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1 Introduction

In the last few years, following the work of Strominger and collaborators [1, 2, 3], a

new understanding of infrared divergences in scattering processes has appeared. It was

shown that soft theorems are related to Ward identities derived form conserved charges

associated to asymptotic symmetries at null infinity (see for instance [4, 5, 6, 7, 8, 9,

10, 11, 12, 13]). One of the main examples where this relation appeared is between the

BMS4 algebra of asymptotically flat space-times at null infinity and scattering processes

of gravitons. It was shown that Weinberg’s soft gravitons theorem can be seen as the

Ward identity derived from super-translation charges.

More recently, Hawking, Perry and Strominger reconsidered the information loss

problem in the evaporation of Black-holes [14, 15]. The existence of the infinite set

of conserved charges associated to BMS4 means that part of the information about the

system is retained in the form of global/soft gravitons. This will imply correlations be-

tween Hawking radiation produced by the black-hole and the status of the system before

the collapse.

A key point of the results described above is the existence of a global BMS4 algebra

and its associated conserved charges during an evolution process. This existence derives

from a set of junction conditions at spatial infinity between various fields defined at past

and future null infinity. While these hypothesises are well motivated and are equiva-

lent to the soft graviton theorem [3, 6], their existence is surprising considering the non-

differentiability of spatial infinity. These facts mean that both the symmetries and their

associated charges are only defined at null infinity. They are properties of the initial and

final states but we, in general, don’t have a good understanding of them at finite times.

Recently, a description of the asymptotic symmetry algebra of electromagnetism has

been done at spatial infinity by Campiglia and Eyheralde [16]. Their description provides

a bridge between both asymptotic regimes and proves the junction condition in the context

of electromagnetism.

In the case of gravity, it has been shown in [17] that the junction condition for the

mass aspect between future and past null infinity is a consequence of the structure of

spatial infinity. This result hints at the fact that there should also exist a description of

spatial infinity for which the global BMS4 symmetry introduced by Strominger appears

naturally as an asymptotic symmetry algebra.

In this paper, we consider the set of asymptotic conditions at spatial infinity introduced

by Compère and Dehouck in [18]. These asymptotic conditions are a generalisation of

the results obtained in [19, 20, 21] for the holographic renormalization of asymptotically

flat space-times. Our main result is that a sub-algebra of the associated asymptotic sym-

metries is a global non extended BMS4. Using the linearised theory around flat space, we
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then show that, when restricting the analysis to asymptotically flat space-times at null in-

finity, this global non extended BMS4 algebra defined at spatial infinity is identical to the

one obtained by Strominger in his original analysis [2]. We also show that the associated

conserved charges defined at spatial infinity reproduce the BMS4 charges at null infinity.

This paper is organized as follows. In section 2, we introduce the asymptotic condi-

tions of Compère and Dehouck. In section 3, we study the asymptotic symmetry algebra

and show that it contains BMS4. In the last section, we make the link with null infinity

using the linearised theory and a description of space-like infinity introduced by Friedrich

[22].

2 Spatial infinity

The set of metrics they consider have the form [18]:

gµνdx
µdxν =

(
1 +

2σ

η
+
σ2

η2
+ o(η−2)

)
dη2 + o(η−1)dηdxb

+
(
η2h

(0)
ab + ηh

(1)
ab + log ηiab + h

(2)
ab + o(η0)

)
dxadxb, (2.1)

where the asymptotic gravitational fields, σ, kab, iab and h
(n)
ab depend on xa only. The

boundary metric h
(0)
ab is the metric on the unit hyperboloid with its associated covariant

derivative Da. We will write it as:

xa = (s, xA), h
(0)
ab dx

adxb =
−1

(1− s2)2
ds2 +

1

1− s2
γABdx

AdxB, (2.2)

with xA and γAB respectively coordinates and the unit metric on the 2-sphere. Following

their work, we will also introduce the combination

kab = h
(1)
ab + 2σh

(0)
ab , (2.3)

and impose the extra conditions

k = kaa = 0, Dakab = 0, (2.4)

where indices are lowered and raised with h
(0)
ab and its inverse. The leading order equations

of motion are then

(DcD
c + 3)σ = 0, (DcD

c − 3)kab = 0. (2.5)

The explicit solutions to these equations are given in appendix A.

It has been shown by Compère and Dehouck that this set of conditions is sufficient

to write a well defined action invariant under Poincaré. In particular, they don’t need to
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impose parity conditions on the asymptotic fields to obtain well defined Lorentz charges.

One difference with the usual considerations is that these charges will be quadratic in the

fields.

The asymptotic symmetry algebra contains Lorentz algebra, super-translations and

logarithmic translations. The Poincaré algebra is a sub-algebra of the full asymptotic

symmetry algebra with the translations being a sub-algebra of the super-translations. This

structure is very similar to the one we have at null infinity however, the super-translations

algebra present at spatial infinity is bigger than the BMS4 one and it is a priori not clear

how the two are related.

With this set of asymptotic conditions, super-translations are parametrised by one

function ω on the hyperboloid satisfying the condition:

(DcD
c + 3)ω = 0, (2.6)

while the Lorentz sub-algebra is given by the killing vector fields of the boundary metric

on the hyperboloid:

LYh
(0)
ab = 0, Y = Ya(xb)∂a. (2.7)

Their corresponding asymptotic generators are given by

ξη = −ω +
1

η
ω(1) + o(η−1), (2.8)

ξa = Ya − 1

η
Daω +

1

2η2
(
kab∂bω − 4σDaω +Daω(1)

)
+ o(η−2). (2.9)

The sub-leading terms are necessary to preserve the form of the metric (2.1). The function

ω(1) is an arbitrary function on the hyperboloid and generates a proper gauge transforma-

tion. The associated conserved charges we will be interested in are super-translation

charges. They are given by

Qω =
1

4πG

∮

S2

d2Ω (σ∂sω − ω∂sσ). (2.10)

with the corresponding boundary conserved current

jaω =
1

4πG

√
−h(0)h(0)ab(ω∂bσ − σ∂bω). (2.11)

The last elements of the asymptotic symmetry algebra are logarithmic translations.

They are parametrized by a function H(xa) on the hyperboloid satisfying

DaDbH + h
(0)
ab H = 0. (2.12)
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Their bulk generators are given by

ξη = log ηH +
1

η
log ηDaH∂aσ +

1

η
ω(1) + o(η−1), (2.13)

ξa =
1

η
(log η + 1)DaH +

1

2η2
(log η +

1

2
)
(
Da(DbH∂bσ) + 4σDaH − kab∂bH

)

+
1

2η2
Daω(1) + o(η−2). (2.14)

As before, ω(1) is arbitrary and generates a proper gauge transformation. On the hyper-

boloid, only four linearly independent functions satisfy equation (2.12):

H(xa) =
1√

1− s2

(
H0s+H1Y

0
1,−1(x

A) +H2Y
0
1,0(x

A) +H3Y
0
1,1(x

A)
)
, (2.15)

where Y 0
lm are usual spherical harmonics. When restricted to these four functions, loga-

rithmic translations are symmetries of the asymptotic form of the metric given in (2.1). On

the other hand, transformation of the form (2.13), (2.14) with an arbitrary function H(xa)

are called logarithmic super-translations. They don’t preserve the asymptotic form of the

metric but we can use them to put σ = 0 at the price of the appearance of an extra loga-

rithmic term in gab. These more general transformations will be useful in section 4 when

we will make the link with null infinity.

3 BMS4 algebra

We have seen in the previous section that, if we forget logarithmic translations, the asymp-

totic symmetry algebra is parametrised by a function ω and a vector Ya on the hyper-

boloid satisfying

(DcD
c + 3)ω = 0, LYh

(0)
ab = 0. (3.1)

The general solution for ω is given in the appendix. It takes the form

ω =
1√

1− s2

(
ω̂even + ω̂odd

)
, (3.2)

ω̂even =
∑

l,m

ω̂V
lmVl(s)Y

0
lm(x

A), ω̂odd =
∑

l,m

ω̂W
lmWl(s)Y

0
lm(x

A), (3.3)

where ω̂V
lm and ω̂W

lm are two sets of constants. The functions ω̂even(s, xA) and ω̂odd(s, xA)

are respectively even and odd under a combination of time reversal, s → −s, and the

antipodal map, xA → −xA or (θ, φ) → (π − θ, φ + π). This general solution is fully

characterised by two functions on the 2-sphere:

T even(xA) = lim
s→1

∂2s ω̂
even(s, xA) =

∑

l,m

ω̂V
lmY

0
lm(x

A), (3.4)

T odd(xA) = lim
s→1

ω̂odd(s, xA) =
∑

l,m

ω̂W
lmY

0
lm(x

A). (3.5)
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The vectors Ya represent Lorentz algebra. The rotations are parametrized by killing

vectors of the 2-sphere YA
R with ∂sY

A
R = 0 and the corresponding vectors on the hyper-

boloid are given by

Ys = 0, YA = YA
R . (3.6)

The boosts are parametrized by functions on the sphere ψ(xA) such that ∆ψ + 2ψ = 0

with their associated vectors on the hyperboloid being:

Ys = −1

2
(1− s2)ψ, YA = −1

2
s γAB∂Bψ. (3.7)

Rotations and boosts can also be encoded in global conformal killing vectors of the 2-

sphere:

Y A = YA
R − 1

2
γAB∂Bψ, DAY

A = ψ, (3.8)

where DA is the covariant derivative on the sphere. This relation forms an isomorphism

between the algebra of killing vector fields of the hyperboloid and the algebra of global

conformal killing vector fields of the 2-sphere.

The super-translations combined with the Lorentz algebra form a sub-algebra of the

asymptotic symmetry algebra for witch the bracket is given by:

[(Y1, ω1), (Y2, ω2)] =
(
[Y1,Y2],Y

a
1 ∂aω2 −Ya

2 ∂aω1

)
, (3.9)

or, if we use the rescaled parameter ω̂ =
√
1− s2ω,

[(Y1, ω̂1), (Y2, ω̂2)] =
(
[Y1,Y2],Y

a
1 ∂aω̂2 −

s

2
ψ1ω̂2 − (1 ↔ 2)

)
. (3.10)

As the vector Ya∂a is even under the combination of a time reversal and an antipodal map,

its action on ω̂ will not mix the even and odd parts. Parametrizing the super-translations

with the two functions on the sphere T even(xA) and T odd(xA) and using the vectors Y A

to parametrize Lorentz algebra, we can write the bracket as

[(Y1, T
even
1 , T odd

1 ), (Y2, T
even
2 , T odd

2 )] =
(
[Y1, Y2], T

even
[1,2] , T

odd
[1,2]

)
, (3.11)

with

T even
[1,2] = Y A

1 ∂AT
even
2 +

3

2
ψ1T

even
2 − Y A

2 ∂AT
even
1 − 3

2
ψ2T

even
1 , (3.12)

T odd
[1,2] = Y A

1 ∂AT
odd
2 − 1

2
ψ1T

odd
2 − Y A

2 ∂AT
odd
1 +

1

2
ψ2T

odd
1 . (3.13)

Let’s consider the sub-algebra obtained by imposing T even = 0. This algebra is a

semi-direct product of an abelian algebra parametrized by an arbitrary function on the

sphere T odd(xA) with the Lorentz algebra parametrized by Y A. In (3.13), we recognize

the action of Lorentz algebra on the BMS4 super-translations [23]. This proves that this

sub-algebra is isomorphic to the BMS4 algebra defined at null infinity. We will see in
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the next section that, when evaluated at future or past null infinity, the asymptotic killing

vectors associated to T odd reduce to usual BMS4 super-translations.

We saw in the previous section that the conserved charges associated to super-translations

are given by:

Qω =
1

4πG

∮

S2

d2Ω(σ∂sω − ω∂sσ). (3.14)

Introducing the explicit solution we obtained for ω and σ, we showed in appendix A.1

that these charges take the form:

Qω =
1

8πG

∮

S2

d2Ω
(
T oddmeven − T evenmodd

)
, (3.15)

where we used the decomposition of σ in terms of two functions on the sphere modd(xA)

and meven(xA) given in (A.32) and (A.33).

4 Null infinity

In this section, we will make the connection with null infinity. We will show that the

BMS4 algebra we obtained at spatial infinity is the global BMS4 algebra introduced by

Strominger in [2]. We will also recover a linearised version of the results of Herberthson

and Ludvigsen relating the values of the mass aspect at future and past null infinity [17].

4.1 Structure close to i0

The description we will use is inspired by the work of Friedrich in [22] where he intro-

duced a description of spatial infinity based on conformal geodesics. The aim was to

formulate an initial value problem for the conformal Einstein equations at spatial-infinity.

As we will see, it is well adapted to the description of the scattering problem.

For generic space-times, the asymptotic structure he obtained close to i0 is as follows

(see [22, 24, 25] for more details). If some smoothness conditions on the metric around

spatial infinity are satisfied, there exists a patch of coordinates (ρ, s, xA) in a neighbour-

hood of i0 such that the curves obtained by keeping ρ and xA constant are conformal

geodesics. There exists smooth functions Ω̃(ρ, xA) and ω(ρ, xA) such that the rescaled

metric g̃µν = Ω2gµν is continuous in the limit s→ ±κ(ρ) where

Ω = Ω̃

(
1−

( s
ω

)2
)
, lim

ρ→0
ρ−1Ω̃ = 1, lim

ρ→0
ω = 1. (4.1)

The two hypersurfaces s = ±ω(ρ, xA) = ±1 + o(ρ0) are then future null infinity I+

and past null infinity I− while spatial infinity is located at ρ = 0. The rescaled metric
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η̃µν = Ω2ηµν diverges at spatial infinity but it is continuous at both null infinities I±.

Slices of constant time s are spatial hyper-surfaces and in the limit s going to ±ω, these

hypersurfaces asymptote to the corresponding I (in a neighbourhood of i0 as these co-

ordinates don’t cover the full manifold). Considering the evolution from a finite time

−ω < s0 < ω to a finite time −ω < s1 < ω and taking the limit for infinite times

s0 → −ω and s1 → ω, we see that the in-state and out-state hypersurfaces will naturally

contain I− and I+ respectively. A related feature of these coordinates is that the coordi-

nates at null infinity are coming from spatial coordinates in the bulk namely (ρ, xA) while,

in the usual description in terms of the Bondi metric, one of the coordinates is the asymp-

tote of a time coordinate. A few years later in [24, 25], Friedrich and Kannar made the

explicit connection with quantities defined at null infinity. They for instance computed the

Newman-Penrose constants at null infinity from the coefficients in the expansion around

spatial infinity.

This description relies on a first order formalism of the conformal description of Ein-

stein’s equations. Unfortunately, the link between this formalism and the hyperbolic slic-

ing in the metric formalism of i0 is not simple. In the rest of this section, we will work in

the linearised theory around flat space and we will describe the background metric using

the coordinates obtained by Friedrich analysis.

In order to describe the structure of Minkowski close to i0, we start with the usual

hyperbolic coordinates and introduce the following rescaled radial coordinates ρ:

η =
1

ρ
√
1− s2

. (4.2)

The flat metric then takes the form

ηµνdx
µdxν =

1

ρ2(1− s2)2

(
1− s2

ρ2
dρ2 − 2

s

ρ
dρds− ds2 + γABdx

AdxB
)
. (4.3)

The curves obtained by keeping ρ and xA constant are conformal geodesics [26, 22]. The

conformal factor (4.1) is given in this case by

Ω = ρ(1− s2), (4.4)

such that the hypersurfaces I± are located at s = ±1. The metric qij and the vector field

ni induced on these hypersurfaces by η̃µν = Ω2ηµν and ñµ = η̃µν∂νΩ are given by

qijdx
idxj = γABdx

AdxB, ni∂i = 2ρ2∂ρ, (4.5)

where xi = (ρ, xA) are the induced coordinates. The usual retarded time coordinate on

I+ is given by u = − 1
2ρ

with ni∂i = ∂u.
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Let’s now consider the metrics introduced in section 2 and define hµν = gµν − ηµν

that we will treat as a linear perturbation. Under the change of coordinates (4.2), it takes

the form

hµν =
1

ρ2(1− s2)2

{
(2ρσ̂ + o(ρ))

(
1− s2

ρ2
dρ2 − 2s

ρ
dsdρ

)
+ o(ρ)dρdxa

+ρ
√
1− s2h

(1)
ab dx

adxb + ρ
2s2

(1− s2)
σ̂ds2 + o(ρ)dxadxb

}
. (4.6)

Using the explicit solutions obtained for σ and kab in appendix A, one can easily check

that h̃µν = Ω2hµν diverges in the limit s → ±1. This is related to the asymptotic gauge

choice made in section 2. To avoid this problem, we will use a different set of coordinates:

η = η′ − σ(x′) log η′ + o(η′0), (4.7)

xa = x′a − η′−1 (log η′ + 1) (Daσ)(x′) + o(η′−1), (4.8)

such that the metric (2.1) takes the form:

g′µνdx
′µdx′ν =

(
1 + o(η′−2)

)
dη′2 + o(η′−1)dη′dx′a + g′abdx

′adx′b, (4.9)

g′ab = η′2h
(0)
ab + η′(log η′ + 1)

(
−2DaDbσ − 2σh

(0)
ab

)
+ η′kab + o(η′), (4.10)

where all asymptotic fields are evaluated at x′a. The leading part of the transforma-

tion (4.7)-(4.8) is a logarithmic super-translation while the subleading terms have to be

adapted to reach the asymptotic gauge condition chosen here. Super-translations at spatial

infinity then take the following form:

ξ′η
′

= −ω + o(η′−1), (4.11)

ξ′a = − 1

η′
Daω − 1

η′2
(log η′ +

3

2
)(DaDbσ + σh(0)ab)∂bω +

1

2η′2
kab∂bω + o(η′−2).

(4.12)

In the rest of this section, we will work with these new coordinates while removing the

primes. One remark is in order: while doing this change of coordinates, we have used

elements of the asymptotic symmetry group to remove a few degrees of freedom. One

can check easily that the final metric (4.10) is independent of σ̂W
00 and σ̂W

1m. These modes

are the ones on which the logarithmic translations act. As the transformation generated

by (4.7) and (4.8) is a generalization of a logarithmic translation, we can see its action

as putting the four modes σ̂W
l<2,m to zero while transfering all the other modes of σ to

the components gab of the metric. These four modes being absent, the conjugated super-

translations generated by ω̂V
l<2,m will have charges equal to zero. In this case, they are

proper gauge transformations.

In these new coordinates, the perturbation hµν takes the form

hµνdx
µdxν =

1

ρ2(1− s2)2

{
o(1)dρ2 + o(ρ)dρdxa + h̃abdx

adxb
}
, (4.13)
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where

h̃AB = −2ρ(1 − s2)
(
1− log(ρ

√
1− s2)

)
(DADBσ̂ + γABσ̂ − sγAB∂sσ̂)

+ ρ(1− s2)k̂AB + o(ρ), (4.14)

h̃As = −2ρ(1 − s2)
(
1− log(ρ

√
1− s2)

)
∂A∂sσ̂ + ρ(1− s2)k̂sA + o(ρ), (4.15)

h̃ss = −2ρ(1 − s2)
(
1− log(ρ

√
1− s2)

)
∂2s σ̂ + ρ(1− s2)k̂ss + o(ρ), (4.16)

with k̂ab =
√
1− s2 kAB and σ̂ =

√
1− s2 σ. The leading part of the perturbation is now

continuous as we approach null infinity and we have

lim
s→±1

h̃ab = o(ρ). (4.17)

In appendix B, we computed the behaviour of the linearized Weyl tensor of h̃µν =

Ω2hµν in the limit s → ±1. The component that will be relevant for the definition of the

super-momentum charges is given by

C̃ρsρs = −ρ−1(1− s2)∂2s σ̂ + o(ρ−1). (4.18)

The leading term goes to zero in the limits s → ±1, however, its rescaled version

Kρsρs = Ω−1C̃ρsρs will in general diverge logarithmically. This divergence breaks the

structure of I± and we expect that, in these cases, the full metric gµν does not describe

asymptotically flat space-times at null infinity. In the following, we will restrict our anal-

ysis to perturbations hµν for which the leading term of the rescaled linearized Weyl tensor

Kµναβ has a well defined limit when s → ±1. As shown in the appendix, this restriction

imposes σ̂W
lm = 0 for all l > 1 (it will also impose Rα

Q
lm = 0 for all l where Rα

Q
lm

characterise part of the solution of k̂ab). Remark that, as we already put σ̂W
00 = 0 = σ̂1m,

we have that the odd part of the function σ̂ is zero:

σ̂odd(s, xA) = 0 ⇔ modd(xA) = 0. (4.19)

This extra restriction is the equivalent of the one made in [17], where the authors dis-

card one branch of solutions because of logarithmic divergences in the Weyl tensor when

approaching null infinity.

4.2 Global BMS4 algebra

At null infinity, super-translations are vector fields ξ+α on I+ or ξ−β on I− such that:

(ξ+α )
i = αni|I+ , ni∂iα|I+ = 0, (ξ−β )

i = −βni|I−, ni∂iβ|I− = 0. (4.20)

In our case, they are given explicitly by

ξ+α = 2αρ2∂ρ, ξ−β = −2βρ2∂ρ. (4.21)
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Both functions α and β are arbitrary functions on the sphere and are the BMS4 super-

translation parameters at future and past null infinity. The sign we used in the definition

of ξ−β is due to our choice of coordinates: ∂ρ always points away from spatial infinity.

Around Minkowski and up to a proper gauge transformation, the super-translations

defined at spatial infinity in (4.11)-(4.12) are given by:

ξρ = ρ2
(
(1 + s2)ω̂ + s(1− s2)∂sω̂

)
, (4.22)

ξs = ρ(1− s2)
(
(1− s2)∂sω̂ + sω̂

)
, (4.23)

ξA = −ρ(1 − s2)γAB∂Bω̂. (4.24)

Taking the limit s→ ±1, we get

lim
s→s±

ξρ = ρ2 lim
s→±1

ω̂, lim
s→s±

ξs = 0, lim
s→s±

ξA = 0, (4.25)

while, using the form of ω̂ we obtained in section 3, we have

lim
s→1

ω̂(s, xA) = T odd(xA) + ω̂even(1, xA), (4.26)

lim
s→−1

ω̂(s, xA) = −T odd(−xA) + ω̂even(1,−xA). (4.27)

Only the first four spherical harmonics contribute to the even part:

ω̂even(1, xA) = ω̂V
00 −

1

3

1∑

m=−1

ω̂V
1mY

0
1m(x

A). (4.28)

Due to the change of coordinates we did at the beginning of the section, these four trans-

formations have zero charges and are proper gauge transformations. We will then focus

on the contribution from the odd part.

We saw in section 3 that the asymptotic symmetry algebra at spatial infinity is parametrized

by two functions on the sphere, T odd and T even, combined with Lorentz transformations

as the four logarithmic translations were removed by the change of coordinates we did in

(4.7)-(4.8). When we restrict our analysis to asymptotically flat space-times at null infin-

ity, we have to impose modd = 0. This implies that the super-translations parametrized

by T even become proper gauge transformations. The asymptotic symmetry algebra then

reduces to the BMS4 algebra obtained in section 3, where the super-translations are

parametrized by T odd. Equations (4.25), (4.26) and (4.27) show that, on I+ and I−,

these super-translations defined at spatial infinity correspond to super-translations ξ+α and

ξ−β defined respectively at future and past null infinity with

α(xA) = T odd(xA), β(xA) = T odd(−xA). (4.29)

This proves that the BMS4 algebra of asymptotic symmetries existing at spatial infin-

ity when using the asymptotic behaviour described in (2.1) is the global BMS4 algebra

obtained by A. Strominger in [2]. In our case, the antipodal map between the super-

translation parameter at I+ and I− is a consequence of the asymptotics prescribed at

spatial infinity.
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4.3 Super-translation charges

Other obvious quantities of interest are the associated charges: Bondi 4-momentum and

super-translation charges. The component of the linearised Weyl tensor relevant for the

definition of the super-momentum charges is given by

Kρsρs = Ω−1C̃ρsρs = −ρ−2∂2s σ̂ + o(ρ−1). (4.30)

At null infinity, we get

lim
s→±1

Kρsρs = −ρ−2 lim
s→±1

∂2s σ̂ + o(ρ−2) = −ρ−2meven(±xA) + o(ρ−2), (4.31)

where meven(xA) is a function on the sphere controlling the even part of σ̂. For the Bondi

super-momentum charges, we will use the expression given in [27]:

P+
α =

1

32πG

∮

S2

dxAdxB
√
−η̃ǫµνγδKγδ

ABαñ
µlν

∣∣∣
I+
, ñµ = η̃µν∂νΩ, (4.32)

where we kept only the terms contributing at the linearised level. The vector lµ is given

on I+ by l = 1
4
∂ρ +

1
2ρ
∂s and ǫαβµν is antisymmetric with ǫρsζζ̄ = 1. Evaluating this

expression in our case directly leads to:

P+
α =

1

16πG

∮

S2

ǫABdx
AdxB

√
γ ραñρ lsKρsρs

∣∣∣∣
I+

(4.33)

=
1

8πG

∮

S2

d2Ω
(
α(xA)meven(xA) + o(ρ0)

)
. (4.34)

We are interested in the values of the charges when one approaches spatial infinity. This

corresponds to the limit ρ→ 0. We see that:

lim
ρ→0

P+
α =

1

8πG

∮

S2

d2Ωα(xA)meven(xA). (4.35)

These charges are identical to the ones defined at spatial infinity if we take into account

the link between BMS4 super-translation parameters at spatial and future null infinity:

α(xA) = T odd(xA). A similar computation on I− leads to

P−

β =
1

32πG

∮

S2

dxAdxB
√
−η̃ǫµνγηKγη

AB(−βñµ)lν
∣∣∣∣
I−

, (4.36)

lim
ρ→0

P−

β =
1

8πG

∮

S2

d2Ω β(xA)meven(−xA), (4.37)

where we used l|I− = −1
4
∂ρ − 1

2ρ
∂s. At spatial infinity, the BMS4 super-translations

charges defined at future and past null infinities are equal up to an antipodal map. Explic-

itly, we have:

β(xA) = α(−xA) ⇒ lim
ρ→0

P+
α = lim

ρ→0
P−

β . (4.38)



THE BMS ALGEBRA AT SPATIAL INFINITY. 13

This identity is equivalent to the antipodal boundary conditions imposed on the mass

parameter by A. Strominger in [2]. We have shown here that, in the linearised theory, it

is a consequence of the boundary conditions imposed at spatial infinity if we remove the

space-times for which the differentiable structure at null infinity is not strong enough to

define the Bondi super-momentum charges.

This result is a linearised version of a similar result already obtained in [17] by Her-

berthson and Ludvigsen. In their derivation, they used a generalization of the conformal

description of i0 introduced by Ashtekar and Hansen in [28]. It would be interesting to

see how their boundary structure is related to the boundary condition used in section 2 to

describe spatial infinity.

5 Conclusions

In this work, we have shown how a global BMS4 algebra appears as part of the asymptotic

symmetry algebra at spatial infinity. We then used linearised theory around Minkowski to

show that it corresponds to the diagonal algebra considered by Strominger at null infinity.

While obtained in the lagrangian formalism, this is the gravitational equivalent of the

results obtained in [16] for electromagnetism.

The BMS4 charges constructed here are defined on Cauchy slices. It means that a

Hamiltonian description of these charges should also be possible. This would put this

infinite set of conserved charges on the same footing as the ADM mass.

In section 4, we had to rely on linearised theory as the coordinates used to describe

spatial infinity are not adapted to null infinity. In order to have the full non-linear picture,

it would be of particular interest to rewrite the asymptotic conditions used in section 2 in

the formalism introduced by Friedrich [26, 22].

In [29, 23], it was argued that the relevant asymptotic symmetry algebra at null infinity

should not only contain Lorentz algebra but the full conformal algebra on the 2-sphere.

In that case, it has been shown that the relevent structure is an algebroid and that the

associated algebroid of charges closes up to a central extension [30, 31, 32]. It would be

interesting to see if one can reproduce this structure at spatial infinity.
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A Solution to some differential equations

In this appendix, we will solve the various partial differential equations relevant for our

asymptotic analysis. The equation of motion for σ as well as the equation satisfied by

super-translation parameter are

(DaD
a + 3)σ = 0, (DaD

a + 3)ω = 0, (A.1)

while the asymptotic field kab satisfies

kaa = 0, Dakab = 0, (DaD
a − 3)kbc = 0. (A.2)

As in section 3 and 4, we will use the rescaled quantities:

σ̂ =
√
1− s2 σ, ω̂ =

√
1− s2 ω, k̂ab =

√
1− s2 kab. (A.3)

In order to solve these equations, we will use complex coordinates on the sphere

ζ = cot θ
2
eiφ for which the metric takes the form

γABdx
AdxB = 2P−2dζdζ, P =

1 + ζζ√
2

. (A.4)

Tensors on the sphere can be encoded in spin weighted functions η of spin sη and the

covariant derivative is then given by the operators

ðη = P 1−sη∂ζ̄(P
sηη), ðη = P 1+sη∂ζ(P

−sηη), (A.5)

where ð, ð respectively raises and lowers the spin weight by one unit (see [33, 34] for

more details). They satisfy

[ð, ð]η = sηη, (A.6)

and the Laplace operator on the sphere can be written as

∆ = ðð+ ðð. (A.7)

The asymptotic fields σ̂ and ω̂ are spin weighted functions of spin zero while the tensor

k̂ab can be encoded in the following spin weighted functions:

k̂ss = κ, k̂sζ = P−1α, k̂sζ̄ = P−1α, (A.8)

k̂ζζ = P−2β, k̂ζ̄ ζ̄ = P−2β, k̂ζζ̄ =
P−2

2
(1− s2)κ, (A.9)

where we used the first equation of (A.2). The spin weights are given by

sκ = 0, sα = −1, sᾱ = 1, sβ = −2, sβ̄ = 2. (A.10)
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The functions κ and σ are real while α, α, β and β satisfy α∗ = α and β∗ = β where the

star denotes complex conjugation.

The two equations in (A.1) can then be written as

− (1− s2)∂2s σ̂ − 2s∂sσ̂ + 2σ̂ + (ðð+ ðð)σ̂ = 0, (A.11)

with the same equation for ω̂. The various equations for kab take the form

(1− s2)∂sκ = ðα + ðα, (A.12)

(1− s2)∂sα + sα =
1

2
(1− s2)ðκ + ðβ, (A.13)

associated with

−(1− s2)∂2sκ+ 2s∂sκ+ (ðð+ ðð)κ = 0, (A.14)

−(1− s2)∂2sα + 2s∂sα− α + (ðð+ ðð)α = 2sðκ, (A.15)

−(1− s2)∂2sβ + 2s∂sβ − 2β + (ðð+ ðð)β = 4sðα. (A.16)

To this set, we have to add the equivalent of equations (A.13), (A.15) and (A.16) for the

barred quantities.

In order to solve these equations, we will expend our spin weighted functions in spin

weighted spherical harmonics Y s
lm(x

A) where Y 0
lm(x

A) are the usual spherical harmonics.

Spin weighted spherical harmonics are only defined for l > |s| and l > |m|. They form a

complete set for each value of the spin s. The main properties we will be using are:

ðY s
lm = −

√
(l − s)(l + s+ 1)

2
Y s+1
lm , ðY s

lm =

√
(l + s)(l − s+ 1)

2
Y s−1
lm , (A.17)

(ðð+ ðð) Y s
lm = −[(l + 1)l − s2] Y s

lm, (Y s
lm)

∗ = (−1)m+sY −s
l,−m. (A.18)

A.1 Solution for σ and ω

We will focus on the solution to the equation of motion for σ as the equation satisfied by

the super-translation parameter ω is identical.

Introducing the spherical harmonic decomposition σ̂ =
∑

l,m σ̂lm(s) Y
0
lm, equation

(A.11) becomes

− (1− s2)∂2s σ̂lm − 2s∂sσ̂lm + 2σ̂lm − l(l + 1)σ̂lm = 0, ∀l, m. (A.19)

This equation is related to Legendre equation:

− (1− s2)∂2sψl + 2s∂sψl − l(l + 1)ψl = 0 (A.20)
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for which the general solution is given in terms of Legendre polynomials Pl(s) and Leg-

endre functions of the second kind Ql(s):

ψl(s) = ψP
l Pl(s) + ψ

Q
l Ql(s), (A.21)

Ql(s) = Pl(s)
1

2
log

(
1 + s

1− s

)
+ Q̃l(s), (A.22)

where Q̃l are polynomials (see [35]). One can easily show that if ψl satisfies (A.20) then

(1− s2)∂2sψl will satisfy equation (A.19). If we define

Vl(s) = (l − 1)l(l + 1)(l + 2)(1− s2)2∂2sPl, Wl(s) =
1

2
(1− s2)2∂2sQl, ∀l > 1,

(A.23)

the general solution to (A.19) is then given by

σ̂lm(s) = σ̂V
lmVl(s) + σ̂W

lmWl(s), ∀l > 1. (A.24)

The normalisations of Vl and Wl were chosen for future convenience. For l < 2, this

procedure gives us only one of the two independent solutions namely:

W0(s) = s, W1(s) = 1. (A.25)

The other one is easily constructed:

V0 =
1

2
(s2 + 1), V1 =

1

6
(s3 − 3s). (A.26)

The general solution to the equation of motion for σ̂ then takes the form

σ̂(s, xA) =
∑

l,m

(
σ̂V
lmVl(s) + σ̂W

lmWl(s)
)
Y 0
lm(x

A). (A.27)

The functions Vl and Wl inherit the parity properties of Pl and Ql:

Pl(−s) = (−1)lPl(s) ⇒ Vl(−s) = (−1)lVl(s), (A.28)

Ql(−s) = −(−1)lQl(s) ⇒ Wl(−s) = −(−1)lWl(s). (A.29)

This means that under the combined action of a time reversal s → −s and an antipodal

map xA → −xA, the general solution (A.27) separates into an odd and an even part:

σ̂ = σ̂even + σ̂odd, σ̂even(−s,−xA) = σ̂even, σ̂odd(−s,−xA) = −σ̂odd, (A.30)

σ̂even =
∑

l,m

σ̂V
lmVl(s)Y

0
lm(x

A), σ̂odd =
∑

l,m

σ̂W
lmWl(s)Y

0
lm(x

A). (A.31)

Each these parts can be parametrized by a function on the sphere:

meven(xA) ≡ lim
s→1

∑

l,m

σ̂V
lm∂

2
sVl(s)Y

0
lm(x

A) =
∑

l,m

σ̂V
lmY

0
lm(x

A), (A.32)

modd(xA) ≡ lim
s→1

∑

l,m

σ̂W
lmWl(s)Y

0
lm(x

A) =
∑

l,m

σ̂W
lmY

0
lm(x

A), (A.33)
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where we used the following identities

lim
s→1

∂2sVl = 1, lim
s→1

Wl = 1. (A.34)

They can be easily shown using Pl(1) = 1, the explicit form of Ql given in (A.22) and

Legendre equation (A.20). Doing an asymptotic expansion around s = 1 of both parts of

the solution, we get

σ̂odd(s, xA) = modd(xA) +O
(
(1− s)

)
, (A.35)

σ̂even(s, xA) = σ̂V
00 −

1

3

m=1∑

m=−1

σ̂V
1mY

0
1m(x

A) +O
(
(1− s)

)
. (A.36)

A similar expansion can be done around s = −1.

We will have the same kind of expressions for the super-translation parameter: ω̂ =

ω̂even + ω̂odd with

ω̂even =
∑

l,m

ω̂V
lmVl(s)Y

0
lm(x

A), ω̂odd =
∑

l,m

ω̂W
lmWl(s)Y

0
lm(x

A), (A.37)

T even(xA) ≡
∑

l,m

ω̂V
lmY

0
lm(x

A), T odd(xA) ≡
∑

l,m

ω̂W
lmY

0
lm(x

A). (A.38)

Super-translation charges given in (2.10) can be rewritten as

Qω =
1

4πG

∮

S2

d2Ω
1

1− s2
(σ̂∂sω̂ − ω̂∂sσ̂). (A.39)

Inserting the general solutions we obtained, we get

Qω =
1

4πG

∑

lm

(
ω̂W
lmσ̂

V
lm − ω̂V

lmσ̂
W
lm

)
Cl, (A.40)

Cl =
1

1− s2
(Vl∂sWl −Wl∂sVl) . (A.41)

The quantity Cl is conserved ∂sCl = 0 and its value is easily computed asymptotically:

Cl = lims→1Cl =
1
2
. Plugging this into the value of the charges and using the functions

introduced in (A.32),(A.33) and (A.38), we get

Qω =
1

8πG

∮

S2

d2ΩT odd(xA)meven(xA)−
(
T even(xA)modd(xA)

)
. (A.42)

A.2 Solution for kab

Let’s now have a look at the equations of kab: equations (A.12) to (A.16). We will intro-

duce the corresponding spherical harmonic expansions:

κ =
1

1− s2
k̂ =

∑

l,m

κlmY
0
lm, α =

∑

l>0,m

αlmY
−1
lm , α =

∑

l>0,m

αlmY
1
lm, (A.43)

β =
∑

l>1,m

βlmY
−2
lm , β =

∑

l>1,m

βl,mY
2
lm, (A.44)
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where the reality conditions imply

(κlm)∗ = (−1)mκl,−m, (αlm)
∗ = −(−1)mαl,−m, (βlm)

∗ = (−1)mβl,−m. (A.45)

Inserting this into equations (A.14) and (A.15), we get

−(1− s2)∂2sκlm + 2s∂sκlm − l(l + 1)κlm = 0, ∀l, m, (A.46)

−(1 − s2)∂2sαlm + 2s∂sαlm − l(l + 1)αlm = s
√
2l(l + 1)κlm, ∀l > 0, m, (A.47)

−(1 − s2)∂2sαlm + 2s∂sαlm − l(l + 1)αlm = −s
√

2l(l + 1)κlm, ∀l > 0, m, (A.48)

while equation (A.12) gives

(1− s2)∂sκ00 = 0, (1− s2)∂sκlm =

√
(l + 1)l

2
(αlm − αlm), ∀l > 0, m. (A.49)

Both κlm and αlm+αlm satisfy Legendre equation for which the general solution is given

in terms of Legendre polynomials Pl and Legendre functions of the second kind Ql:

Ql(s) = Pl(s)
1

2
log

(
1 + s

1− s

)
+ Q̃l(s), (A.50)

where Q̃l are polynomials. The general solution to equations (A.46), (A.47) and (A.49)

is then given by:

κ00(s) = κP00, κlm(s) = κPlmPl(s) + κ
Q
lmQl(s) ∀l > 0, m, (A.51)

Rαlm(s) =
1

2
(αlm(s) + αlm(s)) = RαP

lmPl(s) +Rα
Q
lmQl(s) ∀l > 0, m, (A.52)

αlm(s) =
−1√

2l(l + 1)
(1− s2)∂sκlm +Rαlm, ∀l > 0, m. (A.53)

Developing equation (A.13), we then get

(1− s2)∂sαlm + sαlm − 1

2

√
l(l + 1)

2
(1− s2)κlm = −

√
(l + 2)(l − 1)

2
βlm, ∀l > 1, m,

(A.54)

(1− s2)∂sα1m + sα1m − 1

2
(1− s2)κ1m = 0. (A.55)

which, when associated to their barred equivalent, lead to

κ
Q
1m = 0, RαP

1m = 0, Rα
Q
1m = 0, (A.56)

βlm(s) =

√
2

(l − 1)(l + 2)

[
1

2

(1− s2)2√
2l(l + 1)

∂2sκlm −
(
(1− s2)∂s + s

)
Rαlm

]
, (A.57)

where the last line is valid for l > 1. One can check that equation (A.16) is then auto-

matically satisfied. Equations (A.51)-(A.53) with equations (A.56) and (A.57) give the

complete solution to the system of equations (A.12) to (A.16).
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B Weyl tensor of the unphysical metric

This appendix contains various useful results about geometric quantities associated to the

unphysical metric g̃µν = η̃µν + h̃µν written in equations (4.13) to (4.16):

hµνdx
µdxν =

1

ρ2(1− s2)2

{
o(1)dρ2 + o(ρ)dρdxa + ĥabdx

adxb
}
, (B.1)

where

h̃AB = −2ρ(1− s2)
(
1− log(ρ

√
1− s2)

)
(DADBσ̂ + γABσ̂ − sγAB∂sσ̂)

+ ρ(1 − s2)k̂AB + o(ρ), (B.2)

h̃As = −2ρ(1− s2)
(
1− log(ρ

√
1− s2)

)
∂A∂sσ̂ + ρ(1− s2)k̂sA + o(ρ), (B.3)

h̃ss = −2ρ(1− s2)
(
1− log(ρ

√
1− s2)

)
∂2s σ̂ + ρ(1− s2)k̂ss + o(ρ). (B.4)

The linearised Weyl tensor of h̃µν is given by

C̃ρaρb = −1

ρ
(1− s2)σ̂ab + o(ρ−1), (B.5)

C̃ρabc = (1− s2)

(
3

2

√
1− s2(Dbkac −Dckab) +

s

1− s2
(δsb σ̂ac − δsc σ̂ab)

)
+ o(1).

(B.6)

All the other components can be obtained using the properties of the Weyl tensor. The

combination relevant for the description of null infinity isKµναβ = Ω−1C̃µναβ . If this ten-

sor is not continuous at null infinity then the structure of I± is not differentiable enough

to allow the definition of the BMS4 super-translation charges. Let’s have a look at a few

specific components:

Kρsρs = − 1

ρ2
∂2s σ̂ + o(ρ−2), (B.7)

Kρsζζ̄ =
1

ρ

3

2
P−2(ðα− ðα) + o(ρ−1) (B.8)

= −3

ρ
P−2

∑

lm

√
l(l + 1)

2

(
RαP

lmPl(s) +Rα
Q
lmQl(s)

)
Y 0
lm + o(ρ−1). (B.9)

In the limit s → ±1, these components diverge logarithmically when σ̂W
lm 6= 0 and

Rα
Q
lm 6= 0.
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