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1. INTRODUCTION

Crystallization is a thermal separation process mostly used
in chemical industry that consists in transformation of
amorphous solid, liquid or gaseous substance into crystals
[Mersmann et al. (2011)]. Crystallization leads to an in-
crease of the concentration and purity of the final product.
In this paper continuous crystallization processes within
mixed-solution, mixed-product-removal (MSMPR) crys-
tallizers are considered. The focus here is on two impor-
tant crystallizer configurations: with the fines dissolution
loop and without. In order to improve performance of the
crystallization process feedback control should be applied.
Different control approaches have already been studied:
closed-loop control of crystal shape [Ma and Wang (2012)],
robust nonlinear control based on the method of moments
[Chiu and Christofides (1999)], infinite-dimensional H∞-
control [Vollmer and Raisch (2002)], [Motz et al. (2003)]
and discrepancy-based control [Palis and Kienle (2012)].
In this contribution a finite-dimensional robust control
approach will be studied resulting in easy implementable
low order controllers.

2. CRYSTALLIZATION PROCESS MODELING

In the crystallization processes studied in this contribution
crystals are generated and growing due to the oversatura-
tion of the liquid phase: the oversaturated solution is fed
to the reactor and cooled down there; such temperature
change decreases solvent saturation capacity and causes
crystal growth and formation of nuclei. Due to the presence
of different effects like seeding, nucleation, fracture, abra-
sion and growth, crystals have different sizes giving rise to
a crystal size distribution (CSD). In many cases the CSD
determines the quality of product since many physical
properties of the product are closely related to its CSD.
In addition, the effectiveness of downstream processing by
filtering or drying are strongly influenced by the CSD.

Hence, the dynamics of the crystallization process should
be studied considering the dynamics of the CSD.

2.1 Continuous crystallization process model derivation

To derive a model of the process the population balance
approach [Randolph and Larson (1988)] is applied. Fol-
lowing [Temmel et al. (2014)] a mathematical model was
derived with assumptions:

• the reactor content is ideally mixed;
• the solution volume inside the reactor is constant;
• the growth is size-independent;
• the system is diluted the reactor volume is not a
function of the substance and crystals mass;

• the mass of the solvent is much higher than the mass
of the substance;

• the occurance of breakage or agglomeration can be
neglected;

• nuclei have length zmin and negligible mass.

The crystal growth and dissolution factor G is assumed to
be derived in the following way:

G =

{
Kg exp(−EA,g/(RgasT ))(S − 1)g, if S > 1,

Kd(S − 1), otherwise,
(1)

where the supersaturation S is defined as follows:

S(t) =
ωl(t)

ωsat
. (2)

Here, the mass fraction at saturation ωsat was identified
experimentally and approximated by a polynomial:

ωsat =

4∑
i=0

Ki(T − 273.15)i (3)
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approach [Randolph and Larson (1988)] is applied. Fol-
lowing [Temmel et al. (2014)] a mathematical model was
derived with assumptions:

• the reactor content is ideally mixed;
• the solution volume inside the reactor is constant;
• the growth is size-independent;
• the system is diluted the reactor volume is not a
function of the substance and crystals mass;

• the mass of the solvent is much higher than the mass
of the substance;

• the occurance of breakage or agglomeration can be
neglected;

• nuclei have length zmin and negligible mass.

The crystal growth and dissolution factor G is assumed to
be derived in the following way:

G =

{
Kg exp(−EA,g/(RgasT ))(S − 1)g, if S > 1,

Kd(S − 1), otherwise,
(1)

where the supersaturation S is defined as follows:

S(t) =
ωl(t)

ωsat
. (2)

Here, the mass fraction at saturation ωsat was identified
experimentally and approximated by a polynomial:

ωsat =

4∑
i=0

Ki(T − 273.15)i (3)
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The crystal withdrawal term is defined as follows:

ṅout(t, z) =
n(t, z)

τr
, (4)

where τr represents the residence time.

In one of its configurations the crystallization facility in-
corporates the fines dissolution loop and the corresponding
term is defined:

ṅdiss = δR(z)nout(t, z) (5)

The term δ represents the fines dissolution loop rate, the
ratio of the product withdrawal related to fines dissolution
loop withdrawal and R(z) describes the selection of fine
crystals, this function was identified empirically [Temmel
(2014)] and is shown in Fig. 1:

R(z) =




ymax

(1 + exp(
z−zf
wf

)
if z < zfb,

ymax(1 + exp(
zfb−zb

wb
))

(1 + exp(
zfb−zf

wf
))(1 + exp( z−zb

wb
))
, otherwise

(6)

The nucleation rate ṅbuild can be defined as a bound-
ary condition which appears when the supersaturation is
greater than one, so the crystals of size zmin and negligible
mass are generated:

Gn|z=zmin
= ṅbuild(t) (7)

ṅbuild(t, z) =

{
Kb exp(−EA,b/(RgasT ))(S − 1)b, if S > 1,

0, otherwise
(8)

The population balance model for the solid phase of the
continuous crystallization is thus defined:

∂n(t, z)

∂t
= −∂Gn(t, z)

∂z
− ṅout(t, z)− ṅdiss(t, z) (9)

The mass balance of the solute in the liquid phase is
formulated as follows:

dml

dt
= ṁl,in(t)− ṁl,out(t) + ṁl,diss,in(t)

−ṁl,diss,out(t)− kvρs
dµ3(t)

dt
(10)

where the terms ṁl,in(t) and ṁl,out(t) describe the inward
and outward reactor flow, ṁl,diss,in(t) and ṁl,diss,out(t)
describe inward and outward fines dissolution loop flow
and the last term reflects the crystal growth.

The accumulation term on the left-hand side of the mass
balance equation can be substituted in the following way:

dml

dt
=

d(Vrρwωl(t))

dt
= Vrρw

dωl(t)

dt
. (11)

The inward and outward reactor flows are described as
follows:

ṁl,in(t) = V̇inρw,inωl,in =
1

τr
Vrρw,inωl,in (12)

ṁl,out(t) = V̇outρwωl(t) =
1

τr
Vrρwωl(t) (13)

The inward and outward dissolution loop flows are defined
as follows:

ṁl,diss,out(t) = V̇fρwωl(t) = δV̇outρwωl(t)

=
1

τr
δVrρwωl(t) (14)

ṁl,diss,in(t) = ṁl,diss,out(t) +
kvρsV̇f

Vr
µ3,f (t)

= δ
1

τr
Vrρw(ωl(t) + kvρsµ3,f (t)) (15)

After some further simplifications the mass balance can be
described as follows:

dωl(t)

dt
=

1

τr

(
ρw,in

ρw
ωl,in − ωl(t) + δkvρsµ3,f (t)

)

− kvρs
Vrρw

dµ3(t)

dt
(16)

For the process configuration without fines dissolution, the
term δ is equal to zero.

2.2 Open-loop simulation

For simulation studies and the following control design
the process was discretized applying the finite volume
method [Versteeg and Malalasekera (2007)]. The resulting
model dimension for controller design was 2000 and for
control system validation was reduced to 400 due to the
computational expense. In order to gain a rough under-
standing of the process, simulation studies of the open-
loop system were performed. The open-loop simulation
expands the knowledge about process peculiarities, its
stability, influence of parameter deviations on dynamic
behaviour of the model and allows to define qualitative
and quantitative indicators of the desired process oper-
ation. As we consider two cases, with and without fines
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Fig. 2. The configuration without fines dissolution loop
- reactor temperature step change Tr = 301.15K to
298.15K at tstep = 3 · 105s

dissolution loop, these cases will be analyzed separately.
In the configuration without fines dissolution loop, the
studied parameter is the temperature within the reactor
T (t) which can be controlled by the cooling system. In
the second configuration, the fines dissolution loop rate
δ(t) was altered to study different operation points. The
model parameters are provided in Table 1. The simulation
results are shown in Fig. 2 and 3. In both cases the mass
fraction in liquid phase ωl(t), the third moment of CSD
µ3(t), manipulated variable (reactor temperature T (t) for
the first configuration and fines dissolution loop rate δ(t)
for the second one) and the CSD n(t, z) - initial distribu-
tion (dotted gray) and final distribution (solid black) are
shown.

As can be seen the configuration without fines dissolution
loop is stable, the configuration with fines dissolution loop
shows some oscillatory behaviour but stays stable. How-
ever, as has been shown in [Randolph and Larson (1988)]
for related configurations the emergence of nonlinear os-
cillations is possible and should be avoided.

Table 1. Simulation parameters

Parameter Value

Vr 0.024m3

Qout 0.1 l
min

Kg 1.67E-006 m/s
g 1.04

EA,g 5.71E-009 J/mol
Kb 1234131.27 1/s
b 1.1

EA,b 5.17E-011 J/mol
Kd -4.32E-006 m/s
ρs 1757 kg/m3

kV 0.33
K0 0.049378679989695
K1 0.002179443878122
K2 0.000089305667414
K3 -0.000002627008140
K4 0.000000049096298
ρw 1000 kg/m3

zmin 1E-6 m

Fig. 3. The configuration without fines dissolution loop
- reactor temperature step change δ = 10 to 90 at
tstep = 1 · 105s

Fig. 4. Bode diagrams for varying reactor temperature
(without fines dissolution loop)

3. LINEAR ANALYSIS AND MODEL REDUCTION

3.1 Analysis of the linearized models

The linearization was performed considering both configu-
rations: system without fines dissolution loop and system
with it. For a control design appropriate control inputs
and outputs should be chosen. Here, for both configu-
rations the third moment µ3 of the CSD was chosen as
the controlled variable. As an appropriate control input
the reactor temperature and the fines dissolution loop
rate were chosen in the first and second configuration,
respectively. Linearization at different operation points
for varying reactor temperatures in the range of 298.15K
to 305.15K with nominal model referred to 301.15 and
varying fines dissolution loop rate in the range from 10 to
150 with nominal model referred to 90 was undertaken and
the results are depicted in figures 4 and 5, respectively with
nominal models indicated with wider lines. Both nominal
models are stable, controllable and observable. For a direct
control design the order is however very high and should
be reduced in order to design a low order controller being
easily implementable on a programmable logic controller.

3.2 Model order reduction

In this contribution the balanced residualization method
has been used for model order reduction [Skogestad and
Postlethwaite (2005), Gu (2005), Chiang and Safonov
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3. LINEAR ANALYSIS AND MODEL REDUCTION

3.1 Analysis of the linearized models

The linearization was performed considering both configu-
rations: system without fines dissolution loop and system
with it. For a control design appropriate control inputs
and outputs should be chosen. Here, for both configu-
rations the third moment µ3 of the CSD was chosen as
the controlled variable. As an appropriate control input
the reactor temperature and the fines dissolution loop
rate were chosen in the first and second configuration,
respectively. Linearization at different operation points
for varying reactor temperatures in the range of 298.15K
to 305.15K with nominal model referred to 301.15 and
varying fines dissolution loop rate in the range from 10 to
150 with nominal model referred to 90 was undertaken and
the results are depicted in figures 4 and 5, respectively with
nominal models indicated with wider lines. Both nominal
models are stable, controllable and observable. For a direct
control design the order is however very high and should
be reduced in order to design a low order controller being
easily implementable on a programmable logic controller.

3.2 Model order reduction

In this contribution the balanced residualization method
has been used for model order reduction [Skogestad and
Postlethwaite (2005), Gu (2005), Chiang and Safonov
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Fig. 5. Bode diagrams for varying dissolution rate (with
fines dissolution loop)

(1996)]. For the first configuration a model order reduction
to order three and in the second configuration to order 12
was achievable. The approximation error for both reduced
order models is relatively small for low frequencies and
increases for higher frequencies introducing an additional
model uncertainty in the high-frequency zone. This ad-
ditional model uncertainty should be mitigated by the
robustness of the designed controller.

4. ROBUST CONTROLLER DESIGN AND
SIMULATION

4.1 H∞-loop-shaping controller design

Due to the number of considered assumptions, performed
simplifications and approximations, a controller should be
designed being capable of mitigating mismatches between
the real process and the design model. Here, the H∞-
loopshaping approach [McFarlane and Glover (2013)] has
been chosen as it combines simplicity, realizability and
robustness with respect to the general class of coprime
factor uncertainties. As stated earlier for both configu-
rations the third moment µ3 of the CSD is chosen as
the controlled variable and the reactor temperature and
the fines dissolution loop rate are the control inputs for
the crystallization without and with fines dissolution loop,
respectively (Fig. 6).

Fig. 6. Control system configuration

In the following it is assumed that the nominal system G
is given in its normalized left coprime factorization

G = M−1N (17)

where M and N are stable coprime transfer functions
fulfilling the Bezout identity. Then an uncertain plant Gp

consisting of the nominal system G can be represented as
follows:

Gp = (M +∆M )−1(N +∆N ) (18)

where ∆M and ∆N are stable unknown transfer functions
with ‖[ ∆N ∆M ]‖∞ < ε representing the model uncertain-
ties. It is well known that a controllerK robustly stabilizes
the perturbed feedback system if it stabilizes the nominal
system G(s) and

∥∥∥∥
[
K
I

]
(I +GK)−1M−1

∥∥∥∥
∞

≤ 1

ε
. (19)

A coprime factor uncertainty representation is in general
superior over additive or multiplicative model uncertain-
ties, as it is not restricted to perturbations which preserve
the number of right half-plane poles of the plant. This fact
is important for the control of continuous crystallization as
stability behaviour may change depending on the specific
operating conditions. In order to incorporate requirements
on the closed loop performance the above stated H∞-
problem is generally combined with a prior loop shaping
stage, where the pre- and postcompensators W1 and W2

are designed in order to achieve a desired open loop be-
haviour. Hence, the H∞-problem is solved for the nominal
model G augmented by the compensators W1 and W2

Gs = W2GW1 (20)

and the H∞-loop shaping controller Kres is formed from
the compensators W1 and W2 and the solution of the H∞-
problem K.

Kres = W1KW2 (21)

The H∞-loop-shaping controller design was performed
using the reduced-order models taking into account the
following requirements: no static error, fast transient and
low overshoot. For implementation reasons an additional
controller order reduction was performed reducing the
order up to 5 and 7, respectively.

4.2 Closed-loop system simulation

The controllers were verified using closed-loop simulations
with the full order nonlinear process models. The simu-
lation consisted in reference tracking test to ensure the
steady-state accuracy, starting with initial conditions close
to the reference point. The reference points are µ3 = 1.3
for the first configuration and µ3 = 1.4 for the second
one. Then we simulated the emergence of disturbance -
increase of feed solution temperature by ∆Tfeed = 0.5K
at t = 5 · 103s for the first configuration and t = 2 · 106s
for the second one. The simulation results are shown in
Fig. 7 and 8. The depicted variables are the mass fraction
in liquid phase ωl(t), the manipulated value T (t) for the
first case and δ(t) for the second one, the third moment
of the CSD µ3(t) and the crystal size distribution n(t, z):
initial (dotted gray) and final (solid black). The crystal size
distribution representation over time is depicted in Fig. 9
and 10. Apparently, the system based on model without
fines dissolution loop coped with the disturbance with less
effect on the process performance than the system based
on the second configuration. This is reasonable, because
the nature of manipulated variable of reactor temperature
is similar to the disturbance nature in contrast to the

MICNON 2015
June 24-26, 2015. Saint Petersburg, Russia

605



602	 Rostyslav Geyyer et al. / IFAC-PapersOnLine 48-11 (2015) 598–603

Fig. 7. Controlled crystallization without fines dissolution
(disturbance rejection)

Fig. 8. Controlled crystallization with fines dissolution
(disturbance rejection)

Fig. 9. Controlled crystallization with fines dissolution
(disturbance rejection) - crystal size distribution

configuration with fines dissolution loop. Nevertheless, the
designed controllers stabilize both process configurations,
improve the transient dynamics, mitigate model uncer-
tainties, discretization errors and diminish the influence
of unforeseen disturbances as expected.

5. CONCLUSION

In this contribution two configurations of continuous crys-
tallization processes have been studied. Both are described
by a nonlinear model with distributed parameters. In order
to stabilize the crystallization process and improve its
performance feedback control was applied. Here, a linear

Fig. 10. Controlled crystallization with fines dissolution
(disturbance rejection) - crystal size distribution

finite-dimensional robust controller approach being capa-
ble of mitigating model uncertainties and diminishing the
influence of unforeseen disturbances has been successfully
applied. Future work will concern the validation of the de-
signed controllers within the crystallization facility HUGO
at the Max Planck Institute for Dynamics of Complex
Technical Systems Magdeburg and the extension of the
crystallization process model in order to include crystal
breakage and agglomeration phenomena.

Table 2. Notation

n(t, z) crystal size distribution
G crystal growth and dissolution factor
τr residence time
δ fines dissolution loop rate

R(z) fines dissolution selection function
Kb fitting parameter for preexponential crystal

nucleation rate constant
EA,b activation energy - nucleation
Rgas general gas constant
T temperature inside reactor
S supersaturation
b exponential parameter for nucleation
Kg fitting parameter for preexponential

crystal growth rate constant
EA,g activation energy - growth
g exponential parameter for growth
Kd fitting parameter for preexponential crystal

dissolution rate constant
ωl(t) mass fraction in liquid phase
ωsat mass fraction at saturation point
kV volume shape factor
ρs density of potassium alum

µ3(t) the third moment of crystal size distribution
µ3,f (t) the third moment of fine crystals size distribution

Vr crystallizer volume
ρw water density
G nominal plant transfer function

M,N coprime transfer functions
∆M ,∆N model uncertainties

ε maximum stability margin
K H∞-problem solution
I identity matrix

W1,W2 pre- and postcompensators
Gs uncertain plant transfer function
Kres resulting H∞-controller
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