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Abstract. This paper describes MicroHH 1.0, a new and
open-source (www.microhh.org) computational fluid dynam-
ics code for the simulation of turbulent flows in the atmo-
sphere. It is primarily made for direct numerical simulation
but also supports large-eddy simulation (LES). The paper
covers the description of the governing equations, their nu-
merical implementation, and the parameterizations included
in the code. Furthermore, the paper presents the validation
of the dynamical core in the form of convergence and con-
servation tests, and comparison of simulations of channel
flows and slope flows against well-established test cases. The
full numerical model, including the associated parameteriza-
tions for LES, has been tested for a set of cases under stable
and unstable conditions, under the Boussinesq and anelas-
tic approximations, and with dry and moist convection under
stationary and time-varying boundary conditions. The paper
presents performance tests showing good scaling from 256
to 32 768 processes. The graphical processing unit (GPU)-
enabled version of the code can reach a speedup of more than
an order of magnitude for simulations that fit in the memory
of a single GPU.

1 Introduction

In this paper, we present a description of MicroHH 1.0, a
new computational fluid dynamics code for the simulation
of turbulent flows in doubly periodic domains, with a focus
on those in the atmosphere. MicroHH is designed for the
direct numerical simulation (DNS) technique but also sup-
ports the large-eddy simulation (LES) technique. Its appli-
cations range from neutral channel flows to cloudy atmo-
spheric boundary layers in large domains. MicroHH is writ-
ten in C++ and the graphical processing unit (GPU)-enabled
parts of the code in NVIDIA’s CUDA. The simulation algo-
rithms have been designed and are written from scratch with
the goal to create a fast and highly parallel code that is able
to run on machines with more than 10 000 cores. It is a key
requirement for the code to be able to perform DNS at very
high Reynolds numbers or to conduct LES at very fine grids
(grid spacing less than 1 m), or in domains that approach the
synoptic scales (beyond 1000 km). We decided to start from
scratch, in order to be able to use C++ and its extensive pos-
sibilities in object-oriented and metaprogramming. Further-
more, the implementation of a dynamical core that is fully
fourth order in space, which is very beneficial for DNS, but
to retain the option to switch to second-order accuracy for
LES, required a new code design.

Even though we started from scratch, many of the ideas are
the results of our experiences with other codes. Here, DALES
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(Heus et al., 2010), UCLA-LES (Stevens et al., 2005), and
PALM (Maronga et al., 2015), deserve a reference as Mi-
croHH could not have been possible without those.

This paper is built up as follows: in Sect. 2, we provide
a full description of the governing equations of the dynam-
ical core, and their numerical implementation is discussed
in Sect. 3. Subsequently, in Sect. 4, we present the parame-
terizations and their underlying assumptions. Section 5 dis-
cusses the technical details of the code, and Sects. 6 and 7
explain how to run the model and which output is gener-
ated. This is followed by a series of model tests on the va-
lidity and accuracy of the dynamical core in Sect. 8, and a
series of more applied atmospheric flow cases based on pre-
vious studies (Sect. 9). Hereafter, the parallel performance is
evaluated (Sect. 10). Then, an overview of published work
with MicroHH is presented (Sect. 11), followed by the future
plans (Sect. 12) and the concluding remarks (Sect. 13). Fi-
nally, there is a short description of where to get MicroHH,
and where to find its tutorials and a selection of visualizations
(see code availability section).

2 Dynamical core: governing equations

The dynamical core of MicroHH solves the conservation
equations of mass, momentum, and energy under the anelas-
tic approximation (Bannon, 1996). Under this approxima-
tion, the state variables density, pressure, and temperature
are described as small fluctuations (denoted with a prime
in this paper) from corresponding vertical reference profiles
(denoted with subscript zero) that are functions of height
only. This form of the approximation directly simplifies to
the Boussinesq approximation if the reference density ρ0(z)

is taken to be constant with height z. Consequently, MicroHH
does not need separate implementations of Boussinesq and
anelastic approximations. To facilitate the subsequent discus-
sion of the conservation equations, we define the scale height
for density Hρ based on the reference density profile:

Hρ ≡

(
1
ρ0

dρ0

dz

)−1

. (1)

2.1 Conservation of mass

The conservation of mass is formulated using Einstein sum-
mation as

∂ρ0ui

∂xi
= ρ0

∂ui

∂xi
+ ρ0wH

−1
ρ = 0, (2)

where ui represents the components of the velocity vector
(u,v,w) and xi represents the components of the position
vector (x,y,z). This formulation conserves the reference
mass, as density perturbations are ignored in the equation
(Lilly, 1996).

Under the Boussinesq approximation (Hρ → ∞), Eq. (2)
simplifies to conservation of volume:

∂ui

∂xi
= 0. (3)

2.2 Thermodynamic relations and conservation
of momentum

The thermodynamic relation between the fluctuations of vir-
tual potential temperature, pressure, and density under the
anelastic approximation is (see Bannon, 1996 for its deriva-
tion)

θ ′v
θv0
=

p′

ρ0gHρ
−
ρ′

ρ0
, (4)

where θ ′v is the perturbation virtual potential temperature, θv0
the reference virtual potential temperature, p′ is the pertur-
bation pressure, g is the gravity acceleration, and ρ′ is the
perturbation density.

The corresponding momentum equation is written in the
flux form in order to assure momentum conservation. The hy-
drostatic balance dp0/dz=−ρ0g has been subtracted, and
Eq. (4) has been used to introduce potential temperature as
the buoyancy variable to formulate the conservation of mo-
mentum as

∂ui

∂t
=−

1
ρ0

∂ρ0uiuj

∂xj
−

∂

∂xi

(
p′

ρ0

)
+ δi3g

θ ′v
θv0
+ ν

∂2ui

∂x2
j

+Fi, (5)

where δ is the Kronecker delta, ν is the kinematic viscos-
ity, and vector Fi represents external forces resulting from
parameterizations or large-scale forcings. As Bannon (1996)
showed, this formulation is energy-conserving in the sense
that there is a consistent transfer between kinetic and poten-
tial energy.

Under the Boussinesq approximation, the two equations
simplify to

θ ′v
θv0
=−

ρ′

ρ0
, (6)

∂ui

∂t
=−

∂uiuj

∂xj
−

1
ρ0

∂p′

∂xi
+ δi3g

θ ′v
θv0
+ ν

∂2ui

∂x2
j

+Fi . (7)

2.3 Pressure equation

The equation to acquire the pressure is diagnostic because
density fluctuations are neglected in the mass conservation
equation under the anelastic approximation (Eq. 2). To sim-
plify the notation, we define a function f (ui) that contains
all right-hand-side terms of Eq. (5), except the pressure gra-
dient. To arrive at the equation that allows us to solve for the
pressure, we multiply the equation with the base density ρ0
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and take its divergence. Conservation of mass ensures that
the tendency term vanishes, and an elliptic equation for pres-
sure remains:

∂

∂xi

[
ρ0

∂

∂xi

(
p′

ρ0

)]
=
∂ρ0f (ui)

∂xi
. (8)

Under the Boussinesq approximation, the equation simplifies
to

∂2

∂x2
i

(
p′

ρ0

)
=
∂f (ui)

∂xi
. (9)

In Sect. 3, we explain how these equations are solved numer-
ically.

2.4 Conservation of an arbitrary scalar

The conservation equation of an arbitrary scalar φ is written
in flux form:

∂φ

∂t
=−

1
ρ0

∂ρ0ujφ

∂xj
+ κφ

∂2φ

∂x2
j

+ Sφ, (10)

where κφ is the diffusivity of the scalar and Sφ represents
sources and sinks of the variable.

2.5 Conservation of energy

MicroHH provides multiple options for the energy conserva-
tion equation. The conservation equation for potential tem-
perature for dry dynamics θ can be written as

∂θ

∂t
=−

1
ρ0

∂ρ0uj θ

∂xj
+ κθ

∂2θ

∂x2
j

+
θ0

ρ0cpT0
Q, (11)

where κθ is the thermal diffusivity for heat, and Q repre-
sents external sources and sinks of heat. A second option for
moist dynamics is available. This has an identical conserva-
tion equation, but with liquid water potential temperature θl
rather than θ as the conserved variable (see Sect. 3.9 for de-
tails).

A third, more simplified mode, is available for dry dynam-
ics under the Boussinesq approximation. Here, the equation
of state (Eq. 6) can be eliminated and the conservation of
momentum and energy can be written in terms of buoyancy
b ≡ (g/θv0)θ

′
v as

∂ui

∂t
+
∂uiuj

∂xj
=−

1
ρ0

∂p′

∂xi
+ δi3b+ ν

∂2ui

∂x2
j

, (12)

∂b

∂t
+
∂buj

∂xj
= κb

∂2b

∂x2
j

+Qb, (13)

with κb as the diffusivity for buoyancy and Qb as an exter-
nal buoyancy source. By using buoyancy, length and time
remain as the only two dimensions, which proves convenient

for dimensional analysis. In this formulation, θ ′v is the fluctu-
ation of the virtual potential temperature with respect to the
surface value θv0. The consequence is that the buoyancy in-
creases with height in a stratified atmosphere, analogously
to the virtual potential temperature (see Garcia and Mellado,
2014, their Fig. B1 and van Heerwaarden and Mellado, 2016,
their Fig. 7a)

With a slight modification to the definition of θ ′v, it is pos-
sible to study slope flows in periodic domains. We define θ ′v
as the fluctuation with respect to a linearly stratified back-
ground profile θv0+ (dθv/dz)0z. The background stratifica-
tion in units of buoyancy is N2

≡ (g/θv0)(dθv/dz)0. If we
work out the governing equations again and introduce a slope
α (x axis pointing upslope; see Fedorovich and Shapiro,
2009, their Fig. 1) in the x direction, we find

∂u

∂t
+
∂uju

∂xj
=−

1
ρ0

∂p′

∂x
+ sin(α)b+ ν

∂2u

∂x2
j

, (14)

∂w

∂t
+
∂ujw

∂xj
=−

1
ρ0

∂p′

∂z
+ cos(α)b+ ν

∂2w

∂x2
j

, (15)

∂b

∂t
+
∂buj

∂xj
= κb

∂2b

∂x2
j

− (u sin(α)

+w cos(α))N2
+Qb, (16)

where the evolution equation of v is omitted, as it contains
no changes.

3 Dynamical core: numerical implementation

3.1 Grid

MicroHH is discretized on a staggered Arakawa C-grid,
where the scalars are located in the center of a grid cell and
the three velocity components are at the faces. The code can
work with stretched grids in the vertical dimension. The grid
is initialized from a vertical profile that contains the heights
of the cell centers. The locations of the faces are determined
consistently with the spatial order of the interpolations that
are described in Sect. 3.4. All spatial operators in the model,
such as the advection and diffusion, default to the same or-
der as the grid and can be overridden according to the user’s
wishes (see Sect. 6).

There is the option to apply a uniform translation velocity
to the grid and thus to let the grid move with the flow. This
so-called Galilean transformation is allowed as the Navier–
Stokes equations are invariant under translation. It has the
potential to allow for larger time steps and to increase the
accuracy of simulations.

3.2 Three-dimensional fields

In order to solve the governing equations, MicroHH gener-
ates at initialization three-dimensional fields of the prognos-
tic variables. These are the three velocity components (Eqs. 5
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or 7) and the thermodynamic variables (Eqs. 11, 13, or 16).
Furthermore, the user has the option to define additional pas-
sive scalars (Eq. 10). Each of the prognostic fields has an ad-
ditional three-dimensional field assigned to store its tendency
(see Sect. 3.3). Furthermore, a diagnostic field is assigned for
the pressure, as well as three or four additional ones for in-
termediate computations. Newly implemented physical pa-
rameterizations have the option to request additional three-
dimensional fields at initialization of the specific parameter-
ization.

The generation of turbulence requires perturbations to the
initial fields. MicroHH has two options to superimpose per-
turbations on any of the prognostic variables. These pertur-
bations can be random noise of which the amplitude and lo-
cation can be controlled, as well as two-dimensional rotating
vortices with an axis aligned with the x or y dimension. The
former option is the most commonly used method to start
convective turbulence, whereas the latter is the default for
neutral or stably stratified flows, which develop turbulence
more easily from larger perturbations.

3.3 Time integration

The prognostic equations are solved using low-storage
Runge–Kutta time integration schemes. Such schemes re-
quire two fields per variable: one that contains the ac-
tual value, which we denote with φ in this section, and
one that represents the tendencies, denoted with δφ. The
code provides two options: a three-stage, third-order scheme
(Williamson, 1980) and a five-stage, fourth-order scheme
(Carpenter and Kennedy, 1994). Both can be written in the
same generic form in semi-discrete formulation as

(δφ)n = f (φn)+ an(δφ)n−1 (17)
φn+1 = φn+ bn1t(δφ)n, (18)

where f is a function that represents the computation of all
right-hand-side terms, an and bn are the coefficients for the
Runge–Kutta method at stage n, and 1t is the time step.
Expression f (φn) thus represents the actual tendency cal-
culated using, for instance, Eqs. (5) or (10), whereas (δφ)n is
a composite of the actual tendency and those from the previ-
ous stages. In low-storage form, the tendencies of the previ-
ous stage (δφ)n−1 are retained and multiplied with an at the
beginning of a stage, except for the first stage, where a1 = 0.

For the third-order scheme, the vectors an and bn are

an =

{
0,−

5
9
,−

153
128

}
, (19)

bn =

{
1
3
,

15
16
,

8
15

}
. (20)

For the fourth-order scheme, the vectors a and b are

an=

{
0,−

567301805773
1357537059087

,−
2404267990393
2016746695238

,

−
3550918686646
2091501179385

,−
1275806237668
842570457699

}
(21)

bn=

{
1432997174477
9575080441755

,
5161836677717
13612068292357

,
1720146321549
2090206949498

,

3134564353537
4481467310338

,
2277821191437
14882151754819

}
. (22)

The reduced truncation error of the fourth-order scheme
makes the scheme preferable over the third-order scheme un-
der many conditions (see Sect. 8.2). The code can be run with
a fixed1t , as well as an adaptive time step based on the local
flow velocities.

3.4 Building blocks of the spatial discretization

The spatial operators are based on finite differences. The
code supports second-order and fourth-order accurate dis-
cretizations following Morinishi et al. (1998) and Vasilyev
(2000). From Taylor series, spatial operators can be derived
that constitute the building blocks of more advanced oper-
ators, such as the advection and diffusion operators. In the
following subsections, we describe the elementary operators
and the composite operators that can be derived from them.
We have selected a set of examples that cover the relevant
operators.

We define two second-order interpolation operators, one
with a small stencil and one with a wide stencil, as

φi,j,k ≈ φ
2x
i,j,k ≡

φ
i− 1

2 ,j,k
+φ

i+ 1
2 ,j,k

2
, (23)

φi,j,k ≈ φ
2xL
i,j,k ≡

φ
i− 3

2 ,j,k
+φ

i+ 3
2 ,j,k

2
. (24)

Interpolations are marked with a bar. The superscript indi-
cates the spatial order (2) and the direction (x), and has an
extra qualifier L when it is taken using the wide stencil. The
subscript indicates the position on the grid (i,j ).

The gradient operators, denoted with letter δ, are defined
in a similar way:

∂φ

∂x

∣∣∣∣
i,j,k

≈ δ2x(φ)i,j,k ≡
φ
i+ 1

2 ,j,k
−φ

i− 1
2 ,j,k

x
i+ 1

2
− x

i− 1
2

(25)

∂φ

∂x

∣∣∣∣
i,j,k

≈ δ2xL(φ)i,j,k ≡
φ
i+ 3

2 ,j,k
−φ

i− 3
2 ,j,k

x
i+ 3

2
− x

i− 3
2

. (26)

We use the Einstein summation in the operators. For in-
stance, the divergence of vector ui |i,j,k can be written as
δ2xi (ui)i,j,k .
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The fourth-order operators, written down in the same no-
tation, are defined as

φi,j,k≈ φ
4x
i,j,k

≡

−φ
i− 3

2 ,j,k
+ 9φ

i− 1
2 ,j,k
+ 9φ

i+ 1
2 ,j,k
−φ

i+ 3
2 ,j,k

16
. (27)

The biased version of this operator (suffix b in the super-
script) can be applied in the vicinity of the boundaries at the
bottom and top. Here, we show the biased stencil that can be
applied for vertical interpolation near the bottom:

φi,j,k≈ φ
4zb
i,j,k

≡

5φ
i,j,k− 1

2
+ 15φ

i,j,k+ 1
2
− 5φ

i,j,k+ 3
2
+φ

i,j,k+ 5
2

16
. (28)

Note that we only write down the bottom boundary for
brevity.

The centered and biased fourth-order gradient operators
are

∂φ

∂x

∣∣∣∣
i,j,k

≈ δ4x(φ)i,j,k

≡

φ
i− 3

2 ,j,k
− 27φ

i− 1
2 ,j,k
+ 27φ

i+ 1
2 ,j,k
−φ

i+ 3
2 ,j,k

x
i− 3

2
− 27x

i− 1
2
+ 27x

i+ 1
2
− x

i+ 3
2

, (29)

and

∂φ

∂z

∣∣∣∣
i,j,k

≈ δ4zb(φ)i,j,k

≡

−23φ
i,j,k− 1

2
+ 21φ

i,j,k+ 1
2
+ 3φ

i,j,k+ 3
2
−φ

i,j,k+ 5
2

−23z
k− 1

2
+ 21z

k+ 1
2
+ 3z

k+ 3
2
− z

k+ 5
2

. (30)

3.5 Boundary conditions

The lateral boundaries in MicroHH are periodic. The bottom
and top boundary conditions can be formulated in their most
general form as the Robin boundary condition:

aφs + b
∂φ

∂z

∣∣∣∣
s

= c, (31)

with a, b, and c as constants. This gives the Dirichlet bound-
ary condition when a = 1, b = 0, and the Neumann boundary
condition when a = 0, b = 1.

MicroHH makes use of ghost cells in order to avoid the
need of biased schemes for single interpolation or gradi-
ent operators near the wall. The values at the ghost cells
are derived making use of the boundary conditions follow-
ing Morinishi et al. (1998). The ghost cells for the Dirichlet
boundary conditions in the second-order accurate discretiza-
tion are

φ
−

1
2
= 2c−φ 1

2
, (32)

whereas those for the Neumann boundary condition are

φ
−

1
2
=−c

(
−z
−

1
2
+ z 1

2

)
+φ 1

2
. (33)

In the case of the fourth-order scheme, we have two ghost
cells, and therefore a second boundary condition is required.
Here, we set the third derivative equal to zero following
Morinishi et al. (1998). For the Dirichlet boundary condition
we then acquire the following expressions for the ghost cells:

φ
−

1
2
=

8c− 6φ 1
2
+φ 3

2

3
, (34)

φ
−

3
2
= 8c− 6φ 1

2
+φ 3

2
, (35)

whereas in the case of a Neumann boundary condition, we
find

φ
−

1
2
=−c

z
−

3
2
− 27z

−
1
2
+ 27z 1

2
− z 3

2

24
+φ 1

2
, (36)

φ
−

3
2
=−3c

z
−

3
2
− 27z

−
1
2
+ 27z 1

2
− z 3

2

24
+φ 3

2
. (37)

3.6 Advection

We use the previously introduced notation to describe the
more complex operators and expand them for illustration.
The advection term is discretized in the flux form, where φ is
an arbitrary scalar located in the center of the grid cell. In the
second-order case, this gives the following discretization:

∂uφ

∂x

∣∣∣∣
i,j,k

+
∂vφ

∂y

∣∣∣∣
i,j,k

≈ δ2x
(
uφ

2x
)
i,j,k
+ δ2y

(
vφ

2y
)
i,j,k

=

u
i+ 1

2 ,j,k
φ

2x
i+ 1

2 ,j,k
− u

i− 1
2 ,j,k

φ
2x
i− 1

2 ,j,k

x
i+ 1

2
− x

i− 1
2

+

v
i,j+ 1

2 ,k
φ

2y
i,j+ 1

2 ,k
− v

i,j− 1
2 ,k
φ

2y
i,j− 1

2 ,k

y
j+ 1

2
− y

j− 1
2

. (38)

The discretization of the advection of the velocity compo-
nents (see Eqs. 5 and 7) involves extra interpolations as the
following example illustrates:

∂vu

∂x

∣∣∣∣
i,j,k

= δ2x
(
v2yu2x

)
i,j,k

=

v
2y
i+ 1

2 ,j,k
u2x
i+ 1

2 ,j,k
− v

2y
i− 1

2 ,j,k
u2x
i− 1

2 ,j,k

x
i+ 1

2
− x

i− 1
2

. (39)

In the standard fourth-order scheme, the scalar advection in
flux form is represented by

∂uφ

∂x

∣∣∣∣
i,j,k

≈ δ4x
(
uφ

4x
)
i,j,k

=

(
u
i− 3

2 ,j,k
φ

4x
i− 3

2 ,j,k
− 27u

i− 1
2 ,j,k

φ
4x
i− 1

2 ,j,k

+27u
i+ 1

2 ,j,k
φ

4x
i+ 1

2 ,j,k
− u

i+ 3
2 ,j,k

φ
4x
i+ 3

2 ,j,k

)/
(
x
i− 3

2
− 27x

i− 1
2
+ 27x

i+ 1
2
− x

i+ 3
2

)
. (40)

Hereafter, we assume that operator notation is clear and only
expand it where necessary.
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MicroHH has a fully kinetic energy-conserving fourth-
order advection scheme (Morinishi et al., 1998) available.
The scheme is constructed by interpolation of two kinetic
energy-conserving second-order discretizations to eliminate
the second-order error (as illustrated below)

∂uφ

∂x

∣∣∣∣
i,j,k

≈
9
8
δ2x
(
uφ

2x
)
i,j,k
−

1
8
δ2xL

(
uφ

2xL
)
i,j,k

, (41)

to ensure that velocity variances are conserved under advec-
tion.

Velocity interpolations, such as those in Eq. (39), still need
to be performed with fourth-order accuracy (Eq. 27) in order
to be fourth-order accurate (see Morinishi et al., 1998 for
details). The expression

∂vu

∂x

∣∣∣∣
i,j,k

≈
9
8
δ2x
(
v4yu2x

)
i,j,k

−
1
8
δ2xL

(
v4yu2xL

)
i,j,k

(42)

includes, for instance, a combination of second- and fourth-
order interpolations.

To increase the overall accuracy of the second-order ad-
vection operator, there is an option available to only increase
the interpolation part to fourth order:

∂uφ

∂x

∣∣∣∣
i,j,k

≈ δ2x
(
uφ

4x
)
i,j,k

. (43)

3.7 Diffusion

We apply a discretization for diffusion that can be written as
the divergence of a gradient, using the building blocks de-
fined earlier in this section. As this operator is identical in all
directions, we present it in one direction only:

κφ
∂2φ

∂x2

∣∣∣∣
i,j,k

≈ κφδ
2x
(
δ2x (φ)

)
i,j,k

, (44)

κφ
∂2φ

∂x2

∣∣∣∣
i,j,k

≈ κφδ
4x
(
δ4x (φ)

)
i,j,k

. (45)

On an equidistant grid, this provides the well-known second-
order accurate operator for the second derivative:

κφδ
2x
(
δ2x (φ)

)
i,j,k
= κφ

φi−1,j,k − 2φi,j,k +φi+1,j,k

(1x)2
, (46)

where 1x is the uniform grid spacing.
For the fourth-order accurate operator, a seven-point sten-

cil is used:

κφδ
4x
(
δ4x (φ)

)
i,j,k

=
κφ

576(1x)2
(
φi−3,j,k − 54φi−2,j,k + 783φi−1,j,k

−1460φi,j,k + 783φi+1,j,k − 54φi+2,j,k +φi+3,j,k
)
. (47)

Whereas diffusion can be computed with fourth-order ac-
curacy using a five-point stencil, we use a seven-point sten-
cil, as it extends naturally to non-uniform grids as explained

Figure 1. Schematic of the diffusion discretization near the wall.
The green node is the evaluation point at the center of the first cell
above the wall, the red nodes are the stencil of the divergence oper-
ator, and yellow nodes show the stencils of the four gradient oper-
ators over which the divergence is evaluated. White nodes indicate
the extent of the stencil.

in Castillo et al. (1995). The usage of a seven-point stencil
requires special care near the walls. In Fig. 1, we show an
example of how the second derivative in the vertical direc-
tion is computed for a scalar at the first model level (green
node in Fig. 1). The calculation of the divergence (Fig. 1, red
stencil) requires the gradient located at the first face below
the wall (lowest red node in Fig. 1), which can only be ac-
quired using the biased gradient operator (Eq. 30 and yellow
stencil connected to lowest red node in Fig. 1). The extent
of the complete stencil near the wall (white nodes; Fig. 1) is
thus six points, rather than seven.

3.8 Pressure

Equations (8) and (9) are solved following the method of
Chorin (1968). This is a fractional step method that first com-
putes intermediate values of the velocity components for the
next time step, based on all right-hand-side terms of the mo-
mentum conservation equation (Eq. 5):

u∗i

∣∣t+1
i,j,k
= ui |

t
i,j,k +1t fi |

t
i,j,k, (48)

with the intermediate velocity components denoted with an
asterisk.

The velocity values at the next time step can be computed
as soon as the pressure is known, using

ui |
t+1
i,j,k = u

∗

i

∣∣t+1
i,j,k
−1t δnxi

(
p

ρ0

)∣∣∣∣t
i,j,k

. (49)

In order to compute the pressure, we multiply the previous
equation with the reference density and take its gradient, ar-
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riving at

δnxi (ρ0ui)
∣∣t+1
i,j,k
= δnxi

(
ρ0u
∗

i

)∣∣t+1
i,j,k

−1t δnxi
[
ρ0δ

nxi

(
p

ρ0

)]∣∣∣∣t
i,j,k

, (50)

where n indicates the spatial order, and the subscript i in su-
perscript xi indicates that δnxi is a divergence operator. The
left-hand side equals zero due to mass conservation at the
next time step (Eq. 2). The resulting equation is the Poisson
equation that is the discrete equivalent of Eq. (8). Rewriting
this equation leads to

δnxi
(
ρ0u
∗

i

)∣∣t+1
i,j,k

1t
= δnxi

[
ρ0δ

nxi

(
p

ρ0

)]∣∣∣∣t
i,j,k

. (51)

To simplify the notation, we denote the left-hand-side term
as ψ and the p/ρ0 term on the right-hand side as π . Solving
a Poisson equation is a global operation. Because the com-
puted fields are periodic in the horizontal directions on an
equidistant grid, and a Poisson equation is linear, we can per-
form a Fourier transform in the two horizontal directions:

ψ̂l,m,k =−k
2
∗nπ̂l,m,k − l

2
∗nπ̂l,m,k

+ δnz
[
ρ0δ

nz (π̂)
]
l,m,k

, (52)

where Fourier-transformed variables are denoted with a hat,
the spatial order of the operation with n, and the wavenum-
bers in the two horizontal dimensions x and y are l and m,
respectively. Variables k2

∗ and l2∗ are the squares of the modi-
fied wavenumbers:

−k2
∗2 ≡ 2

cos(k1x)

(1x)2
−

2

(1x)2
(53)

and

−k2
∗4 ≡ 2

cos(3k1x)− 54cos(2k1x)+ 783cos(k1x)

576(1x)2

−
1460

576(1x)2
, (54)

where the former is the modified wavenumber for the second-
order accurate solver and the latter is the wavenumber for
the fourth-order one. Note that the coefficients correspond to
those in Eqs. (46) and (47). Both expressions satisfy the limit
lim1x→0k

2
∗n = k

2, where n is the order of the scheme.
Solving Eq. (52) for π̂ requires solving a banded matrix

for the vertical direction in which the walls are located. This
matrix is tridiagonal for the second-order solver and hep-
tadiagonal for the fourth-order solver. For this, a standard
Thomas algorithm (Thomas, 1949) is used. After the pres-
sure is acquired, inverse Fourier transforms are applied and
subsequently the pressure gradient term (see Eqs. 5 and 7) is
computed for all three components of the velocity tendency.
Note that the computation of the corrected velocity compo-
nents does not require a boundary condition for pressure (see
Vreman, 2014 for details).

3.9 Thermodynamics

MicroHH supports the potential (θ ) and liquid water poten-
tial (θl) temperature as thermodynamic variables (Sect. 2.5).
The dry (θ ) and moist (θl) thermodynamics are related
through the use of a total specific humidity qt, which is de-
fined as the sum of the water vapor specific humidity (qv) and
the cloud liquid water specific humidity (ql). In the absence
of liquid water, θl = θ ; in the presence of liquid water, the
liquid water potential temperature is approximated as (Betts,
1973)

θl ≈ θ −
Lv

cp 5
ql, (55)

where Lv is the latent heat of vaporization, cp the specific
heat of dry air at constant pressure, and 5 is the Exner func-
tion:

5=

(
p

p00

)Rd/cp

, (56)

where p is the hydrostatic pressure, p00 a constant reference
pressure, andRd the gas constant for dry air. The cloud liquid
water content is calculated as

ql =max(0, qt− qs), (57)

where qs is the saturation specific humidity:

qs =
ε es

p− (1− ε) es
, (58)

with ε the ratio between the gas constant for dry air and the
gas constant for water vapor (Rd/Rv), and es the saturation
vapor pressure. The latter is approximated using a 10th order
Taylor expansion at T = 0 ◦C of the Arden Buck equation
(Buck, 1981). ql is adjusted iteratively to arrive at a consis-
tent state where qv = qs. Finally, the virtual potential temper-
ature (Eq. 5) is defined in MicroHH as

θv ≡ θ

(
1−

[
1−

Rv

Rd

]
qt−

Rv

Rd
ql

)
. (59)

The base state pressure and density are calculated assuming a
hydrostatic equilibrium: dp0 =−ρ0gdz, with the density de-
fined as ρ0 = p0/(Rd 5 θv0). Integration with height results
in

p0;k+1 = p0;k exp
(
−g(zk+1− zk)

Rd 5 θv0

)
, (60)

where θv0 is the average virtual potential temperature be-
tween zk and zk+1. This equation is applied from a given sur-
face pressure to the model top, alternating the calculations at
the full and half model levels. That is, given the full thermo-
dynamic state (pressure and density) at a full level k, the ther-
modynamic state can be advanced from the half level k− 1

2
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to k+ 1
2 . Using the newly calculated state at k+ 1

2 , pressure
and density at k+ 1 can be calculated.

The base state density ρ0 that is used in the dynamical
core (Sect. 2) is calculated using the initial virtual potential
temperature profile and is not updated during the experiment.
The density and hydrostatic pressure used in the moist ther-
modynamics can optionally be updated every time step, fol-
lowing the same procedure as explained in Boing (2014).

3.10 Rotation

The effects of a rotating reference frame on an f plane can
be included through the Coriolis force. The acceleration due
to the Coriolis force Fi,cor is computed for the two horizontal
velocity components (indices 1 and 2 in Eqs. 5 and 7) as

F1,cor
∣∣
i,j,k
= f0vi,j,k, (61)

F2,cor
∣∣
i,j,k
=−f0ui,j,k, (62)

with f0 as Coriolis parameter specified by the user.

4 Physical parameterizations

4.1 Subfilter-scale model for large-eddy simulation

With the governing equations described in Sect. 2 it is pos-
sible to resolve the flow down to the scales where molecular
viscosity acts. In many applications, however, such simula-
tions are too costly. In that case, one may opt for large-eddy
simulation (LES), where filtered equations are used to de-
scribe the largest scales of the flow, and the subfilter-scale
motions are modeled. The LES implementation in MicroHH
assumes very high Reynolds numbers in which the molecular
viscosity is neglected. Filtering of the anelastic conservation
of momentum equation (Eq. 5), with a tilde applied to denote
filtered variables, leads to

∂ũi

∂t
=−

1
ρ0

∂ρ0ũi ũj

∂xj
−
∂π

∂xi
−

1
ρ0

∂ρ0τij

∂xj

+ δi3g
θ̃ ′v
θv0
+Fi . (63)

In this equation, a tensor τij is defined as

τij ≡ ũiuj − ũi ũj −
1
3
(ũiui − ũi ũi) . (64)

This is the anisotropic subfilter-scale kinematic momentum
flux tensor. The isotropic part of the full momentum flux ten-
sor has been added to the pressure, providing the modified
pressure:

π ≡
p̃′

ρ0
+

1
3
(ũiui − ũi ũi) . (65)

As τij contains the filtered product of unfiltered velocity
components, this quantity needs to be parameterized. Mi-
croHH uses the Smagorinsky–Lilly (Lilly, 1968) model, in

which τij is modeled as

τij =−Km

(
∂ũi

∂xj
+
∂ũj

∂xi

)
, (66)

with Km interpreted as the subfilter eddy diffusivity. This
quantity is modeled as

Km = λ
2S

1−
g
θv0

∂θ̃v
∂z

PrtS2


1
2

, (67)

and is proportional to the magnitude S ≡
(
2SijSij

) 1
2 of the

strain tensor Sij , which is defined as

Sij ≡
1
2

(
∂ũi

∂xj
+
∂ũj

∂xi

)
. (68)

The subfilter eddy diffusivity thus takes into account the lo-
cal stratification and the turbulent Prandtl number Prt. The
latter is set to one-third by default but can be overridden in
the settings. The length scale λ is the mixing length defined
following Mason and Thomson (1992), as

1
λn
=

1
[κ (z+ z0)]n

+
1

(cs1)
n , (69)

which is an arbitrary matching function (n is a free param-
eter, set to 2 in MicroHH) between the mixing length fol-
lowing wall scaling to the subfilter length scale (filter size)
1≡ (1x1y1z)1/3, related to the grid spacing. The grid
scale is used as an implicit filter; thus, no explicit filtering is
applied. In the case of a high Reynolds number atmospheric
LES with an unresolved near-wall flow, the vertical gradients
of the horizontal velocity components ∂ũi,j/∂z in the strain
tensor are replaced with the theoretical gradients predicted
from Monin–Obukhov similarity theory. Evaluation of these
gradients is explained in detail in Sect. 4.2.

The same approach is followed for all scalars, including
the thermodynamic variables discussed in Sect. 2.5:

∂φ̃

∂t
=−

1
ρ0

∂ρ0ũj φ̃

∂xj
−

1
ρ0

∂ρ0Rφ,j

∂xj
+ S̃φ . (70)

The term Rφ,j refers to the subfilter flux of φ̃ and is defined
as

Rφ,j = ũjφ− ũj φ̃. (71)

The subfilter-scale flux is parameterized in terms of the gra-
dient

Rφ,j =−
Km

Prt

∂φ̃

∂xj
. (72)
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4.2 Surface model

The LES implementation of MicroHH uses a surface model
that is constrained to rough surfaces and high Reynolds num-
bers, which is a typical configuration for atmospheric flows.
This model computes the surface fluxes of the horizontal
momentum components and the scalars (including thermo-
dynamic variables) using Monin–Obukhov similarity theory
(MOST) (Wyngaard, 2010, his Sect. 10.2). MOST relates
surface fluxes of variables to their near-surface gradients us-
ing empirical functions that depend on the height of the first
model level z1 divided by the Obukhov length L as an argu-
ment. Length L is defined as

L≡−
u3
∗

κB0
, (73)

where u∗ is the friction velocity, κ is the Von Karman
constant, and B0 is the surface kinematic buoyancy flux.
L represents the height at which the buoyancy produc-
tion/destruction of turbulence kinetic energy equals the shear
production. In MicroHH, we use a local implementation of
MOST, i.e., each grid point has its own value of L. This
choice can lead to a overestimation of near-surface wind due
to violation of the MOST assumption of horizontal homo-
geneity (Bou-Zeid et al., 2005, their Fig. 18), but it allows
for a more straightforward extension to heterogeneous land
surfaces.

Following MOST, the friction velocity u∗ and the momen-
tum fluxes may be related to the near-surface wind gradient
as

κz1

u∗

∂U

∂z
≈−

κz1u∗

u′w′

∂ũ

∂z
≈−

κz1u∗

v′w′

∂ṽ

∂z
≈ φm

(z1

L

)
, (74)

where U is defined as
√
ũ2+ ṽ2, and u′w′ and v′w′ as the

surface momentum fluxes for the two wind components.
These relationships can be integrated from the roughness
length z0m to z1 resulting in

u∗ = fm (U1−U0) , (75)

u′w′ =−u∗fm (̃u1− ũ0) , (76)

v′w′ =−u∗fm (̃v1− ṽ0) , (77)

with fm defined as

fm ≡
κ

ln
(
z1
z0m

)
−9m

(
z1
L

)
+9m

(
z0m
L

) , (78)

with 9m described in Eqs. (83) and (85).
The same procedure for scalars is followed, with

κz1u∗

φ′w′

∂φ̃

∂z
= φh

(z1

L

)
, (79)

and in integrated form:

φ′w′ = u∗fh
(
φ̃1− φ̃0

)
, (80)

with

fh ≡
κ

ln
(
z1
z0h

)
−9h

(
z1
L

)
+9h

(
z0h
L

) , (81)

with 9h described in Eqs. (83) and (85).
The functions φm, φh, 9m, and 9h are empirical and de-

pend on the static stability of the atmosphere. Under unstable
conditions, we follow (Wilson, 2001; Wyngaard, 2010):

φm,h =
(

1+ γm,h|ζ |2/3
)−1/2

, (82)

9m,h = 3ln

(
1+φ−1

m,h

2

)
, (83)

where ζ is the ratio of a height and the Obukhov length
L, γm = 3.6, and γh = 7.9. Under stable conditions, we use
(Högström, 1988; Wyngaard, 2010)

φm,h = 1+ λm,hζ, (84)
9m,h =−λm,hζ, (85)

where λm = 4.8 and λh = 7.8.
With the equations above, the surface fluxes, surface val-

ues, and near-surface gradients can be computed but only if
the Obukhov length L is known. The surface model calcu-
lates the Obukhov length by relating the dimensionless pa-
rameter z1/L to a Richardson number. The employed for-
mulation of the Richardson number depends on the chosen
boundary condition in the model. Three possible options are
available:

– The first option is fixed momentum fluxes and a fixed
surface buoyancy flux. Both the friction velocity u∗ and
the surface buoyancy flux B0 are specified. Under these
conditions, we define the Richardson number Ria equal
to z1/L; L can be computed directly from the expres-
sion

Ria ≡
z1

L
=−

κz1B0

u3
∗

. (86)

– The second option is a fixed horizontal velocity U0 at
the surface and a fixed surface buoyancy flux B0. The
friction velocity u∗ is unknown. Now, L needs to be re-
trieved from the implicit relationship:

Rib ≡
z1

L
f 3
m =−

κz1B0

(U1−U0)
3 . (87)

– The third option is a fixed surface velocity U0 and a
fixed surface buoyancy b0. With this boundary condi-
tion, the surface values of the horizontal velocities and
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the buoyancy are given, and both u∗ and the surface
buoyancy flux B0 are unknown. L is then retrieved from

Ric ≡
z1

L

f 2
m

fh
=
κz1

(̃
b1− b̃0

)
(U1−U0)

2 . (88)

In the event of the latter two options, a solver is required to
find the value of L that satisfies the equation, as fm (Eq. 78)
and fh (Eq. 81) both depend on L as well. For performance
reasons, we have created a lookup-table-based approach that
relates L to the Richardson number. The lookup table has
104 entries, of which 90 % is spaced uniformly between
z1/L=−5 to 5. The remaining 10 % are used to stretch the
negative range up to z1/L=−104 to allow for the correct
free convection limit.

4.3 Large-scale forcings

4.3.1 Pressure force

MicroHH provides two options to introduce a large-scale
pressure force into the model. The first is to enforce a con-
stant mass flux through the domain in the streamwise direc-
tion. In this approach, the desired large-scale velocity Uf is
set, and the corresponding pressure gradient is computed. We
follow here the approach of van Reeuwijk (2007). In this ap-
proach, the u component of the horizontal momentum equa-
tion (Eq. 5) is volume averaged to acquire

〈u〉n+1
−〈u〉n

1t
= 〈f1〉−

〈
∂

∂x

(
p

ρ0

)〉
+Fp;ls, (89)

where brackets indicate a volume average, f1 contains all the
right-hand-side terms of the u component of the conserva-
tion of momentum, except for the dynamic pressure, which is
contained in the second term. The large-scale pressure force
Fp;ls, which is to be computed, is the last term. We can now
set 〈u〉n+1

= Uf to explicitly set the volume-averaged veloc-
ity in the next time step. Furthermore, the volume-averaged
horizontal pressure gradient vanishes, because of the periodic
boundary condition, which makes Fp;ls the only unknown.
The acquired pressure force Fp;ls will be added as an exter-
nal force in the equation of zonal velocity (F1 in Eqs. 5 and
7).

The second option is to enforce a large-scale pressure force
through the geostrophic wind components ug and vg, in com-
bination with rotation, with the accelerations of the two hor-
izontal velocity components Fi,p;ls calculated as

F1,p;ls
∣∣
i,j,k
=−f0vg;k, (90)

F2,p;ls
∣∣
i,j,k
= f0ug;k, (91)

where ug;k and vg;k are user-specified vertical profiles of
geostrophic wind components.

4.3.2 Large-scale sources and sinks

Large-scale sources and sinks, representing, for instance,
large-scale advection or radiative cooling, can be prescribed
for each variable separately. The user has to provide vertical
profiles of large-scale sources and sinks Sφ;ls that are added
to the total tendencies.

4.3.3 Large-scale vertical velocity

A second method of introducing large-scale thermodynamic
effects is through the inclusion of a large-scale vertical ve-
locity. In this case, each scalar gets an additional source term
Sφ,w,ls of the form

Sφ,w,ls
∣∣
i,j,k
=−wls;k δ

2x (
〈φ〉k

)
, (92)

where wls;k is a user-specified vertical profile of large-scale
vertical velocity and 〈φ〉k is the horizontally averaged verti-
cal profile at height zk for scalar φ. The tendency term is not
applied to the momentum variables.

4.4 Buffer layer

MicroHH has the option to damp gravity waves in the top of
the simulation domain in a so-called buffer layer. The source
term Sφ,buf associated with the damping at grid cell i,j,k is
calculated for an arbitrary variable φ as

Sφ,buf
∣∣
i,j,k
=
φi,j,k −φ0;k

τd;k
, (93)

where φ0 is taken from a user-specified vertical reference
profile, and timescale τd is a measure for the strength of the
damping. It varies with height and is calculated at height zk
following

τ−1
d;k = σ

(
zk − zb;bot

zb;top− zb;bot

)β
, (94)

where σ is the damping frequency chosen by the user and β
an exponent that describes the shape of the vertical profile of
the damping frequency, which is always zero at the bottom
(zb;bot) and σ at the top (zb;top) of the layer.

5 Technical details of the code

5.1 Code structure

MicroHH is written in C++ and uses elements of object-
oriented programming and template metaprogramming. The
code components are written in classes that define the in-
terface. Inheritance is used to allow for specializations of
classes. This way of organizing the code has two advan-
tages: it minimizes switches and it allows code components
and their extensions to reside in their own file, which in-
creases code clarity and facilitates the merging of new code
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extensions. High performance of computational kernels is
achieved by executing kernels in their own function, with
explicit inclusions of the restrict keyword to notify the
compiler that fields do not overlap in memory. Furthermore,
compiler-specific pragmas are used to aid vectorization on
Intel compilers.

5.2 GPU

MicroHH is enabled to run on fast and energy-efficient
graphical processing units (GPUs). This promising technique
has been pioneered in atmospheric flows by Schalkwijk et al.
(2012) and has shown its potential in weather forecasting
(Schalkwijk et al., 2015). The implementation is based on
NVIDIA’s CUDA. The CPU and GPU version reside in the
same code base, where the GPU implementation is activated
with the help of precompiler statements. The philosophy is
that the entire model is initialized on the CPU and that the
GPU implementation is only activated right before starting
the main time loop. At that moment, the required fields are
copied in double precision accuracy to the GPU, and the en-
tire time integration is done there. Synchronization only hap-
pens when statistics have to be computed or when restart files
or cross sections of flow fields are saved to disk, to ensure
high performance. The design choice to do the entire initial-
ization on the CPU minimizes the amount of GPU code and
therefore allows for maintaining a single code base for the
CPU and GPU code.

5.3 Parallelization

The code uses the Message Passing Interface (MPI) in or-
der to run on a large number of cores. The three-dimensional
simulation domain is split into vertically oriented columns
standing on a two-dimensional grid. The code assigns one
MPI task to each grid column using the MPI_Cart_create
function and uses this grid to detect the IDs of neighbor-
ing processes. In order to avoid complex packing routines,
we make use of MPI datatypes wherever possible. The MPI
calls are hidden in an interface to avoid the need to manually
write MPI calls.

The input/output (IO) is entirely based on MPI-IO, the
parallel IO framework that comes with MPI, to ensure that
three-dimensional fields and two-dimensional cross sections
are stored as single files. We have chosen MPI-IO in order to
limit the number of files resulting from simulations on a large
number of processes and to allow for restarts on a different
number of processes. In order to keep complexity of the IO as
low as possible, we make use of the MPI_Sub_array function
in combination with MPI_File_write_all in order to write the
fields.

5.4 External dependencies

MicroHH depends on several external software tools or li-
braries. It uses the CMake (https://cmake.org) build system

for the generation of Makefiles. CMake allows for paral-
lel builds, which minimizes the compilation time, and it is
easy to add configurations for different machines. Further-
more, the FFTW3 library (Frigo and Johnson, 2005) is used
for the computation of fast Fourier transforms. The statis-
tical routines make use of netCDF software developed by
UCAR/Unidata (http://doi.org/10.5065/D6H70CW6). In or-
der to run the provided test cases and their output scripts,
a Python (https://www.python.org) installation including the
NumPy (van der Walt et al., 2011; http://www.numpy.org)
and Matplotlib (Hunter, 2007; https://matplotlib.org) mod-
ules is required. Automatic documentation generation can
be done using Doxygen (http://doxygen.org), but this is op-
tional.

6 Running simulations

In order to run a simulation with MicroHH, a sequence of
steps needs to be taken. Each simulation has an .ini file
that contains the settings of the simulation, a .prof file
that contains the (initial) vertical profiles of all required
variables, and, if time-varying boundary conditions are de-
sired, a file with the prescribed time evolution for all time-
varying boundary conditions. MicroHH provides a document
(doc/input.pdf) that contains an overview of all possi-
ble options that can be specified in the .ini file.

To prepare a simulation with the name
test_simulation, MicroHH needs to be run in
the following way:

./microhh init test_simulation

where it is assumed that test_simulation.ini and
test_simulation.prof are available in the directory
where the command is triggered. This procedure will create
the initial fields of all prognostic variables and save the re-
quired fields for those model components that need to save
their state to guarantee bitwise identical restarts.

After the previously described initialization phase, the ex-
ecution of

./microhh run test_simulation

will start the actual simulation. Depending on the chosen out-
put intervals, the simulation will create restart files, statistics,
cross sections, and field dumps. MicroHH can restart from
any time at which the restart files are saved.

The last mode in which the code can run is the post-
processing mode. By running

./microhh post test_simulation

the code will generate statistics from saved restart files at a
specified time interval. This mode allows the user to create
new statistics and calculate those from saved data without
having to rerun the simulation.
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Figure 2. Convergence of the spatial discretization error in the two-
dimensional Taylor–Green vortex. Subscript 2 indicates the second-
order scheme, subscript 4 the most accurate fourth-order scheme,
and subscript 4M the fully energy-conserving fourth-order scheme.
The dashed black line is the reference for second-order conver-
gence; the dotted black lines indicate fourth-order convergence.

7 Model output

7.1 Statistics

A large set of output statistics can be computed during run-
time at user-specified time intervals. The statistics mod-
ule provides vertical profiles of means, second-, third- and
fourth-order moments of all prognostic variables, as well as
advective and diffusive fluxes. Furthermore, there are mul-
tiple diagnostic variables, such as the pressure, the pres-
sure variance, and its vertical flux. The thermodynamics gen-
erate their own statistics based on the chosen option. The
moist thermodynamics provides a large set of cloud statis-
tics. There is a separate module for budget statistics, which
provides the budgets of all components of the Reynolds stress
tensor, and those of the variance and vertical flux of the ther-
modynamic variables.

One of the key features of the MicroHH statistics routine
is that an arbitrary mask can be passed into the routine over
which the statistics are calculated. This allows, for instance,
for a very simple way of computing conditional statistics in
updrafts or clouds, which is demonstrated later in Sect. 9.2.

7.2 Two- and three-dimensional output

It is possible to save two-dimensional cross sections and
three-dimensional fields of any of the prognostic and diag-
nostic variables of the model, as well as of derived vari-
ables. This output can be made at user-specified time inter-
vals. Cross sections can be made in any chosen xy, xz, and
yz planes. Derived variables (any arbitrary function of exist-
ing model variables), can be easily added to the code by the
user.
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Figure 3. Time evolution of the kinetic energy change 1KE during
1000 time units of random noise advection for the RK3 and RK4
time integration schemes with three different time steps (a). Kinetic
energy change convergence of the temporal discretization for the
RK3 and RK4 schemes (b).

8 Validation of the dynamical core

In this section, we present a series of cases intended to vali-
date MicroHH under a wide range of settings. Each of these
test cases is available in the cases/ directory in the Mi-
croHH repository, where all detailed settings can be found
(see code availability section). Below, we present only the
most relevant information per case.

8.1 Taylor–Green vortex

The two-dimensional Taylor–Green vortex
(cases/taylorgreen) presents an ideal test case
for a dynamical core, as it has an analytical solution even
though it is nonlinear. This flow is composed of two rotat-
ing vortices whose evolution in a domain [0,1;0,0.5] is
described with

u(x,z, t)= sin(2πx)cos(πz)f (t), (95)
w(x,z, t)= cos(2πx)sin(πz)f (t), (96)

p(x,z, t)=
1
4
(sin(4πx)+ sin(4πz))f (t)2, (97)

where f (t)= 8π2νt .
We use the analytical form at t = 0 as the initial condi-

tion and run this case for one vortex rotation (t = 1), with
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Figure 4. Normalized numerical Prandtl model solutions for veloc-
ity u (a) and buoyancy b (b) compared to their analytical counter-
parts.

ν = (800π2)−1. We compare the result against the analytical
solution for a set of grid spacings and with the second-order
and fourth-order dynamical cores; for the latter we compare
the most accurate advection scheme and the fully energy-
conserving one.

Figure 2 shows the error convergence of the sim-
ulations. The error for a variable φ is computed as∑
1x1z

∣∣φi,k −φref,i,k,
∣∣ over the two-dimensional domain,

where 1x and 1z are the uniform grid spacings used in this
case and φref is the analytical solution. All variables converge
according to the order of the numerical scheme. The fourth-
order dynamical core loses accuracy at fine grid spacings.
This is due to the boundary condition for the vertical veloc-
ity that sacrifices an order of accuracy to ensure global mass
conservation (Morinishi et al., 1998).

8.2 Kinetic energy conservation and time accuracy

The second test of the dynamical core consists of combined
evaluation of kinetic energy (KE≡ 1

2

(
u2
+ v2
+w2)) con-

servation and time accuracy (cases/conservation). In
this experiment, we run the model with only the advection
and pressure solver enabled and advect random noise through
the domain for 1000 s. These tests have been conducted
with the third- and fourth-order Runge–Kutta schemes. We
have chosen the fourth-order spatial discretization in order to
demonstrate its energy conservation.

The loss of kinetic energy as a function of time is shown in
Fig. 3a. The fourth-order scheme results in a smaller energy
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Figure 5. Velocity means (a) and variances (b) for Moser et al.
(1999) channel flow case at a Reynolds τ of 590. The dashed ver-
tical lines mark the spectra locations. Height z is normalized with
uτ /ν; velocities with u−1

τ .

loss for the same time step and a faster convergence. The
error-convergence plot (Fig. 3b) shows that the error con-
vergence is in accordance with the order of the respective
scheme. Furthermore, it illustrates the fact that, if high accu-
racy in time is desired, the five-stage, fourth-order scheme is
less expensive than the three-stage, third-order scheme. For
instance, at a1t of 10, the error of the fourth-order scheme is
approximately equal to the error of the third-order scheme at
a 1t of 2.5. To reach this accuracy, the fourth-order scheme
needs only 5 steps per 10 time units, whereas the third-order
scheme needs 12 steps.

8.3 Laminar anabatic flow

To test the buoyancy routine and the option to put the domain
on a slope, a Prandtl-type anabatic slope flow (Prandtl, 1942)
has been simulated (cases/prandtlslope). In this test
case, the surface is inclined at an angle of 30◦ and a linearly
stratified atmosphere (N = 1 s−1) is heated from below with
a fixed surface buoyancy flux of 0.005 m2 s−3.

The fluid, which was initially at rest, goes through a series
of decaying oscillations after the buoyancy flux is applied
at the surface. Eventually, it reaches the steady state corre-
sponding to the Prandtl model solution. Numerical integra-
tion was performed sufficiently long for the oscillation am-
plitude to become a small fraction of the amplitude of the first
oscillation. Comparison of horizontal wind u and buoyancy b
of analytical and numerical solutions is shown in Fig. 4. For
both variables, the solutions closely agree with each other.
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τ .

8.4 Turbulent channel flow

For fully turbulent flows, the numerical solutions can-
not be compared against any analytical test cases. There-
fore, we validate our results against a channel flow at
a Reynolds τ number of 590 (Moser et al., 1999) for
means, variances, spectra, and second-order budget statis-
tics (cases/moser590). The case is run at a resolution
of 768 × 384× 256 grid points. The original numerical sim-
ulation data of Moser et al. (1999) have been produced on a
384× 384× 256 grid with spectral schemes in the horizontal
dimensions and Chebyshev polynomials in the vertical.

Figure 5a shows the normalized horizontally averaged
streamwise velocity. The normalized rms values of all three
velocity components are presented in Fig. 5b. All plotted
variables show a perfect match with the data and are indis-
tinguishable from Moser’s data. In order to further assess the
accuracy of the data, we show the second-order budgets of
the variances in Fig. 6. Also here, the match with the refer-
ence data is excellent, which indicates that the whole range
of spatial scales in the flow is represented well and that the
fourth-order scheme is well able to pick up the small-scale
details of the flow.

The findings in the previous paragraph are further corrobo-
rated by the spectra shown in Fig. 7. Over the whole range of
scales, the match between our simulation and that of Moser
et al. (1999) is excellent. Note that the spectra from Moser’s
simulation display an increase in pressure variance at the
highest wavenumbers. This increase is the result of aliasing

errors at high wavenumbers that are typical for the spectral
schemes that Moser et al. (1999) used.

8.5 Turbulent katabatic flow

The final evaluation of the dynamical core without parame-
terizations enabled is based on the direct numerical simula-
tion of a turbulent katabatic flow. Here, a buoyancy-driven
slope flow is simulated following the setup of Fedorovich
and Shapiro (2009) (cases/drycblslope). A flow over
a slope inclined at an angle α of 60◦ is simulated with a fixed
uniform surface buoyancy flux of −0.5 m2 s−3. The simu-
lation is performed in a domain of 0.64 m× 0.64 m× 1.6 m
using a uniform grid of 256× 256× 640 points. The initial
state is a fluid at rest with a linear buoyancy stratification N
of 1 s−1. No-slip boundary conditions are applied at the bot-
tom; free-slip at the top.

Turbulent motion starts quickly after the buoyancy flux is
applied at the surface. It is characterized by random, large-
amplitude fluctuations of velocity and buoyancy fields in the
near-slope core region and shows quasi-periodic oscillatory
behavior at larger distances from the slope. Mean profiles of
the along-slope velocity component and buoyancy, as well as
profiles of second-order turbulence statistics, such as kine-
matic turbulent fluxes of momentum and buoyancy, and ve-
locity component and buoyancy fluctuation variances, were
evaluated by averaging the simulated flow fields spatially
over the along-slope planes and temporally over five oscil-
lation periods beyond the transition stage.
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τ .

For comparison, the same katabatic flow case was re-
produced using the numerical code (hereafter referred
to as FS09) that was employed to simulate turbu-
lent slope flows in Shapiro and Fedorovich (2008) and
Fedorovich and Shapiro (2009). In that code, the time ad-
vancement was performed with an Asselin-filtered second-
order leapfrog scheme (Durran, 2013). The spatial discretiza-
tions are identical to the second-order accurate ones of Mi-
croHH.

Numerical results obtained with both numerical codes tes-
tify that stable environmental stratification in combination
with negative surface buoyancy forcing in the katabatic flow
leads to an effective suppression of vertical turbulent ex-
change in the flow region adjacent to the slope. This suppres-
sion results in a shallow near-surface sublayer with strong
buoyancy gradients (Fig. 8a) capped by a narrow jet with
peak velocity located very close to the ground (Fig. 8b). Fur-
ther comparison has been performed on the slope-normal
fluxes of momentum and buoyancy (not shown), where a
nearly perfect match has been reproduced as well.

9 Validation of atmospheric large-eddy simulations

9.1 Dry convective boundary layer with strong
inversion

As a first test case of MicroHH in LES mode, we present that
of Sullivan and Patton (2011) (cases/sullivan2011).
This is a dry clear convective boundary layer that grows into
a linearly stratified atmosphere with a very strong capping in-
version (see Fig. 9a). The system is heated from the bottom
by applying a constant kinematic heat flux of 0.24 K m s−1.
The domain size is 5120 m× 5120 m× 2048 m. Gravity
wave damping has been applied in the top 25 % of the do-
main. Simulations have been run for 3 h with three spatial
resolutions. The time-averaged profiles have been calculated
over the last hour.

The results show the formation of a well-mixed layer with
an overlying capping inversion (see Fig. 9a) and the associ-
ated linear heat flux profile with negative flux values in the
entrainment zone (see Fig. 9b). The change of both quantities
with resolution highlights the intrinsic challenge in resolv-
ing a boundary layer with an inversion layer that is stronger
than the numerical schemes can accurately resolve. At coarse
resolution, the strong inversion leads to an unphysical over-
shoot of the potential temperature flux above the boundary
layer top (see Fig. 9b). This overshoot leads to a numerical
mixed layer on top of the entrainment zone that vanishes with
increasing resolution.

9.2 BOMEX

The BOMEX shallow cumulus case (Siebesma et al., 2003)
(cases/bomex), S03 hereafter, provides the opportu-
nity to evaluate the moist thermodynamics (see Sect. 3.9)
and large-scale forcings. We have repeated the case
as described in S03 at the original resolution of the
study (100 m× 100 m× 40 m) and at a higher resolution
(10 m× 10 m× 9.375 m).

This case produces non-precipitating shallow cumulus. It
has a large-scale cooling applied that represents radiation, as
well as a large-scale drying to allow the atmosphere to relax
to a steady state. In addition, a large-scale vertical velocity is
applied over a certain height range to reproduce the appro-
priate synoptic conditions.

The simulation is run for 6 h. Statistics are recorded during
the final hour, including conditional statistics for the cloud-
covered fields (ql > 0) and for the cloud cores (ql > 0 and
θv > 0). The vertical profile of area coverage and profiles of
horizontally averaged liquid water potential temperature θl ,
total water qt , and vertical velocity w are shown in Fig. 10.
All mean and conditionally sampled statistics at the original
resolution are predominantly within 1 standard deviation of
the ensemble mean of data from all models that participated
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Figure 8. Profile of the mean along-slope velocity (a) and buoy-
ancy (b) as predicted by MicroHH and FS09.

in S03. The horizontally averaged vertical velocities in the
cloud and cloud core decrease considerably with an increase
in resolution.

9.3 GABLS1

To evaluate the LES mode for stable atmospheric conditions,
the GABLS1 LES intercomparison case (Beare et al., 2006)
(cases/gabls1) was reproduced. The boundary layer de-
velops in this case from a shallow, well-mixed layer into a
weakly stable boundary layer, driven by a prescribed nega-
tive tendency of the surface temperature over a total integra-
tion time of 9 h. The Boussinesq approximation is used, the
advection scheme uses fourth-order accurate interpolations
(Eq. 27), and the Smagorinsky subgrid turbulence scheme is
set up with a Smagorinsky constant equal to 0.12 and a sub-
grid turbulent Prandtl number of unity. The experiments are
performed at two different resolutions with grid cells of 2
and 6.25 m, and compared to the models which participated
in the study of Beare et al. (2006).

Figure 11 shows the domain and time-averaged (over a
period from 28 800 to 32 400 s) vertical profiles of poten-
tial temperature (〈θ〉) and the velocity component (〈u〉), and
also time series of the boundary layer depth (zABL) and fric-
tion velocity (u∗). At the largest grid spacing of 6.25 m, it
takes approximately 2 h for the flow to become turbulent,
as is evident from the delayed boundary layer growth and
abrupt changes in u∗. Nonetheless, typical features like the
low-level jet (Fig. 11b) are well reproduced, and all statis-
tics are predominantly within the range of results from Beare
et al. (2006). With the grid spacing reduced to 2 m, the flow
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Figure 9. Vertical profiles of horizontally averaged potential tem-
perature (a) and normalized kinematic heat flux (b). The boundary
layer depth zi is the location of the maximum vertical gradient in
the potential temperature profile shown in (a).

becomes turbulent nearly instantaneously, but the resulting
boundary layer depth and surface friction velocity are on the
low side compared to the five models from Beare et al. (2006)
which were run at this resolution.

10 Performance

10.1 CPU

The parallel performance of MicroHH has been evaluated
in strong- (cases/strongscaling) and weak-scaling
(cases/weakscaling) experiments. The case used is di-
rect numerical simulation of a buoyancy-driven atmospheric
boundary layer based on van Heerwaarden et al. (2014). For
each simulation in the scaling experiments, a series of time
steps is performed, and the mean cost per step is calcu-
lated over the series. The strong-scaling experiment has been
performed on the Leibniz-Rechenzentrum der Bayerischen
Akademie der Wissenschaften (LRZ)’s SuperMUC1 ma-
chine (phase 1 thin node eight-core Sandy Bridge-EP Xeon
E5-2680 8C, two processors per node, Infiniband FDR10 in-
terconnect). In this experiment, simulations were performed
on 1024×1024×1024 and 2048×2048×1024 grid points,
with the number of processes increased throughout the scal-
ing experiment. The weak-scaling experiment has been per-
formed on Forschungszentrum Jülich’s Juqueen2 machine
(IBM PowerPC A2, 1.6 GHz, 16 cores per node, 5D Torus
network, 40 GBps). In this experiment, a fixed 64× 32×
1024 grid is assigned to each processor, and throughout the
experiment the domain size is increased. The results of both
experiments are shown in Fig. 12.

1https://www.lrz.de/services/compute/supermuc/
2http://www.fz-juelich.de/ias/jsc/EN/Expertise/Supercom

puters/JUQUEEN/JUQUEEN_node.html
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Figure 11. GABLS1 LES intercomparison (Beare et al., 2006). Shown are the vertical profiles of (a) potential temperature and (b) u
component of the velocity, and time series of the (c) boundary layer depth and (d) surface friction velocity. The shaded areas show the range
in the results from the models that participated in the Beare et al. (2006) study. The dotted black lines show the initial conditions.

The strong-scaling experiment shows that increasing the
number of processors leads to faster simulations. The
speedup is initially close to linear, but each consecutive in-
crease in the number of cores makes the model less efficient.
Based on these results, we conclude that for the chosen test
case and for the used supercomputers, a work load of ap-
proximately 2× 106 grid points per core is the best balance
between speed and computational efficiency.

The weak scaling shows almost 90 % efficiency going
from 512 to 8192 cores; beyond that, the scaling falls off to
80 %. This can be explained by physical properties of the ma-
chine; beyond 8192 cores, a simulation no longer fits on one
midplane (a physical unit consisting of 8192 cores), leading
to slower communication.

10.2 Performance GPU (CUDA) implementation

The GPU implementation of MicroHH allows for fast simu-
lations on a single device. The current state-of-the-art GPUs

feature 12 GB of memory; thus, simulations of maximally
512×512×512 grid points of a flow with three velocity com-
ponents, pressure, two scratch fields for temporary storage,
and a single scalar fit in memory. Within this experiment, we
compare thus GPU simulations that do not need communica-
tion against CPU simulations that require communication be-
tween cores and nodes. The reason for doing so is that nearly
all of the simulations of the presented results in Sects. 8 and
9 fit within the memory of a single GPU.

To test the performance of such simulations, the perfor-
mance of MicroHH on an NVIDIA Quadro K6000 (using
CUDA 6.5) has been compared against the Max Planck Insti-
tute for Meteorology’s cluster Thunder (two Intel Xeon E5-
2670 CPUs per node, 16 cores per node). Three benchmark
cases have been chosen: the BOMEX moist convection case
on grids of 643, 1283, 2563, and 5122

×384, and the channel
flow cases of Moser et al. (1999) at Reynolds τ numbers of
180 and 590.
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The results shown in Table 1 point to the great potential
of GPU computing. For the considered cases, which all fit
on a single GPU, it takes at least 32 cores to reach equal
performance. Only at 64 cores, the CPU simulations are no-
tably faster. Therefore, for simulations that fit into its mem-
ory, the GPU provides an excellent alternative for the CPU,
especially because the GPU is very energy efficient.

11 Published studies

To date, several studies have been published that make use of
MicroHH or data generated with MicroHH. The work of van
Heerwaarden et al. (2014) focused on the scaling of flow over
heterogeneously heated land surfaces using DNS and LES,
Gentine et al. (2015) used LES to study the structure of the
inversion of a convective boundary layer, van Heerwaarden
and Mellado (2016) developed scaling laws for the convec-
tive boundary layer over a surface with a constant tempera-
ture from DNS data, McColl et al. (2017) improved surface-
layer similarity under mildly convective conditions with the
help of DNS data, and Umphrey et al. (2017) used DNS data
produced with MicroHH as a reference for their simulations
of slope flow.

12 Future plans

There are several ongoing projects to extend the model. Cur-
rently, a parameterization for microphysics has been devel-
oped, and an interactive land surface model is under devel-

Table 1. Speedup of GPU simulation compared to respective CPU
simulation performed on n cores.

Case n= 1 n= 16 n= 32 n= 64

B64 18.49 1.93 1.14 0.95
B128 28.01 2.98 1.51 0.92
B256 27.76 3.02 1.59 0.91
B512 29.88 3.03 1.56 0.86

M180 21.57 2.17 1.13 0.69
M600 22.55 2.25 1.06 0.60

opment. In addition, the immersed boundary method follow-
ing Tseng and Ferziger (2003) is being implemented to al-
low for simulations of flow over obstacles, urban canopy,
and hills. Furthermore, preliminary experiments have been
performed to include a domain-specific language (DSL) to
enable the expression of complex finite difference operators
in simple and compact syntax (https://github.com/microhh/
stencilbuilder/). This development has shown great potential
for two reasons. First, the DSL prevents implementation er-
rors, as the explicit indexing in computational kernels with
spatial operators can be omitted. Second, the DSL allows
for simple implementation of system-specific tuning, such as
loop tiling or OpenMP.

13 Conclusions

This paper has presented a full description of MicroHH, a
new computational fluid dynamics code for simulations of
turbulent flows in the atmospheric boundary layer. The gov-
erning equations and their implementation have been pre-
sented, and a broad validation under a wide range of settings
has been shown. MicroHH delivers the expected error con-
vergence of the spatial and temporal schemes, and has proven
to be mass, momentum, and energy conserving. The code de-
livers good performance in weak- and strong-scaling exper-
iments. Its current limitations are the absence of horizontal
boundary conditions other than periodic, and the limited set
of available physical parameterizations. Both limitations will
be addressed in future versions of the code.

Code availability. MicroHH has its own website at http://microhh.
org. The code is hosted at GitHub and can be accessed either via
the website or directly from https://github.com/microhh/microhh.
The GitHub website includes a wiki with several tutorials, includ-
ing one to compile and run the code. The GitHub repository is
coupled to Zenodo, which provides DOIs for released software.
The release on which the reference paper is based is found at
http://dx.doi.org/10.5281/zenodo.822842 (van Heerwaarden et al.,
2017). A selection of visualizations can be viewed at the MicroHH
channel on Vimeo (https://vimeo.com/channels/microhh/).
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Appendix A: Physical constants

Table A1 presents an overview of the chosen values for phys-
ical constants in the code.

Table A1. Overview of used constants.

Symbol Description Value Units

κ Von Karman constant 0.4 –
g Gravitational acceleration 9.81 m s−2

cp Specific heat of dry air at constant pressure 1005 J kg−1 K−1

p00 Reference pressure 1× 105 Pa
Rd Gas constant for dry air 287.04 J K−1 kg−1

Rv Gas constant for water vapor 461.5 J K−1 kg−1

Lv Latent heat of vaporization 2.5× 106 J kg−1

Appendix B: Nomenclature

Symbol Description Units
ρ0 Reference density kg m−3

Hρ Scale height for density m
ui Components of velocity vector (u,v,w) m s−1

xi Components of position vector (x,y,z) m
p′ Perturbation pressure Pa
p0 Reference pressure Pa
ρ′ Perturbation density kg m−3

p′ Perturbation pressure Pa
p0 Reference pressure Pa
θ ′v Perturbation virtual potential temperature K
θv0 Reference virtual potential temperature K
g Gravity acceleration m s−2

ν Kinematic viscosity m2 s−1

κ Scalar diffusivity m2 s−1

Fi External acceleration vector m s−2

S External sources and sinks variable dependent
θ Potential temperature K
θl Liquid water potential temperature K
b Buoyancy m s−2

T0 Reference absolute temperature K
Q Heat input J m−3 s−1

α Slope of surface rad
N Brunt–Väisälä frequency s−1

www.geosci-model-dev.net/10/3145/2017/ Geosci. Model Dev., 10, 3145–3165, 2017
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