall investigate 
here whether or not error thresholds show analogy to phase transitions in the 
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limit v+ co. The equilibrium statistical mechanics of lattice models and the 
dynamics of Markov processes can be described within the same mathemat- 
ical discipline of “Markov random jields” [43], and therefore, similarities in 
global behavior such as the existence of cooperative phenomena or phase 
transitions are not completely unexpected. Spin lattice models are parti- 
cularly well-suited candidates in the search for analogies between equilibrium 
properties and replication dynamics because several of them are sufficiently 
simple to allow derivations of analytical expressions of thermodynamic 
functions [44]. 

Analogies between replication dynamics and spin lattice models were 
investigated in recent publications by Demetrius [45] and Leuthausser 
[46,47]. Both approaches are based on a common concept, and we shall 
discuss them here together. Replication dynamics is considered as a dynam- 
ical system in discrete time and modeled by the difference equation 

n 

k =  1 
x i ( t + A t ) - x i ( t ) =  1 WikXlr(t)-[Di+@(t)]Xi(t) ,  i =  1, . . . ,n, (111.20) 

which is defined on a time axis . . . , t - At, t ,  t + At,  . . . . The discrete dynam- 
ics of the replication-mutation process is, of course, not identical to. the 
dynamics of the kinetic Eqn. (A4.1) since it assumes synchronized repli- 
cations. In the limit of infinite time ( t - a ) ,  however, the distributions of 
polynucleotide sequences in the discrete system converge asymptotically 
toward the stationary solutions of the differential equation [48]. 

The discrete dynamical system can be modeled by a multitype branching 
process provided the flux term @(t) is neglected. Then the distribution of 
sequences is derived from proper statistics of genealogies. A genealogy is an 
individual time-ordered series of sequences that represents one particular 
recording of successive descendants: each member of a given genealogy was 
synthesized by correct or erroneous copying of its precursor as template 
(Figure 8). The individual genealogies are compared with one-dimensional 
lattices of generalized spins. Every spin has n=Ic’ different states, 2’ for 
binary sequences and 4’ for polynucleotides. Interactions on the lattice are 
restricted to nearest neighbors. This restriction follows naturally from repli- 
cation dynamics or from the Markov property of the branching process: the 
probability distribution of copies-correct replicas and mutants-depends 
on the template to be copied and not on its precursors in the genealogy. For 
the spin lattices the nearest-neighbor approximation is a more serious 
restriction since magnetic interactions may reach much further. It is neverthe- 
less the basis of a well-studied class of models known as Ising lattices. 

Probability distributions on the genealogies correspond to probability 
distributions on the lattice of spins. The connection between the discrete 
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f 
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G :  I, -I2 - I, - .... 

iai  

Figure 8. Polynucleotide replication as multitype branching process is compared with spin 
lattice models: (A) One-dimensional model is based on generalized one-dimensional king lattice: 
Every spin is assumed to exist in n different states corresponding to n different polynucleotide 
sequences. Genealogy of branching process is considered as analog of particular one-dimen- 
sional arrary of spins. 

dynamics and the lattice model is based on the following fact: The dominant 
eigenvalue of the value matrix W, i,, satisfies a variational principle formally 
identical to the minimization of the free energy in statistical mechanics. As a 
consequence, the macroscopic quantities in replication dynamics can be 
compared with the thermodynamic variables in lattice models. The free 
energy, for example, corresponds to the logarithm of the dominant eigenvalue 
of the value matrix W: Fzlogj. .  The product of entropy S and temperature T 
is the negative analog of the complexity parameter H of the stationary 
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Figure 8. (B) In two-dimensional model genealogy is represented by two-dimensional spin 
lattice. Individual spins exist in two states (t and 1) corresponding to two digits in binary 
sequences. Every row of lattice consists of v digits and corresponds to polynucleotide sequence. 
“In-row” interaction, described by spin-spin coupling constant J x ,  is property of individual 
sequence and contributes to rate constant of replication. “Vertical” coupling constant J,, on the 
other hand, is measure of mutation frequency. 
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sequence distribution: T S a  - H .  This complexity parameter is closely related 
to the Shannon entropy of the sequence distribution, H(Shannon) = - C p ,  
log p k ,  where p k  is the probability of finding the system in state k [49]. Since 
the product TS is fixed by analogy to the spin system, the choice of the 
function corresponding to temperature allows some freedom and requires 
physical intuition. 

In order to search for an interpretation of the error threshold relation by 
analogy to the spin system, we shall be more specific and consider binary 
sequences replicating with uniform error rates. Individual sequences are 
identified with the rows of a two-dimensional spin lattice. A genealogy 
corresponds to an entire, two-dimensional array of spins. We assign spin 
values (s= f 1) to the digits (0, 1). A sequence of v digits is identified with a 
string of spin values: 

The Hamming distance d(i ,  k )  and the elements of the value matrix W can be 
expressed in terms of these spin values: 

(111.22) 

and 

V 

=A,[q(l-q)]v’2exp 
j= 1 

where K=+log [(I -q)/q]. 
Now we consider a two-dimensional spin lattice of dimension v x N .  The 

vector di)=(aY), a;), . . . ,a:)) describes the spins in the ith row of the lattice. 
The spin variables can adopt the two values ay)= & 1. The nonvanishing 
terms of the spin Hamiltonian in the nearest-neighbor approximation and in 
absence of an external magnetic field are 

Here we denote the constant of the nearest-neighbor spin interaction in the 
horizontal direction, that is, within a row, by J ,  and that in the vertical 
direction by J,. The partition function of the spin lattice can be factorized 
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within the king model by means of a 2' x 2' transfer matrix. The elements of 
this transfer matrix are obtained as Boltzmann weights of the energies of 
interaction between individual spin distributions: 

T,,,=exp(-/?E,,)exp (111.25) 
j =  1 

Herein, two neighboring rows of the two-dimensional lattice are labeled by 
o = (al, 02,  . . . ,a,) and a' =(a;, a;, . . . ,a;), respectively. The energy E,, 
describes the interaction of spins within a row. It need not be restricted to 
nearest-neighbor terms and may also include interactions with a magnetic 
field. Temperature enters into the expression for T,,, through /?= l/kT. 
Macroscopic properties and spin distributions of the spin lattices can be 
obtained from eigenvalues and eigenvectors of the transfer matrix. 

In the two-dimensional Ising model the critical temperature T, for the 
order-disorder transition of the infinite system (N-+ 00, v+ 00) is given by 

25, 23, - sinh-sinh-- 1. 
kT, kT, 

A plot of this relation is shown in Figure 9. The transition temperature 

\ T , = 2  

: * J x  
- . .  \ 

. s  1.0 1.5 

Figure 9. Critical temperture T, of order-disorder transition in two-dimensional Ising 
lattice as function of coupling constants J ,  and J , .  Note that transition temperature approaches 
zero when either of two coupling constants vanishes. 
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converges to T,=O in case either of the two spin-spin coupling constants 
vanishes. In the one-dimensional Ising model we have only a “degenerate” 
phase transition at absolute zero. 

Let us now turn to the analogy between the two matrices W and T on 
which the comparison between replication dynamics and spin lattice is based. 
The two last factors in Eqs. (111.23) and (111.25) show the same dependence on 
the spin variables and allow to identify K and PJ,. This analogy provides a 
measure for “temperature” in replication dynamics: 

I 1 
T -K log-. 

Replication degenerates to a random production of sequences in the limit 
4-3 and corresponds to the limit T-oo, the case of maximum disorder. 
Direct and complementary replication (see also part C) are the analogs of 
ferro- and antiferromagnetic cases of the spin system. In the range +< q 6 1 we 
have K < 0, which corresponds to the condition BJ c 0 for ferromagnetic 
interaction. For complementary or plus-minus replication, 0 6 q <$, we have 
K > 0 and PJ > 0, respectively, which is characteristic of an antiferromagnet. 

A comparison of the first two factors on the right side of Eqn. (111.23) with 
the first factor in (111.25) is less straightforward. In the transfer matrix of the 
Ising model we have an “in-row” interaction energy of the type 

which represents the first Boltzmann weight in the absence of a magnetic 
field. The energy E,, is an extensive quantity, and thus I E,, I increases linearly 
with v. In addition this term shows a unique dependence on the sequence of 
digits, which is characteristic of spin-spin interactions. The analogy of the 
“horizontal” interaction factors of the spin lattice with replication kinetics 
requires 

apart from constant terms that can be annihilated by appropriate energy 
scaling; any constant term in the energy enters as a common factor into the 
partition function and hence has no influence on spin distributions or order- 
disorder transitions. 

In the case of ultimate neutrality, all rate constants A,  are equal and 
analytical solutions can be derived, as is shown in Appendix 2. In terms of the 
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Ising model this case corresponds to the limit J,+O, where the two-dimen- 
sional Ising lattice degenerates to the one-dimensional spin system. We are 
dealing with a degenerate phase transition: 

lim Tc(v) = 0 or lim qc(v) = 0,l. 
V‘a, v - 0 0  

There is no phase transition at finite temperatures in the asymptotic limit of 
infinite chains. This is no surprise since no deterministic selection occurs in 
the absence of differences in rate constants. 

When strictly based on the Ising model the analogy puts a severe restric- 
tion on the choice of rate constants, and it is unlikely that any realistic system 
can meet it. We may, however, extend the comparison to more general spin 
systems. Many different spin Hamiltonians were proposed and analyzed. To 
give an example, we mention the Hopfield Hamiltonian [SO], which was 
applied to biological problems, in particular to  the study of neutral networks. 
A strategy proposed by Leuthausser [46] starts from a given set of replication 
rate constants-from a “ualue landscape” of the replication system-and tries 
to find a Hamiltonian that is able to reproduce the rate constants as single 
row energies: Ei= -(l/p) In Ai. There are several ways to render the ex- 
pression for the energy more flexible: the presence of an external magnetic 
field, further neighbor spin interactions, as well as many particle terms may 
be taken into account. It remains to be shown, however, that physically 
meaningful value landscapes indeed can be mapped onto more general spin 
Hamiltonians that will be susceptible to mathematical analysis. 

Despite the fact that it may be very difficult to find spin coupling schemes 
that correspond to realistic value landscapes and can be directly analyzed, the 
analogy to spin lattices is of great heuristic value. It provides a straight- 
forward explanation of the existence of well-defined error thresholds that 
sharpen with increasing chain length v, just as cooperative transitions do  in 
linear biopolymers. 

IV. EXAMPLES OF FITNESS LANDSCAPES AND STATIONARY 
POPULATIONS 

The quasi-species was introduced in Section I1 as a mutant distribution 
localized in a certain region of sequence space where it is centered around one 
or several degenerate master sequences. The transition from a nonlocalized to 
a localized distribution, or the transition among two localized distributions 
triggered by the appearance of an advantageous mutant, has been shown to 
be analogous to a phase transition in physical space. In Section I11 the 
threshold relations that govern such phase transitions in sequence space have 
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been discussed in detail. In this section we shall see how population structures 
and phase transitions depend on the detailed properties of sequence space. 
Each point in sequence space characterizing a particular sequence is to be 
assigned a so-called fitness value that expresses the dynamic properties of the 
particular sequence, such as the replication and decomposition rate. These 
fitness values will show a more or less continuous short-range order building 
up to a value landscape that might be characterized by some fractal order, as 
do landscape topographies on earth. Evolution to optimal fitness may be 
regarded as a series of phase transitions in which the center of gravity of the 
localized mutant distribution moves through sequence space, approaching 
the highest reachable fitness peak. This motion depends not only on the 
fitness gradients among the 4' points in this space but also on the transition 
probabilities as expressed by the 4' x 4' error or mutation matrix. Both 
dynamical parameters and the error matrix were used to construct the value 
matrix W that characterizes the systems of rate equations introduced in 
Section 11. 

In the following we discuss examples ranging from the simplest nontrivial 
cases, for which a full solution is possible, to rather realistic value matrices 
based on polynucleotide folding, where the analysis of Sections I1 and I11 
must be applied. The latter is the subject of Section IV.3, while Sections IV.l 
and IV.2 concentrate on examples for which an exact solution is numerically 
feasible. 

In principle, stationary mutant distributions may be calculated from the 
value matrix W by standard diagonalization techniques. Accordingly, we 
have to compute the dominant eigenvector of a 4' x 4' matrix (for the four 
bases occurring in present polynucleotides). For most cases of interest (e.g., 
v>20) the problem is clearly intractable (but see the statistical analysis in 
Section 111). This is particularly true for investigations of the error threshold, 
so in Section IV.l we study a value matrix with high symmetry [41] for which 
longer sequences are tractable. In Section IV.2 we use general value matrices 
for short sequences to investigate the effect of neutral mutants and quasi- 
species with degenerate master sequences. 

For the calculation of stationary mutant distributions we restrict attention 
to a uniform error rate per digit (1 - 4 )  and assume equal degradation rate 
coefficients D ,  = D 2  = . . . = D, = D. Since the addition of a constant to all 
diagonal elements of a matrix just shifts the spectrum of eigenvalues and has 
no influence on the eigenvectors, we need only consider the case D=O 
without loss of generality. Then the elements of the matrix Ware determined 
by the replication rate coefficients A,  (as in Section 111.2) and are of the form 

(IV. 1) 
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where d(i, k) is the Hamming distance introduced in Section 11.1. As we 
mentioned in Section 11.5, a value matrix whose elements are defined by 
Eqn. (IV.l) has exclusively real and positive eigenvalues. Finally, we choose 
two digits (0, 1) instead of the four bases occurring in natural polynucleotides 
in the following examples, as this simplifies both the representations and 
computations without detracting from the main features. 

1. Error Threshold 

One approach to calculating the stationary mutant distributions for longer 
sequences is to form classes of sequences within the quasi-species. These 
classes are defined by means of the Hamming distance between the master 
sequence and the sequence under consideration. Class 0 contains the master 
sequence exclusively, class 1 the v different one-error mutants, class 2 all 
v(v- 1)/2 two-error mutants, and so on. In general we have all (l) k-error 
mutants in class k.  In order to be able to reduce the 2'-dimensional eigenvalue 
problem to dimension v + 1, we make the assumption that all formation rate 
constants are equal within a given class. We write A ,  for the master sequence 
in class 0, Ai for all one-error mutants in class 1, A ,  for all two-error mutants 
in class 2, and in general A, for all k error mutants in class k. 

New variables t k  are introduced for the relative concentrations of the sum 
of all k-error mutants: 

t k = E x j ,  IjEClass j ,  and hence Ctk=l.  
i k 

Finally, it remains to calculate the elements of the matrix Q' consisting of 
the mutation frequencies from one class of mutants into another. By straight- 
forward combinatorics. we find 

with rn = [$(min {k + i, 2v -(k + i)} - I k-  i l ) ] .  (IV.2) 

Note that the matrix Q' is not symmetric, in contrast to the matrix of 
mutation frequencies between individual sequences [cf. Eqn. (IV. l)]. Multi- 
plication by the corresponding rate constant A;  yields the corresponding 
element of the matrix W'. This matrix has to be diagonalized in order to 
obtain the dominant eigenvector. 

The fact that the matrix W' is related to the matrix W by lumping classes 
of mutants together suggests the existence of a method to relate W' to a 
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symmetric matrix and directly exploit the positivity of the eigenvalue spec- 
trum. In fact, the matrix Q' may be readily symmetrized by normalizing the 
classes by their number of elements (J, and then the matrix W' is related to a 
symmetric matrix by the standard Jost procedure outlined by Rumschitzky 
[S]. This reduces the size of the computational problem. 

The first special case to be discussed here considers oligonucleotide 
sequences of chain length v = 5 .  The stationary mutant distribution as a 
function of the mean single-digit accuracy, &(q) ( k =  1, . . . , v), is plotted in 
Figure 10 for a particular choice of the A,s. We distinguish three ranges of q 
with different properties of the stationary distribution: 

h "O " 
1 .o 0.5 0 

Figure 10. Quasi-species as function of single-digit accuracy _Of replication ( q )  for chain v 
= 5. We plot relative stationary concentration of master sequence (to), sum of relative stationary 
concentrations of all one-error mutants (f,), of all two-error mutants ( f 2 ) ,  etc. Note that we have 
only one five-error mutant I , , ,  = I , ,  in this particular example. We observe selection of master 
sequence at q = 1. Then relative concentration of master sequence decreases with decreasing q. 
At value q = 0.5 all sequences are present in equal concentrations. Hence, sums of concentrations 
of two- and three-error mutants are largest-they have statistical weight of 1 G t h o s e  of the one- 
and four-error mutants are half as large-they have statistical weight of 5-and finally master 
sequence I ,  and its complementary sequence, the five-error mutant I , , ,  are present in relative 
concentration of & only. At q = 0 we have selection of "master pair", which consists of I ,  and I,, 
in our example. Thus we have direct replication with errors in range 1 > q > 0.5 and comp- 
lementary replication with errors in range 0 < q < 0.5. Rate constants chosen as  A ,  = l O [ t - ' ]  
and A, = 1 [ t - ' 1  for all mutants k # 0. Here we denote arbitrary reciprocal time unit by [ t - '1 .  
All degradation rate constants were put equal: Do = D, = D, = . . = D,, = 0. 
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1. At large values of the accuracy of replication (q  N 1) we observe a quasi- 
species characteristic for “direct” replication, I k  +2Zk predominantly. The 
master sequence I ,  is most frequent, followed by some one-error mutants, 
two-error mutants, and so on. 

2. In the middle of the plot shown in Figure 10, around the value q = O . 5 ,  
incorporations of correct and incorrect digits occur with equal probabilities. 
Inheritance breaks down, and polynucleotide sequences are present accord- 
ing to their statistical weights: The sum of the relative concentrations of one- 
and four-error mutants, Fl and f4, is five times as large as that of the master 
sequence to or that of the five-error mutant f 5 .  The statistical weights of two- 
and three-error mutants is 10. In order to point out the lack of sequence 
correlations between template and copy we called this process random 
replication [41]. 

3. At q = 0 complementary digits are incorporated with complete accuracy. 
Thus, we notice “complementary” replication, I: -1: +I; and Z; +I; + I: 
(where 1: and I; denote the plus and minus strand of the sequence Ik). 
Sequences are selected in pairs of complementary strands. We have a “master 
pair” that replaces the master sequence of direct replication. In our particular 
example this is the pair (I,,, Z5), At low nonzero values of the mean single- 
digit accuracy ( q  N 0) we observe complementary replication with mutation. 

For oligonucleotides of very small chain lengths, such as the ones we 
considered in Figure 10, the three ranges are not well separated. Random 
replication in a strict sense occurs at q = 0.5 only. Indeed, there is practically 
no correlation between template and copy in the entire flat range 0.4 < q < 0.7. 

Increasing chain length changes the general features of the El, q plots 
rather drastically. For v = 10 the range of random replication appears to be 
substantially wider (Figure 11). The Fl, q curves are almost horizontal on 
both sides of the maximum irregularity condition at q = 0.5. In addition, the 
transitions from direct to random replication and from random to com- 
plementary replication are rather sharp. We are now in a position to compare 
the minimum accuracy of replication that we derived in Section I11 by 
perturbation theory with the exact population dependence on q. From 
Eqs. (111.1) and (111.4) we find (Dk = 0; k = 0, 1, . . . , n) 

q . =(co) - lk  - 
min (“a,.)” 

and we may evaluate this directly because the A,  were chosen equal for k # 0. 
The value of qmin calculated by perturbation theory in lowest order falls 

right into the center of the transition zone that separates the organized quasi- 
species from the uniform distribution. It represents a good approximation to 
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Figure 11. Quasi-species as function of single-digit accuracy of replication (4) for chain 
length v = 10. Computations were performed in complete analogy to those shown in Figure 10. 
Note that range of "random replication" has increased substantially compared to case v = 5 .  We 
observe fairly sharp transitions between direct and random replication at critical value q = qmin 
and between random and complementary replication at q = (Irnsx. 

the exact error threshold. Indeed, the high-order perturbation result from 
Eqn. (111.10) agrees well with Eqn. (IV.3) in this special case. 

On the other hand, high accuracy in complementary replication is charac- 
terized by low q values. Here, we have a maximum q value that sets a limit to 
the errors tolerated in complementary replication. From perturbation theory 
we derive 

Concentrations, rate constants, and other quantities referring to the com- 
plementary sequence are indicated by the minus symbol (I: : X k ,  A: ,  . . . , 
and I;: XE, A ; ) .  The value of qmax coincides with the center of the transition 
zone from random to complementary replication. 

At still larger chain lengths (we used v = 50 in the calculations shown in 
Figure 12), the transitions become exceedingly sharp. The shape of the plots 
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shown in the Figures 10-12 suggests that we are dealing here with an analog 
of a phase transition as discussed in detail in Section 111.5. 

2. Degenerate Quasi-species and Neutral Mutants 

Mutants that have the same selective value as the master sequence are called 
(selectively) neutral. We distinguish two classes of neutral mutants: 

1. neutral mutants that are “closely related” to the master sequence and 
2. distant neutral mutants. 

Closely related neutral sequences are present simultaneously in stationary 
populations. Distant sequences, on the other hand, occur together only 
occasionally in transient populations. Their mutant distributions are disjoint 
in the sense that they have no common mutant. Whether or not two 
selectively neutral sequences share mutants depends both on the Hamming 
distance and population size. In the first case, the mutant distribution is 
centered around a dominant, more or less connected group of polynucleo- 
tides (replacing the single master sequence considered so far). They are 
members of the same connected set of mutants and share a common station- 
ary mutant distribution, which we call a degenerate quasi-species. However, 
for two or more neutral master sequences to be equally represented, their 
mutants have to give identical contributions too. This phenomenon is not 
considered in the classical study of neutral mutants, which neglects the 
mutant distribution. Symmetry is unlikely, so some degeneracies will depend 
on the error rate via a change in the mutant distribution. At different error 
rates, different neutral sequences are favored. In any case, the dominant 
eigenvector of the matrix W is representative for the actually observed 
distribution of sequences. 

The second case shows very different behavior: The relative concentrations 
of the degenerate master sequences are subject to random drift, and the 
dominant eigenvector of W represents at best a time average of the mutant 
distribution. Then the dynamics can be modelled only by a stochastic process 
requiring careful choice of the appropriate mathematical technique and 
approximations in a hierarchy of equations (see refs. 48 and 51 and 
Section V.2). One difficulty here is that even very distant mutants contribute 
if sufficiently neutral. The results of Section 111.2 indicate that there is (almost 

Figure 12. Quasi-species as function of single-digit accuracy of replication (4) for chain 
length v = 50. Computations were performed in complete analogy to those shown in Figure 10. 
Transition is very sharp at this chain length already. We show linear plot (a) and, in order to 
demonstrate sharpness even more clearly, a logarithmic plot (b) of relative concentrations 
around critical point q = (Irnin, 
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surely) a trade-off between distance and accurate neutrality that results in a 
preservation of the localization threshold behavior. 

Here we restrict the discussion to examples of the first class (for further 
details see ref. 52) and begin with a simple example. Two sequences Zb’) and 
ZL’) have the same selective value W,. This value is a maximum, W,=max 
[ W,; k = 1, . . . , n]. We start the discussion of the mutant distribution around 
the two master sequences with the limit q+ 1. For q = 1 we have a degenerate 
eigenvalue: L1 = I,, = W,, and hence every combination of concentrations of 
the two master sequences with $,1)+Xb2)= 1 represents an eigenvector of the 
matrix W. A small perturbation (q = l)+(q = 1 - 6) destroys this degeneracy. 
From perturbation theory of degenerate states, which becomes exact in the 
limit considered, we derive that there exists a unique pair of stationary 
concentrations (Zbl), 2b’)) that is the proper reference state. These relative 
stationary concentrations of the two master sequences are determined by the 
Hamming distance d( l ,2)  and by the selective values of the neighboring 
mutants. It is useful to distinguish three subcases shown in Figure 13: 

1 .  The two master sequences are nearest neighbors in sequence space 
(d(l ,2)= 1): 

Both sequences are represented with equal frequency in the degenerate 
quasi-species. 

2. The two master sequences have a Hamming distance d( l ,2 )=2 .  The 
normalized concentrations are then 

lirn #)(q) = a, lirn ZL2)(q)  = 1 - a with 0 < a  < 1. 
4- 1 4-1 

The value of a is determined by the selective values of the mutants in the 
neighborhoods of Zg’) and Zb’). 

3. The two master sequences have Hamming distances d( l ,2)>3.  This 
leads to selection in the limit considered: 

or 

The decision of which sequence is selected is made again by the 
neighboring mutants. 
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A 

Figure 13. Neighborhood relations in sequence space. In A, B, and C we show neighbor- 
hoods of pair of sequences (II ,  I,) with Hamming distances d(l,2) of 1, 2, or 3, respectively 
( v  = 6) .  Part drawn in thick lines is general; connections in thin lines depend on chain length v. 
To give example, for v = 5 one connection of equivalent set has to be eliminated. (D) Assignment 
of numbers to individual sequences of sequence space for Y = 5 shown as used in Figures 14-30. 

In the limit q+O we observe an analogous situation. Here the degenerate 
master sequences are to be replaced by degenerate master pairs. A pair of 
complementary sequences always has a Hamming distance d(Zk ,  Zk-) = v. As 
the Hamming distance between two pairs we use the smallest of the three 
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distances computed for the four sequences. Then the selection behavior 
derived for degenerate sequences in the limit q- 1 applies also for degenerate 
pairs in the limit q-0. 

Around the point of maximum irregularity (q = 0.5) the replication rates 
have no influence on the sequence distribution, and hence degeneracy of rate 
constants causes no change in the results. In the intermediate ranges, 
0.5 < q < 1 and 0 < q < 0.5 we have to rely on computer calculations. There are 
two different scenarios: the “simple” case, where we observe gradual changes 
in the mutant distribution between error-free and error-prone replication, 
and the “complicated” case, which does not allow straightforward inter- 
polation because drastic rearrangements of the stationary sequence distribu- 
tions occur within narrow ranges of q values. 

First we present examples of the simple case. In the domain of direct 
replication (1 > q >0.5) the mutant distributions unfold smoothly around the 
degenerate sequences. The influence of the neighborhood of the two se- 
quences grows with increasing error rates, that is, with decreasing q values. In 
the domain of complementary replication (0 < q < 0.5) we observe the anal- 
ogous formation of mutant distributions around the two degenerate master 
pairs with increasing q values. We have chosen three characteristic examples 
of two degenerate master sequences with chain length v =  5 (Figures 14-16). 

In the first example (Figure 14) the sequences I ,  and 1, are the master 
sequences. The Hamming distance between them is d( l ,6 )=  2. One master 
sequence ( I , )  is connected to one-error mutants that have a higher average 
selective value (p= 5q’) than those surrounding the second master sequence 
( 1 6 ;  IF= 2.6q’). Consequently, the stationary concentration of 1, is larger 
than that of I , .  The one-error mutants of I ,  fall into two groups: mutants 
(Il, Z2) that have a Hamming distance d = 1 to both master sequences and 
hence are present at higher stationary concentrations than those of the 
second group ( I 3 ,  I , ,  and I s ) .  They have Hamming distance d =  1 to I ,  but 
Hamming distance d = 3  to the other master sequence 1 6 .  The mutant 
distribution thus nicely reflects the details of the structure of the matrix W. In 
the limit of ultimately precise complementary replication (q = 0) we are also 
dealing with a case of degeneracy. We have two master pairs, (lo, Z31) and 
( I , ,  Z2& with identical mean rates of replication: J m = d a = f i .  
The two master pairs are separated by a Hamming distance d (  { 3 y ;  2 g } )  = 2. 
They have different neighborhoods and therefore provide an example of case 
2 in the limit q-0. 

The second example (Figure 15) considers two distant degenerate se- 
quences lo and 1 3 0 ,  with d(O,30)=4. Accordingly, we observe selection in the 
limit q- 1. The sequence with more efficient one-error mutants (Z3,J is 
selected. In the domain of complementary replication we are dealing with two 
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Figure 14. Degenerate quasi-species with v = 5. We plot relative concentrations (Xi) as 
functions of single-digit accuracy of replication (4). Two degenerate master sequences I ,  and I ,  
are of Hamming distance d ( l , 6 )  = 2 in this example-for numbering of sequences see Figure 13. 
Rate constant: A ,  = 10, A ,  = A ,  = . . = A ,  = 5 ,  A ,  = 10, A ,  = . . . = A , ,  = 1. In limit q + 1 
we are dealing with two master sequences, whose concentrations approach certain ratio 
0 < a <: 1. Concentration of I ,  is higher since this sequence has more efficient neighbors. In limit 
q -+ 0 we find two master pairs (I , ,  1 3 , )  and (I6, 125) that show essentially same qualitative 
behavior as two degenerate master sequences. They have Hamming distance d = 2 as well. 

different selective values, and there the more efficient complementary pair 
( I , ,  Z31) wins. 

The third example (Figure 16) behaves in a very similar manner to the 
second in the range of direct replication. But the rate constants have been 
changed such that we now have two degenerate pairs of complementary 
sequences in the limit q+O, ( I , ,  131) and (II, Z30).  These two pairs have a 
Hamming distance d = 1, and we expect equal concentrations of I ,  and 130  

and of I ,  and Z 3 1 ,  respectively. It is interesting to note that these concentra- 
tions remain almost the same nearly for the whole domain of complementary 
replication. 

Our last case (Figure 17) is an example of “complicated behavior” where 
the internal structure of the quasi-species is completely reorganized at some 
critical value of q. In the limit q+ 1 we are dealing with two nearly degenerate, 
distant sequences: A ,  = 10 and A , ,  = 9.9. Accordingly, we observe selection of 
the more efficient sequence I,. The sequences in the neighborhood of I,,, 
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Figure 15. Degenerate quasi-species with v = 5. Plot is analogous to that shown in Figure 
14. Rate constants A,,  in vectorial notation, are A = (10, 5, 5, I ,  I ,  1,2,2,2,  1 ,  1 ,  1, 1 ,  I ,  1 ,  I ,  5, 2 ,2 ,  
1 ,2 ,2 ,2 ,5 ,2 ,5 ,5 ,2 ,2 ,  1 ,  10,5). Two master sequences I, and I,,  have H a m h n g  distance d(O,30) 
= 4. In  limit q -, 1 sequence with more efficient neighborhood, I,, is selected. In  limit q -, 0 we 
observe interesting phenomenon that both sequences are present in equal concentrations since 
two master pairs (I,, I , ] )  and (I,,, I , )  are degenerate and have Hamming distance d = 1. 

however, were chosen to be more efficient in replication than those in the 
neighborhood of I,: A ,  = 1 and A, ,=2 ,  respectively. Around the point 
q 2: 0.964 the influence of the neighboring sequences becomes so strong that 
the less efficient sequence I , ,  outgrows I ,  and dominates the quasi-species. 
Hence for special choices of rate constants a situation where the most 
abundant sequence in the quasi-species is different from that with the highest 
selective value can occur. One may notice that this also means a new concept 
of neutrality that does not depend on simple degeneracy of the fitness values 
of two sequences but rather rates the complete fitness topography. 

3. Conformation-dependent Value Functions and Fitness Landscapes 

As outlined in previous sections, much depends on the properties of 
physically realistic sets of replication rate constants, despite the comparative 
insensitivity of error thresholds to details in their distributions. At present it is 
not feasible to measure or estimate real-valued landscapes empirically, not 
even in the most simple experimental systems like RNA replication in the QP 
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Figure 16. Degenerate quasi-species with v = 5. Plot is analogous to that shown in Figure 
1 5 .  Rate constant of I ,  is reduced to A ,  = 2. Situation in limit q + 1 is qualitatively same as  that 
reported in Figure 15: Sequence with more efficient neighborhood, I , , ,  is selected. But in limit 
q + 0 we are not dealing with degenerate master pairs any more: More efficient pair ( I , ,  I , , ) ,  
which does not contain sequence I , , ,  wins. 

system [lo-121. In this section we present some results of computer calcula- 
tions on model fitness landscapes. In order to render the model tractable, 
simplifications are inevitable. Binary sequences 1, are considered instead of 
natural four-letter RNA sequences since this makes the algorithms much 
faster. We choose chain lengths of vx70 and compute unknotted two- 
dimensional structures of folding patterns, Fk = F(lk), by means of a folding 
algorithm. Details are given in ref. 53. Any folding pattern of this kind is 
decomposed uniquely into ordered combinations of three structural ele- 
ments: 

1. double helical regions or stems containing “base pairs”, which consist of 
complementary symbols on opposite strands, 0 . . * 1 or 1 * * * 0, re- 
spectively; 

2. loops or reverse turns through which the string folds back on itself in 
order to form a stem; and 

3. other unpaired regions of the sequence. 

Folding, in essence, is based on a thermodynamic minimum free-energy 
criterion. The base pair is the most important stabilizing element of the 
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Figure 17. Example of almost degenerate quasi-species. For system of binary sequences 
with chain length v = 50 relative stationary concentrations of 51 mutant classes (Fi) are shown in 
region 0.972 > q > 0.952. Notice extremely sharp transition at q,r = 0.9638 when new master 
sequence and its neighbors become dominant. At qmin = 0.9546 usual error threshold 
observed. Selective values used in this example are A o ,  = 10, A(,, ,  = 9.9, Ao,, = 2, and all other 
A o ,  = 1 for k = 1 ,  . . . , 48 (cf. figure 5) .  

pattern-more precisely there are two major contributions, base pairing and 
stacking of base pairs aligned in parallel planes-and hence the thermodyn- 
amic stability of the secondary structure is roughly proportional to the 
number of base pairs. In addition there are destabilizing contributions from 
loops due to their constrained configuration compared with other unpaired 
elements (element 3). The individual steps of the computer simulation are 
outlined in Table 111. 

The folding patterns or conformations, Fk, are evaluated according to 
certain rules. Here we present three different examples of criteria for the 
rating of patterns: 

1. similarity of folding patterns in comparison to a target structure, 
2. thermodynamic stability of folding patterns, and 
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TABLE I11 
Computation of a Model Value Landscape 

System Realization Process 

Digit {O, 1) 

Ligation to String u 
Binary Scqusnee 

String of Y FJ 70 Digits 

Primary Structure 

{ 2’O I loz1 Sequencee} 

Ik : 011~110100 . .  . O  

Folding through Base Ppiring u 
Secondary Structure r k ( I k )  : 

Evaluation u 
Molecular PrOpedie6 Ak , Dk ; w k k  

3. evaluation of replication and degradation rate constants according to 

In the first case a measure of similarity between the conformation 
Fk = 9 ( I , )  and a predetermined “ideal” reference conformation F0 was 
employed to obtain selective values that depend on the folded conformations. 
In determining this function both the specific sequence and its folding play a 
role. We investigated several joint dependencies. At first it is important to 
obtain a workable similarity measure. This was achieved simply by encoding 
the two-dimensional folding pattern as a new sequence, the fold sequence f, 
which is a string built from symbols (0, 1,2). Starting from the 5’ end, as usual, 
a 0 is assigned to a monomer if it is unbound, a 1 if it is part of the first strand 
of a double-helical region, and a 2 if it is part of the second strand. This 
suffices to determine the conformation because of the no-knots constraint. 
The map I k  -+ Fk = 9 ( I k )  -f( 9 k )  is unique, and we define 

model assumptions based on the folding patterns. 

Note that the inverse is not true: Several sequences Zj may lead to the same 
fold sequence fk.  A suitable measure of similarity of two folding patterns F1 
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and F2 is now just the Hamming distance between the two fold sequences 
d(f1,f2), as defined in Section 11.1. In fact, a more general distance function 
involving insertions and deletions [54] could be used, but the Hamming 
distance will suffice for the present discussion. 

The most straightforward measure of the fitness of a conformation is to 
identify the dissimilarity from the reference conformation as an activation 
barrier for replication. Two such fitness assignments were applied: the first, 
indicated by superscript 1 in parentheses, is of a global nature, and it is based 
on the Hamming distance of fold sequences; the second, denoted by super- 
script 2 in parentheses, in addition evaluates similarity of structurally defined 
subsequences. Implicitly, we assume equal degradation rate constants in this 
model. Degradation then contributes just an additive constant to the selective 
values, and we may put Dk = 0 without losing generality. For the first 
assignment 

(IV.6) 

is the rate constant of replication of the sequence whose fold sequence is fk. 
The reference fold sequence is f, here, and u is a real, positive constant 
determining the precision with which the reference fold sequence must be 
approximated for a given fitness to be achieved. The rate constant of 
replication of the reference sequence I ,  is A, .  This simple fitness function has 
a maximum of A ,  = A ,  when f, = f k ,  that is, when the sequence I k  has exactly 
the folding pattern specified by the fold sequence f,. Because of the nontrivial 
relationship between sequence and folding pattern or conformation (many 
sequences may yield the same conformation on folding), Eqn. (IV.6) sustains 
many local optima. 

An additional dependence on segments of the base sequence defined 
relative to the conformation (such segments are exposed by certain loops, 
stems, branching points, etc.) may be introduced via the Hamming distance 
from reference segments in order to model more highly constrained fitness 
functions. Then the sequence plays a specific role relative to the conforma- 
tion, and we obtain a second fitness function: 

where the segments of the sequence I k  are denoted by s i ( f k )  and those of the 
reference fold sequence by si(fo); a1 and a2 are positive constants and A ,  is 
the replication rate constant of the reference sequence I , .  We also found it of 
interest of deal directly with the linearized forms of Eqs. (IV.6) and (IV.7), 
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which radically changed the shape of the distribution of replication rate 
constants as well as the effective superiority of the wild type. 

We compared the linearized form Eqn. (IV.6) with the long-range 
Ising-model-like fitness function (cf. the Hamiltonian in Section 111.5) 

V 

A@)  = W + 1 hioi + 1 Jijaiaj 
i i < j  

(IV.8) 

by generating for a larger number (10,OOO) of randomly chosen sequences the 
average values of the folding-based fitness function A(' )  with 

1. no sequence positions held fixed, W = (A '") ;  
2. one sequence position k held fixed at a,', 

3. two sequence positions k, 1 held fixed at a17 

In this way the parameters W, hi ,  .Iij were deduced from the form of A(1).  
Using these values, the value of A@)  in Eqn. (IV.8) could be compared with 
A''), and no significant correlation was found. The conclusion is that the 
folding fitness function cannot be decomposed' into pairwise contributions 
from sequence positions. This was confirmed by the fact that the values of 
hi ,  J i j  calculated using the different choices of ai, aj = f 1 gave uncorrelated 
results. Similar results pertain to A'') in linearized form (and, of course, for 
the exponential versions). 

In order to gain more insight into the nature of the fitness functions (IV.6) 
and (IV.7) as relevant for quasi-species structure, we employed a variety of 
representational tools: 

1. The probability density for the varying fitness of sequences ( -  20,000, 
chosen at random from the 2' possible with length v = 72) was calculated and 
is displayed in Figure 18 for the linearized form of Eqn. (IV.6) (with a = 1). 
The density appears as a slightly skewed Gaussian about the mean distance 
from the goal fold. In general, other effects (including stochastic selection) 
require a truncation of the distribution above the generic or modal value 
when the fitness function has an exponential or other nonlinear (cooperative) 
form. 

2. The correlation function reveals much more of the special nature of 
conformation-dependent fitness. However, in this case, just choosing a large 
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FOLD VALUE 

Figure 18. Probability density of folding fitness function. Curve is smoothed frequency plot 
showing probability density for integer-valued fitness function .4{/iear(s) = v - d (  fo,f(s)), for 
21,610 sequences of length v = 7 2  (chosen at random). Here d(fo,f(s)) measures distance 
between calculated folded form and reference fold fo,  which was taken to be particular nested 
pair of hairpin loops. 

number of sequences at random can only give very well-separated sequences 
(Hamming distance) and does not provide information about shorter range 
correlations. We solved this sampling problem by examining sequences along 
v random mutation pathways from a particular centre sequence. The result- 
ing correlation functions when the center sequence was a local optimum for 
the two linearized value functions (using the same set of 72 mutant pathways 
of length 24) are shown in Figure 19. The important features are finite range 
and an approximately exponential form for both functions. Typical individ- 
ual trajectories for the two fitness functions are shown in Figure 20. 

3. The preceding results demonstrate that along a random mutant path- 
way the typical situation is a rapid decrease in the fitness level of sequences. 
However, the issue of the rare occurrence of long extended high-value ridges 
is left open. Indeed, one would like to know whether the high-value regions 
are isolated or whether they form a sparse but interconnected network 
through the mutant space? For the fitness function of type (IV.6), only those 
monomers directly involved in bonding (and a few additional ones near the 
boundaries of binding regions) were found to be important in determining 
fitness near an optimally folded sequence. Constraints on the remaining 
monomers are limited, and the picture of selection restricted to a roughly v/2 
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Figure 19. Correlation functions for fitness by folding. Correlation functions for linearized 
forms of folding fitness functions of type 1 [Eqn. (IV.6), upper curve] and type 2 [Eqn. (IV.7), 
lower curve] are displayed. Both are normalized by value at local optimum at distance 0. 
Seventy-two random paths radiating outward 24 shells and starting with distinct first mutants 
employed. Same paths and reference fold employed in both cases. 

dimensional subspace of the v-dimensional sequence space is qualitatively 
correct. For the fitness function of Eqn. (IV.7) the situation is different as the 
degeneracy has been removed. Here a plot of neutral mutants near a local 
optima reveals long ridges extending into the surrounding sequence space 
(Figure 2 1). This confirms, for the present conformational-dependent fitness 
function, the features that distinguish evolution in the quasi-species as guided 
in the choice of mutants and not purely random (cf. Section 11.5). 

The second model evaluation of folding patterns is based on the thermo- 
dynamic stability of polynucleotide conformations. Here, not only does this 
stability decide which of the many possible structures is formed (as in the 
preceding) but it also determines the fitness. The more stable is the optimal 
folding pattern s k  for a particular sequence, the higher is its selective value: 

Ai3)  = Aoexp( - aA(AG)) x A , ( l -  yA(AG)) (IV.9) 

with A(AG) = A G ( 9 k )  - AGO and a and y being some real and positive 
constants. The absolute minimum free energy of the folding patterns for all 
sequences of the given length, denoted by AGO, is chosen as reference here. In 
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Figure 20. Values along radiating trajectory. Folding values for sequences lying on parti- 
cular mutant path randomly radiating from locally optimal sequence. Linearized fitness func- 
tions of type 1 (upper curve) and type 2 (lower curve) employed as  in Figure 19. Different paths 
yield very different jagged profiles. 

contrast to the previous example, there is no unique reference conformation 
Fo because several folding patterns may have .the lowest possible free energy. 
Since we are interested in qualitative features, we only use the linear approxi- 
mation as indicated in the preceding. The basis for approximate free-energy 
estimates was worked out during the past two decades (see, e.g., ref. 5 9 ,  and 
we are now in a position to assign energy increments to the basic sub- 
structures. In essence, these increments are based on the number of base pairs 
and their orientations. Here we use the energy weights for all (G,  C) sequences 
as tabulated in ref. 56 and assign G to the digit 1 and C to 0, respectively. 
Again we assume that all degradation rate constants are equal, and we put & 
= 0 without losing generality. This fitness assignment to folding patterns, as 
for the previous one, is manifestly incomplete with respect to biophysical 
insight into replication kinetics since higher stability or smaller dissimilarity 
to a reference pattern do not alone entail faster replication. From the 
viewpoint of the mapping + + (& ok), however, we are dealing with a 
problem of the same “uniuersality class” [57] as in case of the physically more 
appealing assignment of the third model. Moreover, we have the advantage of 
knowing a priori what the fittest folding patterns look like: Obviously these 
are the 32 (inverse) palindromes with complete parallel stacks and variations 
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Figure 21. Mutant space high-value contour near local optimum. Diagram is multiply 
branched tree with different macromolecular sequences at vertices. Each line joins neighboring 
sequences whose values are within 0.5 of locally optimum sequence at lower center for linearized 
fitness function of type 2 [Eqn. (IV.7)] and reference fold that is cruciform, like tRNA, for 
sequence of length 72. Over 1300 branches shown extending up to 10 mutant shells away from 
central optimum. Better sequence (labeled optimum) was found in tenth mutant shell. Non- 
random sampling of mutant sequences demonstrated typical of population sampling in quasi- 
species model. Note small number of ridges that penetrate deeply into surrounding mutant 
space. (Additional connected paths due to hypercube topology of mutant space not shown.) 
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only in the four digits of the hairpin turn that form the most stable, “perfect” 
hairpin. 

Since the third model is closely related to the second, we present its 
underlying assumptions first and discuss the results obtained for both value 
landscapes thereafter. In contrast to the two previous model landscapes we 
calculate both replication and degradation rate constants independently. 
Since up to now nobody knows how to compute replication rate constants 
from folding patterns of single-stranded polynucleotides, our model is essen- 
tially of heuristic value. It just tries to meet some biophysical constraints of 
replication and centers around the fact that virus-specific RNA replication 
operates on single strands [lo] and that unzippering of double helical regions 
is cooperative [SS]. We assume that every stacking region slows down the 
overall replication process in an additive fashion and that the term each stack 
contributes is a sigmoidal function that is reminiscent of the Monod- 
Wyman-Changeux model: 

(IV.10) 

The sum is to be taken over all stacking regions of the folding pattern pk;  the 
vf) values refer to the individual stacks; in particular, vp)  denotes the number 
of base pairs in the j th  stack of the folding pattern p k .  The parameter 9 is 
some large positive constant that determines the detailed shape of the 
sigmoidal curve. The parameters A ,  and A ,  represent rate constants: A ,  is 
the replication rate constant of the linear unstacked chain that serves as the 
reference here. The difference A ,  - A ,  refers to an infinitely long, completely 
stacked conformation. Should a folding pattern yield a negative rate constant 
(Ak < O), we would declare the sequence 1, as lethal and put Ak = 0. The two 
parameters A ,  and A ,  may be used to control the fraction of lethal mutants. 

The rate constants of the hydrolytic degradation are also made up of 
additive contributions-here from unpaired regions. Heavier penalties are 
assigned to free ends or joins than to loops. No cooperativity is assumed: 

The first sum is taken over all loops; the second over all other external 
elements: tails, joins, and so on. Three rate constants Do,  DI, and D, are 
introduced to determine stability against hydrolysis. The number of unpaired 
bases in the j th  loop of the folding pattern p k  is denoted by ly), the length of 
the ith unpaired element in the same pattern by v f ) ;  1, is a weighting factor 
and v the length of the sequence. 
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The selective values or fitness factors are readily obtained from the 
equation wk. = Akq’ - Dk. This simply introduces a weighting of replication 
against stability by means of the single-digit replication accuracy. For high 
accuracy it is better to replicate faster, whereas longevity or high stability 
against hydrolysis pays more at high error rates. The third model is an 
example of an assignment in which high fitness is based on a compromise 
between two contradictory trends: Long double-helical segments stabilize 
against hydrolysis, but they also reduce the rate of replication and vice versa. 
Such contradictory trends seem to be the rule in real biological systems. 

In order to characterize the distributions of selective values in the second 
and the third model, we explored the value landscape by a Monte Carlo 
search. We created three random samples of 38,000 different sequences each 
(one repeat with 76,000 sequences gave essentially the same results) with 
predetermined ratios of probabilities for (0/1) digits, p1 = 0.2857, p 2  = 0.5, 
and p 3  = 0.7143, which led to mutant distributions centered at the 20-, 3 5 ,  
and 50-error mutants of the all-zero sequence I , .  Three different parts of the 
value landscapes determined by Eqs. (1V.9)-(IVu 1 1) were explored in that 
way. The results are shown in Figure 22. 

The value lanscapes created by the second and third model differ signifi- 
cantly. The selective values of the simple stability assignment (IV.9)- 
here computed for q = 1-show roughly a “noisy” Gaussian distribution. 
The mean selective values for p1 and p 3  are about the same: W x 500 [t-’1; 
selective values are rate constants by definition and are therefore given in 
reciprocal time units. The distribution around the 35-error mutant of I o ,  
obtained with p 2 ,  is significantly superior: W = 750 [t-’1. The interpretation 
of this finding is straightforward: The 35-error mutants have as many digits 0 
as digits 1 and, provided the sequence admits it, form more base pairs than do 
the 20- or 50-error mutants. Thermodynamic stability in essence counts the 
numbers of base pairs, and therefore the 35-error mutants of I ,  are the most 
stable on average. 

The selective values for the third model are shown for q = 1 in Figure 22 
and hence represent excess productions, E ,  = A, - Dk. The distributions 
around the 20- and 50-error mutants of I ,  show interesting bimodal shapes. 
Further analysis shows that this bimodality is a result of subtle relations 
between the A, and Dk according to Eqs. (IV.10) and (IV.ll), and we shall not 
pursue this issue further here. It is useful to split the value landscape of the 
third model into different contributions resulting from replication and degra- 
dation rate constants (Figure 23). The distributions of the degradation rate 
constants have much in common with the thermodynamic stabilities used in 
the second model: They also resemble noisy Gaussian distributions. The 
distributions of replication rate constants, however, differ rather drastically 
from the others. They look much more bizarre. Due to the sigmoidal 
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Figure 22. (Continued overleaf) 

contribution of the lengths of double-helical regions, replication rates are 
extremely sensitive to minor details of the folding patterns, and this leads to 
enormous scatter in the distribution. Long stems are a disadvantage for 
replication, and hence, 20- or 50-error mutants of the reference sequence I ,  
replicate faster on the average than do the 35-error mutants. The fraction of 
nonviable sequences in the sample centered around Hamming distance 35 
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Figure 22. Distribution of selective values in sequence space. Here 38,000 different se- 
quences of length Y = 70 generated by introducing digits 1 at random with probability p1 = 0.2857, 
p 2  = 0.5, or p 3  = 0.7143 into all-zero sequence I,. This produces Gaussian shape samples 
centered around 20-, 35-, and 50-error mutants of all-zero sequence. Distributions of free energy 
A G ( 9 , )  and excess productions E,  = A($",) - D ( 9 , )  shown for regions located at mean Ham- 
ming distances 35 (upper plots) and 20 (lower plots) from I,. Apart from scaling factor free- 
energy distribution constitutes fitness landscape of second model evaluation. Distribution of 
excess productions is representative for model 3 at high accuracy of replication. Densities in 
neighborhood of 50-error mutants (not shown) are essentially same as those around 20-error 
mutants. 
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Figure 23. (Continued overleaf) 

from lo is therefore higher than in the other two regions. It amounts to 0.18. 
As we mentioned in the preceding, the fraction of lethals is a consequence of 
the choice of A ,  and A ,  in Eqn. (IV.10) and hence arbitrary. But, we believe 
this reflects the well-known, naturally arising situation where parts of the 
sequence space are particularly rich in lethal mutants. 



THE MOLECULAR QUASI-SPECIES 225 

0 1000 2000  3 0 0 0  

DEGRADATION C O N S T M  

Figure 23. Partitioning of excess productions €(9,) into replication ( A , )  and degradation 
(0,) rate constants. Upper and lower plots show distributions sampled from neighborhoods of 
35- and 20-error mutants, respectively, as explained in the caption to Figure 22. Fraction of 
lethal variants in replication landscape A (this is the fraction of sequences with A,  = 0); it 
amounts to 0.18 in this particular case; has been cut off in order to show details of distribution at 
positive rate constants. 
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The overall scans of value landscapes presented in Figures 22 and 23 
reveal only general trends persisting in certain regions. Nothing is said about 
the relative location of high-valued configurations and their connectivity. 
Investigations aiming at a better understanding of the topological details of 
the value landscapes of the second and third model, similar to those shown in 
Figure 21, are presently under way. A simple hint on this topology can be 
easily obtained, however, by exploring the local shape of the fitness surface. 
For this goal we calculated selective values of all sequences I ,  surrounding 
some reference sequence Z j  with Hamming distance d ( k ,  j )  = 1. The local scan 
through sequence space reflects the bizarre structure of realistic value land- 
scapes (Figure 24). Nearby sequences may have very small, almost the same 
or higher selective values compared to a reference sequence of average 
properties. From molecular genetics we know that this is also the case in 
nature. A point mutation might be lethal or harmless since the translation 
into phenotype may depend crucially on single digits. 

4. Asymmetry of Fitness Landscapes Apparent Guidance of Evolution 

The appearance of a mutant moderately distant from the wild type depends 
on the population of precursor mutants, that is, mutants that are closer to the 
wild type. It will be seen that this introduces an element of determinism into 
the generation of mutants despite the fact that the elementary process of 
mutation is of an entirely stochastic nature. “New” mutants always appear at 
the periphery of the populated mutant spectrum, which will be shown to be 
highly asymmetric with respect to the wild type, in a manner depending on 
the structure of the value landscape. Along ridges, the populated mutant 
spectrum may reach to regions quite distant from the wild type. Moreover, 
these are mountainous regions, that is, regions where, due to the correlated 
structure of the landscape, advantageous mutants are most likely to appear. 
Hence, the generation of mutants is a process that is highly biased toward 
success and, presuming some knowledge about the value landscape, appears 
to be by far less unpredictable than has usually been assumed in population 
genetics. In the light of the examples discussed thus far, this statement does 
not sound too revolutionary. However, more quantitative estimates will show 
how effective this “value guidance” is, turning it almost into a new principle 
rather than just some quantitative modification of evolutionary theory. 

In Figure 5 two landscapes are shown that start at a binary master 
sequence (v = 50) and are followed up to the 12-error copies. One of the 
landscapes (left side) is the low-value plateau that has been considered 
already in previous examples, while the other resembles a mountain saddle as 
typical for any fractal type of hill country. The population numbers of 
mutants, relative to the population number of the wild type, were calculated 
by means of second-order perturbation theory [Eqs. (11.17) and (II.l8)] for 
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Figure 24. Local shape of value landscapes. Selective values as defined by Eqs. ( I V . 9 t  
(IV.11) of 70 nearest neighbors surrounding a given reference sequence I ,  are shown. Upper 
curve refers to evaluation according to third model for q = 1 as in Figure 22. Middle curve 
represents free energies according to second model evaluation. Lower curve counts numbers of 
base pairs in different folding patterns Yk. Free energy follows approximately number of base 
pairs, but excess production shows roughly opposite trend. 

two cases: (i)The profile shown applies to only one individual chain of 
mutants up to the 12-error copy, all other mutants having a zero fitness value; 
and (ii) the profile applies to all precursors of the 12-error mutant, that is, all 
mutants directly between the wild type and a given 12-error mutant. 

The results are very instructive. For the low-value plateau the probability 
of mutant appearance is essentially Poissonian for the single-mutant chain (i) 
and only slightly modified for the all-intermediate mutant plateau (ii), indi- 
cating that for typical population numbers of 10'0-10'5 any given mutant 
that has a Hamming distance from the wild type larger than 4-5 is rarely 
populated. In contrast, the mountain saddle landscape shows probabilities 
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that suggest in both cases a deterministic population for all mutants under 
consideration. In particular, the 12-error mutant here-supposing the 
extended landscape (case i iFappears  by 15-20 orders of magnitude more 
frequently than in the case of the low-value plateau, suggesting that the 
evolutionary process would be deterministically guided to the mountainous 
region surrounding the 12-error mutant, in which a more advantageous new 
mutant might appear. 

In order to appreciate this effect adequately, we must be aware that a 
binary sequence of length 50 has (E) = 10” twelve-error copies and hence 
correspondingly many (overlapping) precursor regions, among which all 
sorts of value profiles are to be expected. The consequence of value guidance 
is that large areas of sequence space will never be touched by the evolutionary 
process. Thus the trial-and-error process of mutation is concentrated on 
those regions in which the advantageous copy is most likely to appear. The 
large orders of magnitude involved offer a most efficient solution of the 
complexity problem that initially instigated those who have made quantit- 
ative estimates on mutant generation. What counts is not the number of 
possible mutants (which generally is hyperastronomically high) but rather the 
value topography of sequence space, that is, the presence or absence of 
sufficiently branched mountain ridges that pervade major parts of sequence 
space. They guarantee the teleonomic nature of evolution that was hard to .  
imagine with a “blind filter” of selection acting upon the trial and error of 
mutation. 

It is also obvious that the problem of neutral mutants appears in a new 
light. Neutral mutants are not restricted any more to the chance coincidence 
of degenerate wild types that differ in their relative fitness by less than the 
reciprocal population size. Mutants with a quite broad degree of variability 
of fitness are potential candidates when rated together with the fitness 
topography of their neighbors. Only in small populations of species of large 
genomes-that is, only where every mutant really is unique-would the 
stochastic trial-and-error model apply. Even in these cases, the long-term 
behavior would depend on the fitness topography of the kinship neighbor- 
hood of the wild type. The deterministic model, of course, represents a 
limiting case that has to be complemented by stochastic approaches (cf. 
Section V.5), just as the random-drift model of Kimura represents another 
limiting case. 

V. CONCLUSION REVIEW AND OUTLOOK 

1. The Physical Basis of the Model 

In this Chapter we have been dealing with the simplest model of a self- 
reproductive molecular system consistent with known [59-611 kinetic prop- 
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erties of RNA or DNA: the (molecular) quasi-species. In so far as they satisfy 
the prerequisites we have assumed, the model may well apply to more 
complex systems dealt with in molecular biology, including viruses [62, 631 
or (vegetatively reproducing) cellular systems that we may collectively sub- 
sume as systems of individual “replicators.” The model in its simple form does 
not apply to networks of interacting replicators, but it may be extended so as 
to include such properties. It is also not intended in this review to describe 
any realistic scenario of the early phase of the origin of life. These were 
“historical” rather than truly physical problems, requiring the knowledge of 
historical initial and boundary conditions. Although we may well guess about 
the general chemical nature of prebiotic earth, we entirely lack detailed 
knowledge about particular environmental conditions such as the presence of 
specific catalysts, be they of chemical (e.g., molecular complex) or of physical 
(e.g., interfacial) nature. 

Hence we are dealing with a conditional model that becomes rel- 
evant wherever its prerequisites are fulfilled. Moreover, the model pro- 
vides a framework for designing experiments dealing with (molecular) 
biological evolution that can be conducted under defined laboratory condi- 
tions. 

Being one of the simplest molecular models that display Darwinian 
properties, it provides some features that may be taken as generally charac- 
teristic of Darwinian self-organization, We do not pretend that this simple 
model applies to all situations for which Darwinian reasoning has been used. 
This model, for instance, neglects any horizontal exchange of information 
such as regular and irregular crossing over, gene conversion, transposition, 
and so on, which are typical of higher organisms. Nevertheless, the rigorous 
treatment of the model reveals a much more subtle interpretation of what is 
usually referred to as Darwinian behavior, commonly described as an inter- 
play of stochastic mutation and deterministic selection of statistical signifi- 
cant advantages (including the important modifications brought about by the 
theory of neutral selection). Evolutionary optimization based on neutral drift 
and natural selection as a hill-climbing process in the rugged terrain of a 
value space becomes understandable in a quantitative sense only by the 
subtleties the model involves. These effects have been tested and identified 
directly by experiments using molecular replicator systems. We are sure that 
these effects will carry through to more complex population systems of 
organisms and therefore must be taken into account for any quantitative 
description of Darwinian behavior based on natural selection and neutral 
drift, although they may be complemented by various other phenomena 
considered to be of importance in population biology, such as fluctuating 
environments, isolation, migration, and so on, in addition to the recombi- 
native events typical of Mendelian populations. 
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The quasi-species model rests on essentially three prerequisites: 

1. The major constituents of the system, for example, sequences of RNA or 
DNA, have to be inherently self-reproductive. This is expressed through 
positive diagonal terms ( Wii) in the kinetic equations. 

2. Self-reproduction of the constituents is not entirely precise but is rather 
prone to mutation, being expressed by positive nondiagonal terms w.,. 
(In other words; species i can come about not only through self-copying 
but also by miscopying of species k.) 

3. The system has to stay far from equilibrium, or better; the turnover of 
the major constituents is not at equilibrium, where formation and 
decomposition would be microscopically reversible and detailed bal- 
ance would hold. This requires a metabolism sustained by a supply of 
energy-rich monomeric building blocks of the polymeric constituents. 
(It should be stressed that at equilibrium the first two conditions are not 
sufficient to cause selective evolutionary self-organization.) As a conse- 
quence of microscopic reversibility, all eigenvalues will always turn out 
to be real and negative. 

Apart from these three prerequisites, leading to the general form of kinetic 
equations as represented in Appendix 3, no specific interactions among the 
constituents-such as mutual enhancement or suppression, recombinative 
exchange, or other regulative couplings-have been assumed. 

2. The Emerging Concepts of Molecular Evolution 

The deterministic treatment of the model reveals three major regularities that 
may be best encompassed by the following terms: 

Selection. Local stabilization of a quasi-species distribution in sequence 
space around one (or several degenerate) master species. 

Evolution. Destabilization of the local quasi-species upon arrival of an 
advantageous mutant that establishes a new quasi-species. 

Optimization. Tendency toward global stabilization guided by the popu- 
lation of nearly neutral mutants and their nonrandom distribution in 
sequence space. 

To consider evolutionary optimization as a sequence of discrete selection 
steps requires some explanation. In fact, it is justified only on the basis of a 
hierarchical order of the rate terms, in which the off-diagonal terms usually 
are much smaller than the diagonal ones, decreasing in binomial or Poisson- 
ian progression with increasing Hamming distance between template and 
(erroneous) replica. As a consequence, the deterministic order around an 
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advantageous master copy, that is, a local quasi-species, is established 
relatively quickly, while the arrival of a new mutant with selective advantage 
is a fairly slow process. Such a mutant originates from a precursor mutant at 
the periphery of the quasi-species distribution, that is, at a relatively large 
Hamming distance to the master copy, where population numbers relative to 
that of the master copy are rather small. Strictly speaking, we are dealing here 
with a stochastic rather than a deterministic event, and the deterministic 
model at this point needs a stochastic supplement (cf. what follows). However, 
deterministic population numbers near the periphery of the quasi-species 
distribution, even for a given error class, may differ by many orders of 
magnitude depending on the fitness (relative to the master copy) of that 
particular region in sequence space. A cumulative fitness distribution greatly 
enhances this effect, which provides a strong deterministic bias for the 
production of particular mutants at the periphery, preferentially those that 
are of high fitness or selectively advantageous. This effect provides such a 
strong guidance toward broad global fitness maxima (the examples given in 
Figure 5 showing how many orders of magnitude actually are involved) that 
the classical picture of an evolutionary process as a pure trial-and-error 
search for advantageous mutants (with its consequently low success probabil- 
ity) turns out to be obsolete. The target of selection is not the single 
advantageous copy, that is, an individual wild type. Instead, it is the total 
quasi-species distribution that is the target, and this is not of some simple 
narrow-banded Poissonian type but rather shows a fairly large nonsymmetri- 
cal dispersion with protrusions reaching far into the sequence space. These 
protrusions of the population distribution are found along the ridges of the 
fitness landscape bridging those areas with fitness values closely resembling 
that of the wild type. 

A tremendous change in the deterministic concept of a Darwinian system 
is brought about by the quasi-species concept. Let us confront the current 
interpretation with the classical one. 

1. The wild type, despite the fact that the whole system may be represented 
by a unique sequence, is not a single individual but rather a distribution 
having a defined consensus or master sequence. The individual (or group of 
individuals) that coincides with the consensus sequence may represent a peak 
in the population distribution. Its fraction of the total population, however, 
usually remains fairly small (in cases where it  has been tested, even undetect- 
ably small). 

2. The termfittest, correspondingly, is not related to any individual but 
rather to the complete quasi-species distribution acting as the target of 
selection. Mathematically, the fittest is characterized by a dominant eigen- 
vector to which all populated states contribute. Only if one sequence clearly 
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dominates in fitness will its fitness value (diagonal coefficient W,,) determine 
the maximum eigenvalue to a close approximation. 

3. The population ofmutant states in the quasi-species is strongly modula- 
ted by the fitness distribution. The effect is particularly strong for those 
mutants ( i )  whose fitness values resemble closely that of the wild type (m) due 
to the hyperbolic form Wi/( W,, - Wi). Moreover, the population number of 
a given mutant is related not only to the wild-type fitness but also to the 
Gtness values of its neighboring mutants, especially those situated in the 
subspace referring to all positions that differ from the master sequence. If, in 
such a domain, all fitness values (or a major portion thereof) are close to that 
of the master sequence, there will be a tremendous amplification of popu- 
lation numbers relative to domains of low fitness. Optimization routes are to 
this degree deterministically ordained. 

4. Neutral or nearly neutral mutants appear in a new light. First, they 
appear to be of utmost importance in determining the population of states at 
the periphery of the mutant spectrum and hence in fixing the route of 
evolution. Second, being part of the quasi-species distribution, they are rated 
not only by their fitness relative to the master but also with respect to their 
own mutant environment. The uncertainty of classical theory, how closely the 
fitness of a mutant has to resemble that of the wild type in order to be called 
neutral, is now replaced by quantitative expressions. It turns out that mutants 
the fitness values of which deviate considerably more than by l / n  (n being the 
population number) from the wild-type fitness value still may play a very 
important role, while at the same time true degeneracies due to the rating of 
the mutant environment become quite rare. As a consequence, in macro- 
scopic populations comprising something like 109-10’ individual repli- 
cators, we usually find only one defined consensus sequence, although many 
(nearly) neutral mutants tend to be populated. 

5 .  Stochastic theory must supplement deterministic theory as in the classi- 
cal wild-type model. This is a formidable task for the complete quasi-species 
model due to the nonlinear type of relations involved (cf. section 5.) .  

The results of classical neutral theory are valid only for systems of 
relatively low population numbers and large genomes. If the genome is large 
enough that even the 3v one-error mutants cannot be populated because the 
population number n is smaller than 3v, one may expect the results of so- 
called neutral theory to be representative. Otherwise, modifications due to 
the reproducible population of (nearly) neutral mutants, as indicated by the 
deterministic quasi-species model, pertain and finally destroy the basic 
assumption of the “blind” production of mutants at the periphery of the 
mutant spectrum. 

6. In the limit of large populations and sufficiently small genomes (usually 
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fulfilled for single RNA or DNA molecules or viruses) we can now give a 
physical characterization of the terms selection and evolutionary adaptation. 

Selection may be characterized physically as a condensation phenomenon 
(mathematically; localization of a distribution in sequence space). The anal- 
ogy to ferromagnetism has been stressed, except that we are dealing with 
entirely different variables. The role of the Curie temperature is played by an 
error threshold. Far below the error threshold, the distribution contracts to 
populate the master species only. This state is determined by the fitness 
landscape’s highest peak rather than cooperative forces, owing to the simple 
structure of the model. Surpassing the threshold means the “melting” of the 
quasi-species distribution due to accumulation of errors. Such an error 
catastrophy means a sharp loss of genetic information. Hence selection is a 
kind of phase transition in information space. The error threshold has been 
tested for various virus populations (Table IV) and found to be effective in 
nature (cf. what follows). 

Evolution then may be viewed as a series of stabilizations and destabiliz- 
ations of quasi-species distributions (i.e., a series of phase transitions) that, in 
a constant environment, are associated with an increase of fitness. This 
process is guided by the mutant distribution within each quasi-species. The 
advantageous mutant appears at the periphery of the populated mutant 
distribution usually in an area of relatively high fitness. The evolutionary 
route thus avoids the vast space with a low degree of fitness, and hence 
optimization proceeds along fairly limited pathways. How discrete the single 
steps are depends on the proportion of neutral and advantageous mutants 

TABLE IV 
Replication Error Rates (per Nucleotide) of RNA Viruses” 

Coliphage Q/3 3 x 10-4 

Influenza 7x10-5-2.7~ 10-4 

Vesicular stomatitis 3-5x10-4 

Foot-and-mouth disease 5 x 

Poliomyelitis 3 x 

For Comparison ( D N A  Replication) 

Coliphage A 2.4 x lo-’ 
Coliphage T4 1.7 x 
Escherichia coli 2 x  10-10 

a Values (literature cf. ref. 63)  determined from reversion 
frequencies of mutants and hence represent true error rates (to 
be distinguished from population numbers of mutants, i.e., so- 
called mutant frequencies). 
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within a given quasi-species. If this degree is appreciable (relative to popu- 
lation size), selection and evolution may coalesce into one process approach- 
ing the global maximum of fitness. Again, the error threshold relation is of 
utmost importance. Evolutionary progress is expected to be greatest near the 
error threshold. Occasionally surpassing this limit may assist in the escape 
from metastable distributions to find a higher fitness peak, just as simulated 
annealing is used for efficient optimization. 

Eootutionary optimization then is not just a blind stochastic trial-and-error 
search for a better adapted mutant but rather follows an inherent logic: 

1. Selective advantage usually is to be expected in a distant mutant, that is, 
as the periphery of the distribution. 

2. Mutants far distant from an established master sequence arise from 
those that are less distant, that is, from precursors “en route”. 

3. The probability of producing a distant mutant therefore depends 
critically on the population numbers of its precursors. 

4. Population numbers of mutants are high relative to equidistant com- 
petitors if they are situated in a domain of high fitness. 

5. A fractal clustering of the fitness distribution in domains is likely to 
occur. 

6. Precursors of distant advantageous mutants therefore have a higher 
chance to be populated than precursors of deleterious mutants. 

7. The high dimensionality of sequence space aids the connectivity of 
fitness domains of (nearly) neutral mutants. 

8. Evolutionary optimization proceeds along defined pathways in se- 
quence space. There are alternative routes, but their number is so highly 
restricted that one has the impression of a phenomenon of automatic 
guidance to higher fitness. 

This logic, rather than the simplifying interpretation of Darwinian behavior 
as an interplay of chance (random) mutation and necessity (selective fixation 
of the advantageous mutant once produced), is the basis of evolutionary 
optimization or adaptation. 

3. Experimental Evidence 

Many of the classical observations of molecular genetics, especially those 
related to viruses, have to be reexamined in the light of the new theory. 
Virologists have accepted the concept of quasi-species (cf. articles by 
Domingo and Holland and others [64,65]). What once had been interpreted 
as the wild type showing a defined individual sequence now has been 
identified to be a widely dispersed mutant spectrum with defined consensus 
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sequence. One of the classical experiments was carried out by Weissmann and 
co-workers [66]. They cloned single particles of the Coli phage QD, amplified 
the clones, and determined sequences or fingerprints. The result was that 
none of the different clones exactly agreed in their sequences but rather 
showed one or several differences. Weissmann estimated from his exper- 
iments that a true wild type as an individual sequence was present to an 
extent of less than 5%. Moreover, by evaluating the rate of revertant 
formation (occurring in artificially produced site-specijc mutants) as well as 
the relative growth rates of the revertant (master copy) and the mutants, he 
could correlate sequence length with error and wild-type superiority, in 
agreement with the error threshold relation [Eqn. (IIIS)]. The experiment is 
schematically represented in Figure 25. One may wonder why such an 
experiment works at all, that is, how a mutant clone can grow up before it is 
replaced by the revertant “wild type”, which must appear soon in the 
mutant’s quasi-species distribution. All clones would then show identical 
sequences, that is, the wild-type sequence. The explanation that mutant 
sequences can be identified in macroscopic amounts lies in the fact that what 
is being fished out in cloning single particles are nearly neutral mutants (being 
present in relatively high abundance). Since such a mutant ( i )  has a diagonal 
coefficient Wii x W,, [i.e., being almost neutral with the master ( m ) ] ,  it grows 

I Wildtype Quasispecies I 

Mutagenesa) 

I (Almost) Neutral Mutant’k{ Master Sequence ”m“ 

Figure 25. Scheme of Weissmann’s experiment [66]  for determining error rates of phage 
QP. Success critically depends on finding nearly neutral mutant k ,  which grows up about as 
quickly as  master copy m, i.e., W,, % W,,, while being replaced by revertant master copy with 
relatively small rate (i.e., ( W,, - Wkk)  + Wkk) .  In natural population such nearly neutral 
mutants may be picked up frequently because they are abundantly populated. Weissmann chose 
an extracistronic site-specific mutant. 
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up in clone amplification as eWiir z eWmmr,  while the revertant replaces the 
mutant only according to e(wmm- w i i ) r .  

Error rates have also been determined for foot-and-mouth disease virus by 
Domingo [67], for influenza A virus by Palese [68], and for vesicular 
stomatitis virus by Holland [69] and their co-workers. All results show the 
correlation of error rate with sequence length. However, the factor In CT may 
considerably influence the results if CT + 1. In fact, some of those exper- 
iments-where single cloned mutants were amplified directly for the sake of 
sequence analysis-may produce misleading results since in these cases near- 
neutral mutants only are to be detected. (Mutants with Wii considerably 
smaller than W,, would appear with unduly large delay.) Influenza A seems 
to be a case where a large fraction of the infectious virus mutants are indeed 
(almost) neutral, possibly as a consequence of the fact that this virus contains 
eight separate RNA chains in its genome. On the other hand, poliovirus, 
which has been tested by the same method, did not show detectable (neutral) 
mutants. In these cases a quantitative study of the kinetics of revertant 
formation from site-directed mutants may offer a more direct access to the 
average error rate (1 - 4). 

In carrying out such experiments on error rates, one has to specify 
carefully the conditions under which the results were obtained. In particular, 
one has to distinguish the (average) probability (1  -4)  of producing a 
substitution per site (in replicating a sequence) from the rate of appearance of 
a mutant in an established quasi-species distribution. Hence it makes a 
difference whether one observes one or a few replication rounds in an 
essentially nonstationary distribution or whether one counts frequencies of 
appearance at a steady state. Hot spots, that is, single sites showing extremely 
high rates of mutation, have been reported frequently in the literature, and 
their first discovery certainly may be considered a cornerstone in the rise of 
molecular virology [70,71]. However, frequency of appearance may mean 
either a high rate of production (from wild type) or a high (almost neutral) 
rate of replication or both. Which interpretation is correct, that is, which 
fraction is to be associated with either of the two effects, remains to be 
analyzed for most cases reported. 

In any case, working with complete virus particles requires some caution 
with respect to an evaluation of results. The observable amplification of many 
viruses appears in the form of single bursts defining infectious cycles. In each 
burst, however, many copies of virus particles are set free, of which only a 
minor fraction turns out to be infectious. Within a replication cycle inside the 
host cell the replication machinery is available to both viable and nonviable 
(or less efficiently) replicating virions, while after the burst only those particles 
will survive that have encoded the correct machinery for further infection. 
Moreover, one may start under conditions where single infections (i.e., one 
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virus infecting a cell) are guaranteed. After several bursts, such conditions 
cannot be easily maintained. In the neighborhood of the site of a burst 
multiple infections will take place. It is important to carry out experiments in 
such a way that their interpretation either is not sensitive to the details of this 
mechanism or such that the exact mechanism, if known, is taken into account. 

These difficulties can be avoided if replication experiments are carried out 
in vitro, that is, under cell-free conditions. The late Sol Spiegelman pioneered 
this kind of experiment [72-741 using the Coli phage QB. The basis of these 
experiments was the observation that the isolated genome of phage QB can 
be replicated in a suitable reaction mixture, including the monomeric build- 
ing blocks in an energy-rich form, that is, the four nucleoside triphosphates, 
the purified enzyme, and the QB-replicase (which was isolated from infected 
cells), the mixture being adjusted to suitable pH and ionic strength condi- 
tions [72]. The first replication rounds produced infectious particles, that is, 
R N A  chains that upon introduction to host cells were able to produce 
infectious phages. If, however, serial upgrowth and dilution was carried out 
over many generations, the acting selection pressure for efficient replication 
caused the sequences to delete those portions that are not essential for 
recognition by the replication enzyme and there grew out a particle only 
about one-tenth of the length of the intact phage genome but having a 
replication rate per site far in excess of the wild type [73]. One may call this 
process degeneration rather than evolution because the resulting particle 
entirely lost its capacity of infection. Nevertheless, with respect to replication 
by the Qfl enzyme, these particles were better adapted to their new environ- 
ment, which did not require them to be infectious. 

In another experiment using a small R N A  variant of about 220 nucleotides 
(which, again, was not infectious but was efficiently recognized by the 
replication enzyme), Spiegelman et al. [74] demonstrated a true evolution 
process. They added ethidium bromide, an inhibitor of replication, to the 
reaction mixture and found the successive outgrowth of mutants with one, 
two, and three single-site substitutions, respectively (cf. Figure 26). The final 
product after about 40 generations was a three-error mutant that was about a 
factor of 2 more efficient in replication than the original wild type. When 
these experiments were carried out, the kinetics and mechanism of replication 
were not yet known in any detail. Such studies were recently done in 
collaboration with Biebricher and Gardiner [59-6 1). The kinetic experiments 
were supplemented by computer simulations and by analytical treatment of 
simplified mechanisms. These studies led to a complete identification of all 
major reaction steps of enzyme R N A  replication. The simplified scheme 
shown in Figure 27 indicates how complicated the true mechanism is and 
how important it is in evolutionary experiments to choose appropriate 
conditions. There are essentially three regimes of replication one has to 
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Figure 26. In serial dilution experiment, Spiegelman [73, 741 and co-workers obtained 
three successive mutants with increased adaptation to presence of ethidium bromide, a drug that 
interferes with replication. Experiment starts with population of lo6 MDV strands (variant of 
Qp-RNA comprising about 220 nucleotides that is well-adapted to Qp-RNA-replicase). Popu- 
lation is amplified to about 10" copies and subsequently diluted to initial concentration. 
Iteration of this procedure led to final product, three-error mutant that was obtained after about 
40 iterations. As replication rate data show, mutant is slightly inferior to wild type in absence of 
ethidium bromide but twice as efficient as wild type at final concentration of ethidium bromide. 

distinguish: (i) at low template-to-enzyme ratios where the reaction proceeds 
exponentially, rating the growth constant of plus and minus strands as a 
geometric mean; (ii) at template-to-enzyme ratios of 1 and moderately larger, 
where the enzyme gets saturated by template and the reaction proceeds 
essentially linearly with time according to some Michaelis-Menten scheme; 
and finally (iii) at large template-to-enzyme ratios where inhibitions (binding 
of template to replica site and template double-strand formation) cause the 
rate to reach a plateau (Figure 28). Selection experiments were carried out in 
the different regimes leading to differing results [75]. In the exponential 
growth range the most efficiently growing species (according to its overall 
rate) is selected while in the linear growth range a species grows out that wins 
the competition of binding to the enzyme (regardless of growth efficiency). It 
turns out that, with regard to the reaction mechanism, the original evolution 
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Figure 27. Detailed in vitro mechanism of RNA replication by Qp-replicase [59] .  RNA 
grows exponentially as long as template concentration is below enzyme concentration. Growth 
rate becomes constant and hence RNA concentration rises linearly when template concentration 
exceeds that of enzyme, while, finally, at large template excess, rate decreases down to zero due to 
enzyme inhibition and template double-strand formation. In these in vitro experiments, 
QP-replicase is present as environmental factor. In vivo the enzyme is formed during the first 20 
min after infection of host cell followed by RNA replication during second half of infectious cycle. 
After about 40 min, about a thousand infectious phage particles per cell are released in burst. 
These thousand infectious particles usually are minor part of total burst size. 

experiments were not carried out under uniquely defined (nor incidentally 
under optimal) conditions. It is important to optimize the population size 
with respect to mutant expectancy. Spiegelman’s experiments were done 
under conditions far below the error threshold and therefore resembled quite 
inefficient adaptation. 

The discovery of de novo synthesis [7&79] of RNA by Qp replicase 
opened a new way of studying evolution processes in the laboratory under 
more favorable conditions. In the process of de novo synthesis many different 
templates are being formed by individual enzyme molecules and then com- 
pete for growth, leading finally to the outgrowth of a fittest sequence. These 
experiments can be done in the presence of conditions exerting some selection 
pressure. Ethidium bromide provides such a selection pressure [76], as in 
Spiegelman’s experiments [74], and de novo synthesis in the presence of 
ethidium bromide does indeed reveal much more efficient products, as seen in 
Figure 29. 
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Figure 28. Rate profiles obtained in vitro experiments of RNA replication by Q/?-replicase 
[59] .  Exponential growth range manifests itself by constant shift of growth curves (lag periods) 
for constant ratios of template numbers. Detectable growth range refers to template concen- 
trations that are comparable to or higher than enzyme (replicase) concentration, while high 
template-to-enzyme ratios cause leveling of growth curve due to enzyme inhibition and template 
double-strand formation. Evolution experiments have been carried out with differing results in 
both exponential and linear growth range. 

At present we are endeavoring to optimize these techniques so as to work 
close to the error threshold and use annealing procedures to speed up the 
evolutionary process. Automated machines for evolutionary adaptation of 
RNA sequences and of viruses have been constructed [80,81]. 

In summary, experimental evidence available confirms the results of 
theory and opens some interesting aspects for future work on evolutionary 
optimization. In fact, very recently, Biebricher [82] was able to clone a quasi- 
species distribution of RNA and to demonstrate most directly the widely 
spread mutant spectrum that is characteristic of a molecular quasi-species. 

4. Limitations of the Model 

Major limitations have been mentioned already, as far as they are related to 
the particular mechanism of RNA replication or virus infection. The linear 
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Figure 29. RNA sequences, obtained by de novo synthesis using Qj-replicase, can be 
optimally adapted to presence of inhibitors [76 ] .  Growth rate of such variant as function of 
ethidium bromide concentration indicates not only much higher degree of adaptation (as to be 
expected from broader quasi-species-like mutant spectrum obtained under de novo synthesis 
conditions, i.e., near error threshold) but also a drug addiction, i.e., higher synthesis rate at finite 
ethidium bromide concentration. 

autocatalytic ansatz of replication (i.e., the term Wiixi )  with uniform error 
rates ( W i k x k )  represents only the simplest possible model. Nevertheless, it 
does yield all the experimental features that have been observed in corres- 
ponding reaction systems. There is a wide range of conditions where the 
simple ansatz indeed proves to be a perfectly satisfactory approximation, as 
computer simulations of the more complex mechanisms have shown [73-75).  
Moreover, knowing the particulars of any mechanism in more detail would 
allow one to adapt the equations correspondingly. 

There are, however, more principal limitations, and it is important to 
stress that the quasi-species model is a particular model holding only where 
its prerequisites are fulfilled. The linear autocatalytic rate law is one of the 
prerequisities typical for the quasi-species nature. If rates become indepen- 
dent of the concentrations of growing substraces, coexistence may replace 
competition, or if, on the other hand, the autocatalytic rate law depends more 
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strongly than linearly on the concentration of the growing entity (as is the 
case for hypercycles), selection may become of an entirely different, non- 
Darwinian nature than is normal for a quasi-species [4]. 

The typical outcome of quasi-species behavior is natural selection in the 
Darwinian sense. We believe that it should be possible to adapt the quasi- 
species model to any situation where natural selection in the Darwinian sense 
plays a major role. Hence the model may be generalized so as to include all 
kinds of horizontal gene transfer typical for recombination. The model as 
presented is essentially a deterministic model that holds only for a sufficiently 
large population size. This limitation and a possible way to overcome it will 
be the subject of the final section. 

5. Replication as a Stochastic Process 

Evolutionary phenomena by their very nature call for a stochastic descrip- 
tion. The source of the undeniable, inherent importance of fluctuations can be 
located in the molecular structure of biopolymers. The numbers of poten- 
tially different polynucleotide sequences, as we pointed out in Section 11, are 
always much larger than the numbers of molecules in realistic populations. 
So it came as rather a surprise that we were able to characterize stationary 
mutant distributions by the application of conventional reaction kinetics to 
polynucleotide replication. Error thresholds, derived by means of the quasi- 
species concept, brought us indeed to the limits of justification of the 
deterministic approach. Consider a population replicating with an error rate 
that exceeds the critical value. The model predicts an approximately uniform 
distribution of sequences at the stationary state. Such a state can never occur 
since we cannot have less than one molecule of every type. What happens at 
error rates above threshold is the breakdown of the stationary state. We are 
dealing with a changing ensemble of sequences that migrates through se- 
quence space as a random walker. Around the error threshold-this is the 
range that appears to be most relevant for evolution-this walk is anything 
but trivial. The underlying value landscapes, as we pointed out in Section 
IV.3, are highly complicated, bizarre objects, and they determine where and 
how fast the population moves. The success of the quasi-species model is 
documented by the powerful localization concept [29] as outlined in Section 
111.2. It allowed us to extend the approach to such complicated cases where 
only statistical information on the distribution of selective values is available 
(Section 111.3). 

Other important questions, however, remain unanswerable within the 
deterministic theory. Among them are phenomena directly related to finite 
populations such as the dependence of error thresholds on population size or 
the mean lifetimes of mutants in populations. The latter quantity is of 
particular importance for highly fluctuating mutant distributions such as 
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those occurring at high error rates or those encountered with distant, 
selectively neutral mutants. Then the distributions of polynucleotide se- 
quences are essentially nonstationary and are characterized in terms of mean 
lifetimes rather than by relative concentrations. Another relevant problem 
concerns the probability of finite populations being caught in local optima of 
fitness landscapes. In principle, this question can be answered appropriately 
by means of first passage times that allow one to compute the average time a 
population will spend in a given region of sequence space before passing to a 
different region. 

Several attempts to describe replication-mutation networks by stochastic 
techniques were made in the past. We cannot discuss them in detail here, but 
we shall briefly review some general ideas that are relevant for the quasi- 
species model. The approach that is related closest to our model has been 
mentioned already [Sl]: the evolutionary process is viewed as a sequence of 
stepwise increases in the populations’ mean fitness. Fairly long, “quasi- 
stationary” phases are interrupted by short periods of active selection during 
which the mean fitness increases. The approach towards optimal adaptation 
to the environment is resolved in a manner that is hierarchical in time. 
Evolution taking place on the slow time scale represents optimization in the 
whole of the sequence space. It is broken up into short periods of time within 
which the quasi-species model applies only locally. During a single evol- 
utionary step only a small part of sequence space is explored by the popu- 
lation. There, the actual distributions of sequences resemble local quasi- 
species confined to well-defined regions. Error thresholds can be defined 
locally as well. 

In the case of selective neutrality-this means that all variants have the 
same selective values-volution can be modeled successfully by diffusion 
models. This approach is based on the analysis of partial differential equa- 
tions that describe free diffusion in a continuous model of the sequence space. 
The results obtained thereby and their consequences for molecular evolution 
were recently reviewed by Kimura [Z]. Differences in selective values were 
found to be prohibitive, at least until now, for an exact solution of the 
diffusion approach. Needless to say, no exact results are available for value 
landscapes as complicated as those discussed in Section IV.3. Approxima- 
tions are available for special cases only. In particular, the assumption of rare 
mutations has to be made almost in every case, and this contradicts the 
strategy basic to the quasi-species model. 

Chemical reaction networks are frequently modeled by Markov processes 
and can be formulated as master equations. Commonly, it is straightforward 
to write down the master equation, but when it comes to derive solutions, 
hard-to-justify approximations are inevitable; see, for example, ref. 83. In 
essence, the same is true for polynucleotide replication described by a master 
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equation. The master equation corresponding to the kinetic ansatz of Appen- 
dix 3 was first formulated by Ebeling and FeistelC841. Several attempts were 
made to derive results from this master equation [85-891 or from a closely 
related Langevin equation [90], but none of these was successful in deriving a 
stochastic version of the error threshold. 

A more restricted specification of the Markov process used in the 
modeling of replication and mutation yields more results for special cases. 
Birth-and-death processes were applied to error-free replication. We mention 
two examples [91,92]. Probabilities of mutant extinction and first-passage 
times for the selectively neutral case can be derived immediately. Multitype 
branching processes allows mutations to be included [48,93]. This approach 
corresponds to Eqn. (A3.1) without the flux term O(t). A stochastic error 
threshold was derived for this unconstrained replication-mutation system 
[48]. It is formally identical to the deterministic expressions derived in 
Section 111.1, but the interpretation is different: the value matrix Wis replaced 
by the mean matrix of the multitype branching process. At error rates smaller 
than the threshold the system sustains a master sequence and its mutant 
distribution with a certain probability that manifests itself in a finite prob- 
ability of survival to infinite time. If the error rate exceeds the threshold value, 
the probability of survival for the master sequence and for all other sequences 
is zero. This implies that we are dealing with a changing ensemble of 
sequences just as in the deterministic model, where the quasi-species fails to 
localize under these conditions. The stochastic error threshold sharpens with 
increasing chain length v-as it does in the deterministic case-and this 
implies here that the probability of survival to infinite time decreases sharply 
from almost 1 at error rates just below critical to almost zero just above the 
threshold. Attempts to incorporate the constraint @(t )  into the multitype 
branching model by means of a combined branching and sampling technique 
are presently in progress. 

A recent attempt at a direct stochastic theory by Weinberger [94] using 
the deterministic flow term as an external (precomputed) constraint should be 
mentioned here. The intractability of a large coupled system of second-order 
partial differential equations for the generating function is then reduced to a 
(nonlinearly coupled) system of ordinary differential equations. The price is 
the loss of proper population regulation and possible extinction. 

At present the most that can be said analytically about the error threshold 
in a finite population is the necessary condition [SO] 

-- a4' - E X , ,  E e 1, 
aq' - 1 

which demands small fluctuations in the master sequence population. Master 
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equations can be studied by computer simulation provided particle numbers 
are not too large. An algorithm particularly well suited for the investigation 
of stochastic chemical reactions networks was worked out by Gillespie [95]. 
It was used to compute error thresholds for finite populations on the simple 
value landscape we analyzed deterministically in Section IV. 1. Chain lengths 
up to v = 20 and populations up to N = 2000 were simulated [96]. Some 
results are shown in Figure 30 for a superiority, G = 10. In small populations 
the error threshold occurs at higher q values than in the infinite population, 
which is implicitly assumed in the deterministic approach. Fluctuations 
endanger the stability of stationary sequence distributions, and hence the 
smaller the population, the fewer errors it can tolerate. A comparison of Eqn. 
(V. 1) with the numerical results with X, determined by the deterministic 
second-order perturbation result, 

is also shown in Figure 30 and yields good agreement for the conventional 
choice E = 0.1. Further work along the lines suggested in the preceding will 
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Figure 30. Error threshold as function of population size. Stochastic replication-mutation 
dynamics in ensemble of polynucleotide sequences with chain length v = 20 simulated by 
Gillespie's algorithm [95]. Critical single-digit accuracy of replication ( qmin)  at which ordered 
quasi-species is converted into changing population of sequences with finite lifetimes is plotted as 
function of 1/N, reciprocal population size (lower curve). For further details see ref. 96. Upper 
curve is theoretical prediction of Eqn. (V.l) based on ref. 51. 
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provide more informiition about this and the lifetime of metastable quasi- 
species. The above brief review of stochastic theory suffices to provide a 
suitable context for the embedding of the deterministic quasi-species model 
while substantiating its basic claims. 

APPENDIX 1. MUTATION FREQUENCIES AND HAMMING 
DISTANCES 

The Hamming distance d(i, k )  of two sequences I i  and I ,  counts the number 
of digits in which they differ. The number of sequences in a mutant class, that 
is, the number of sequences with Hamming distance d(0, k )  = d from a 
reference sequence I , ,  is 

(Al.1) 

where v is the number of symbols in the sequence class, that is, the length of 
the chain, and K is the number of symbol classes, that is, the number of 
different digits. In binary sequences we have u = 2, and in polynucleotides we 
have K = 4. Summation over all possible Hamming distances 0 < d < 0 
yields 

N = (i)(u- l)d = ud. 
d = O  

(A1.2) 

The frequency at which the set of sequences with Hamming distance d is 
produced as error copies of the template I ,  is 

(A1.3) 

The frequency of correct replication, Q,, represents the quality factor of the 
replication process: 

Q O  = 4'. (A1.4) 

The frequency with which a given polynucleotide is produced as an error 
copy of the reference sequence I ,  is then obtained from 
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or, in general, the frequency of producing Zi as an error copy of any sequence 
I, is 

(A1.5) 

APPENDIX 2. RECURSIVE CONSTRUCTION OF THE MUTATION 
MATRIX Q 

The mutation matrix for binary sequences of length v + 1, Q(v + l) ,  is to be 
constructed from Q(v) in such a way that the eigenvalues and eigenvectors are 
obtained recursively. We start with v = 1 and set 

E = ( 4 - ' -  1 )  and B(v) = 4 - ' Q ( v ) .  (A2.1) 

Then we obtain for the two smallest B matrices (on the top and in the 
rightmost column of the matrix we indicate to which sequence the corre- 
sponding elements refer) 

00 01 10 11 

11 

(A2.2) 

(A2.3) 

This recursion consists of duplication of sequence space as indicated in 
Figure 2. Note that the sequences in the rows and columns of the Q matrix are 
arranged in lexicographical order. The recursion can be generalized and 
yields 

(A2.4) 

The eigenvalues )+(v + 1) and the corresponding eigenvectors qk(v + 1) are 
computed recursively too: 
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and 

(A2.6) 

Hence, all eigenvalues are of the same general form: 

V 

%a(v) = n (1 + y j s )  with y j €  { - 1, + 1). (A2.7) 
j =  1 

They are all real and positive and fulfill the inequality 

i m a x ( v )  = (1 + E)' and %,,,(v) = (1 - E ) " .  (A2.8) 

Both the largest and the smallest eigenvalue are nondegenerate (the former 
result also following directly from the Frobenius theorem). 

APPENDIX 3. THE RATE EQUATIONS 

The differential equation for the time dependence of the population variable 
ni( t )  is of the form (cf. Figure 2) 

The number of variables is extremely large. If we admit all point mutations of 
sequences with length v, we have i = 1,2, . . . , K". The number of sequences 
per unit volume of a given type, Ii, are denoted by ni(t). The rate parameters 
are collected in the value matrix W. The diagonal elements Wii are the rate 
parameters for the net or excess production of I i  through (correct) self- 
copying. They are composite quantities, 

with Ai and DI being the rate constants of total (correct and erroneous) 
template- ( I i )  induced replication and degradation, respectively. The fre- 
quency of correct copying, Qii ,  corresponds to the quality factor Qo as defined 



THE MOLECULAR QUASI-SPECIES 249 

in Appendix 1. The off-diagonal elements wik are the rate parameters for 
mutational production of the sequence Zi through (imperfect) copying of the 
template I k .  They can be expressed in the form 

wik = Qik 9 (A3.3) 

where A, is the total rate of replication on the template 1, and Qik is the 
frequency of the mutation 1, + Zi (Appendix 1). The (time-dependent) dilution 
flux is given by q t ) .  It represents the constraint for the particular model 
under consideration. The conservation law 

(A3.4) 

allows one to define an average excess production E(t)  that is of the simple 
form 

The total production rate of the population can then be written as 

k k 

(A3.5) 

(A3.6) 

It will turn out to very useful to introduce relative fractions of population 
variables: xi ( t )  = ni(t)/&nk(t). Then, the equation for the relative growth rate 
of sequence I i  is 

APPENDIX 4. THE SOLUTION OF THE SYSTEM OF 
DIFFERENTIAL EQUATIONS (11.6) 

Consider each variable z i ( t )  as the ith component of a column vector z and 
each rate coefficient wik as an element of the quadratic value matrix W. The 
system of rate Eqs. (11.6) then reads 

-- d z ( t )  - Wz(t) .  
dt  

(A4.1) 
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Provided the matrix W is diagonalizable (which we shall assume throughout 
this Chapter; cf. also Appendix 2 and Section IV), the system of differential 
equations can be decoupled by means of the transformation 

z ( t )  = L[( t )  and [ ( t )  = L-’ z ( t ) ,  (A4.2) 

where [ ( t )  represents again a column vector and L as well as its inverse L- ’ 
are quadratic matrices. Combination of (A4.1) and (A4.2) yields 

dC0 = L-’ WL[(t) .  
d t  

(A4.3) 

The matrix A = L-’ WL is diagonal as assumed in the preceding. Its ele- 
ments are the eigenvalues of W: ( k  = 0, 1, . . .). The corresponding column 
vectors 1, = {Ilk, &k, . . .} are stationary compositions (or “normal modes”) 
for [ ( t ) ,  which grow in magnitude at the rates &. They are found as (right- 
hand) eigenvectors of the matrix W. Provided the off-diagonal elements of the 
value matrix are strictly positive, the Frobenius theorem applies. Then the 
largest eigenvalue Amax = 2, is nondegenerate. Without loss of generality, we 
may order the eigenvalues 

The eigenvector corresponding to I. is called the dominant eigenvector lo. All 
its components are strictly positive: I i o  > 0 ( i  = 1,2, . . .). The left-hand 
eigenvectors are given by the rows of the inverse matrix L-’. 

For each component of [ ( t )  we obtain a solution curve of the general form 

wherein initial conditions are denoted by [ k ( o )  = c k ( t  = 0). The eigenvalues 
of the value matrix W are the solutions I of the determinantal equation 

det(W-LI) = 0, (A4.5) 

where det means determinant and I here denotes the unit matrix. Evaluation 
of Eqn. (A4.5) yields a polynomial in I whose degree is given by the number of 
concentration coordinates. In order to determine the components of the right 
and left eigenvectors of the matrix W, we start from 

WL = LA (A4.6) 
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and 
L-' W = AL-I or W(L- ' ) '  = (L-') 'A.  (A4.7) 

The prime means here the transposed matrix. Explicitly in matrix elements, L 
= {Iij> and L-l = {hij}, the last two equations read 

1 wij l jk  = likAk, (A4.8) 
j 

The explicit solutions zi(t) of the linear differential Eqn. (A4.1) are obtained as 
superpositions of individual normal modes, 

The constants ck can be obtained from the initial conditions, zi(0) = xi(0): 

Ck = 1 hkiXi(0). (A4.11) 

[Note that the initial value of the functionf(t) in Eqn. (11.5) isf(0) = 1 by 
definition.] Explicit solutions for the relative populations variables xi(t) can 
be obtained from Eqs. (11.5) and (11.7): 

i 

1 likckexp(Akt) 
(A4.12) k 

X i ( t )  = 

1 1 l j k  ck exp(ilk t ,  
.i k 

Formally they can also be expressed as 

(A4.15) 
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Note that the variables yk(t)  are normalized, since 

(A4.16) 

due to LL-’ = I .  

APPENDIX 5. GRADIENT SYSTEMS AND SELECTION 

Optimization processes are easily visualized in the case where the dynamics 
can be described by a “gradient system”: 

(A5.1) 

or in vector notation, x = ( x l ,  . . . , x ” ) :  

dx 
- = grad V 
dt 

The potential is not an explicit function of time but depends on it implicitly: 
V = V [ x ( t ) ] .  The potential function V is nondecreasing along a trajectory 
x ( t )  since 

(A5.2) 

Gradient systems do not sustain oscillations in the variables xk(t): the 
Jacobian matrix A = { u i j ;  i, j = 1, . . . , n}where 

is symmetric and hence has no complex eigenvalues. Reaction4iffusion 
equations derived from gradient systems, 

do not form stable spatial patterns under no-flux boundary conditions ~241.  
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First we consider error-free replication. Does it represent a gradient 
system? The differential equation for n competing sequences reads 

i k  = x&(wk - E), k = 1, , . . , n and w, = A ,  - Dk. (A5.4) 

is a nondecreasing function of time provided the rate constants wk are Here 
time independent: 

and hence 

(A5.5) 

(This equation is always true since concentrations x ,  are positive or zero and 
rate constants are real by definition.) The mean excess production I?, how- 
ever, is not a potential function in the sense of Eqn. (A5.1) since the 
trajectories of Eqn. (A5.4) do not intersect with the constant level sets of E at 
right angles (Figure 4). Based on techniques originally introduced by Shah- 
shahani [25], it is possible to transform Eqn. (A5.4) into a generalized 
gradient system [26,27], 

d x  
- = grad V 
dt  

(A5.6) 

This generalized gradient is based on a Riemannian metric defined on the 
interior of the concentration space { x k  > 0; X k x ,  = 1, k = 1, . . . , n}, which 
replaces the conventional Euclidean metric. We compare the definitions of 
the two inner products: 

n 

Euclidean metric: (x, y )  = x k y k ,  
k = l  

" 1  
Shahshahani metric: [x, yIz = 1 -xkyk .  

k = l  zk 

In the Shahshahani metric every component of the inner product is weighted 
by the corresponding coordinate of the point at which the inner product is 
formed. This weighting distorts the direction of the gradient of the potential 

(A5.7) 
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such that it coincides with the direction of the trajectories of Eqn. (A5.4). In 
Figure 4 we show a simple example of dimension n = 3. 

Next we consider the equation with mutations in a coordinate system 
whose axes are spanned by the eigenvectors of the matrix W according to 
Eqn. (11.16). Then the selection equation is of the general form 

wherein we denote the coefficient of the kth eigenvector (1,') by yk and the 
corresponding eigenvalue by & .  Equation (A5.4), although formally iden- 
tical, differs from (A5.4) with respect to the domains of variables as well as the 
range of allowed parameter values. The relative concentrations & ( t )  were 
nonnegative, whereas the yk may be positive or negative depending on the 
initial conditions yk(0) .  The eigenvalues of the matrix W may be real or 
complex. Only the largest eigenvalue Lo is real and positive by the Frobenius 
theorem. Consequently, the mean excess production ( E x ,  = Eyk = 1) 

(A5.8) 

is no longer a nondecreasing function of time since 

may be either positive or negative. It is illustrative to split the concentration 
space around the asymptotically stable point ( y o  = 1, y ,  = 0, k = 1, . . . , n 
- 1) into orthants according to the signs of the variables (Figure 4). Since the 
differential Eqn. (A5.4) is invariant on the boundaries of the orthants, 

trajectories cannot cross these boundaries. The system thus will always stay 
inside the orthant to which it was assigned by the choice of initial con- 
ditions.There is one orthant, namely, the positive orthant (yk > 0; k 
= 0, 1, . . . , n - l), in which E ( t )  is a nondecreasing function for real eigen- 
values &, and one orthant, the orthant ( y o  > 1, yk < 0; k = 1, . . . , n - l), in 
which E ( t )  is nonincreasing for real eigenvalues &. In the remaining orthants 
l? may decrease, increase, or pass through an extremum. 

Jones [19] derived a function 

(A5.9) 
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with pk(t) = Ivk(t)l/xjlvj(t)l and Re& being the real part of a potentially 
complex pair of eigenvalues. It is easy to visualize that 

(A5.10) 

holds in full generality. 

APPENDIX 6. BRILLOUIN-WIGNER PERTURBATION THEORY 
OF THE QUASI-SPECIES 

The coordinates z(t) of the differential Eqn. (11.6) can be expressed in the 
Laplace transform variable s, which is conjugate to the time t. With a single 
copy of sequence type 1, as initial conditions, they take the form 

Here 6, denotes the Kronecker delta. 
The perturbation series solution is then obtained by iteration as 

(A6.1) 

(A6.2) 

where 

. (A6.3) 

and hence the perturbation solution is determined in closed form by the 
perturbation series of Eqn. (A6.3). The asymptotic behavior is exponential 
growth with the rate given by the dominant eigenvalue Ao,  

Zik( t )  2: aikexp(Aot) for large t, (A6.5) 

. *  1 
s - 0  /lo- wii 

where 

(A6.6) aik = lim SZik(S + n o )  = ~ ' wik akk 
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and 

which results from Eqs. (A6.2) and (A6.4). If akk # 0, then Eqn. (A6.7) yields 
directly the result of the Brillouin-Wigner perturbation theory for the 
dominant eigenvalue 

and the population variables xk may be obtained in terms of Eqn. (A6.3) 
evaluated at s = A: 

(A6.9) 

APPENDIX 7. RENORMALIZATION OF THE PERTURBATION 
THEORY 

Equation (A6.3) may be rewritten using the factorization of Eqn. (111.7) in the 
form 

where 

%, - wii a. = ~ 

Wii ' 
(A7.2) 

and Vi, is given by Eqn. (111.7) for i # k .  Although the factors Vii are trivially 
zero, the series may be renormalized to remove less immediate repetitions 
following the Watson [30] procedure exploited by Anderson [3 11. The result 
is 

where 
ef = [A, - wjj - ' Wjj(Ao)]/  Wjj,  

efpj = [A, - w,, - ' Wi*j(Ao)]/  Wl l ,  . . (A7.4) 
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Here the superscripts are suppressed in the summations involved in the 
corresponding perturbation expressions. Repeated indices have been re- 
moved (affecting first the fourth-order terms) at the expense of corrections to 
the denominators. The renormalized denominators may be simplified ap- 
proximately to 

(A7.5) 

using a kind of mean-field approximation valid for high-dimensional mutant 
spaces [29]. The eigenvalue A. is then to be obtained from a series of the self- 
consistent form: 

and the remaining expressions depend on %, . 

APPENDIX 8. STATISTICAL CONVERGENCE OF 
PERTURBATION THEORY 

Considering a typical high-order form in the renormalized perturbation 
theory expression for Wim(A), in particular for the sequence ( = ( j ,  k ,  . . . , I )  
of N - 1 indices, 

(A8.1) 

direct averaging diverges. The logarithm of such a term, however, has mean 
and variance 

(lntlN)) = N t  (A8.2) 

and 

o2 (In tf'"} = No2, (A8.3) 

where t and o are asymptotically independent of N ,  provided there were no 
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long-range correlations between the denominators e,. Correlations as a result 
of repeated indices have been removed by the renormalization procedure 
outlined in Appendix 7. Equations (A8.2) and (A8.3) imply a sharpening 
probability distribution for ty': 

Prob{exp[t(N - NP)] < tr) < exp[t(N + Np)]} + 1 as N -+ m, 
(A8.4) 

where p is a parameter satisfying h < p < 1. The preceding result summarizes 
the essential statistical argument employed by Economou and Cohen [33]. 

Since all the terms are positive rather then of random sign, Eqn. (A8.4) may 
be used to prove that the sum of all terms of Nth order has a value for larger 
N near 

with probability 1. The last equality employs the closure summation (cf. 
Appendix 1): 

(A8.6) 

In the absence of systematic correlations between the replication rates of 
nearby mutants the average t may be obtained, 

- ( lnIo)  + In W,,, (A8.7) ) ( wjj 

W m m  - Wjj ( t )  = -(lnej) = - In 

and the convergence of the perturbation series depends on the inequality 

where the logarithmic averages are defined by 

(A8.8) 

(A8.9) 

(A8.10) 

and 
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APPENDIX 9. VARIABLES, MEAN RATE CONSTANTS, 
AND MEAN SELECTIVE VALUES FOR THE RELAXED ERROR 

THRESHOLD 

The composite sequences (Figure 7) and its concentrations are defined by 

I i j  = Ai  - B j :  [ I i j ]  = x i j n ;  n = Inij; C x i j  = 1. 
i j  i j  

This leads to the conventional selection equation 

with the selective value 

W i j , k l  = A k f Q i j , k f -  D i j s i j , k l *  

Averaging leads to 

I i .  = A i -  B: [ I i . ]  = 1 X i k  n = x i o . n ;  C x i o  = 1 
( k 1 1  ) i 

and 

I . j  = A - B j :  = 1 x k j  n = x o j . n ;  C x o j  = 1 
( k i l  ) j 

The same procedure for the rate constants yields 

and 

(A9.1) 

(A9.2) 

(A9.3) 

(A9.4) 

(A9.5) 

(A9.6) 

(A9.7) 

r 8 -  - 
E = C ( A i j  - D i j ) x i j  = C (Aio - D i o ) x i 0  = 1 (Aoj  - D O j ) x o j .  (A9.8) 

The only assumption made here concerns the mutation matrix: simultaneous 

ij i = l  j =  1 
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mutations in both parts A and B are excluded, 

Q.. ..= QtQB. i f i  = k and j =  1, 

Qi i f j  = 1 and i # k, 
QS if i = k and j # I ,  
0 if i # k and j #  1, 

IJ 9 Y JJ i Q..  = 
11, k l  (A9.9) 

where 

C Q i  and Q E =  1 - CQ;. (A9.10) Q A = 1 -  
k # i  f # j  

Finally we obtain the coupled selection equations 

iio = (AioQi - Di0 - E)Xi0 -I- 2 Qi&XkO (A9.11) 
k # i  

and 

ioj = (AojQ> - Doj - E)xOj + C Qj”,Aofx0, (A9.12) 
l # j  

with i, k = 1, 2 , .  . . , r andj ,  1 = 1, 2 , .  . . , s. 
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