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Can global internal and spacetime symmetries be connected without supersymmetry? To answer this ques-

tion, we investigate Minkowski spacetimes with d space-like extra dimensions and point out under which general

conditions external symmetries induce internal symmetries in the effective 4-dimensional theories. We further

discuss in this context how internal degrees of freedom and spacetime symmetries can mix without supersym-

metry in agreement with the Coleman-Mandula theorem. We present some specific examples which rely on a

direct product structure of spacetime such that orthogonal extra dimensions can have symmetries which mix

with global internal symmetries. This mechanism opens up new opportunities to understand global symmetries

in particle physics.

I. INTRODUCTION

The nature of spacetime is still a great mystery in funda-

mental physics and it might be a truly fundamental quantity

or it could be an emergent concept. An appealing and most

minimalistic approach would be if spacetime and propagat-

ing degrees of freedom would have a common origin on equal

footing. In such a scenario, spacetime is thus an emergent

quantity and there seems to be no reason for it to be restricted

to a 4-dimensional Poincaré symmetry apart from low energy

phenomenology. The only exception are additional time-like

dimensions which typically lead to inconsistencies when re-

quiring causality [1, 2], while there is no consistency problem

with additional space-like dimensions. Additional space-like

dimensions have therefore been widely studied.

If spacetime and particles consist of the same building

blocks, then a fundamental connection of these low energy

quantities should exist at high energies. Early attempts in

this direction have led to the Coleman-Mandula no-go theo-

rem [3]. The no-go theorem shows under general assump-

tions that a symmetry group accounting for 4-dimensional

Minkowski spacetime and internal symmetries has to factor

into the direct product of spacetime and internal symmetries.

This implies that spacetime and particle symmetries cannot

mix in relativistic interacting theories.

One way to circumvent the no-go theorem is to study

graded symmetry algebras which introduce fermionic sym-

metry generators and are known as supersymmetries [4]. The

possibility to mix spacetime and internal symmetries in a rel-

ativistic theory is a strong theoretical argument for supersym-

metry and supersymmetric extensions of the Standard Model

of particle physics are therefore widely studied. However,

there is no experimental evidence for supersymmetry, see

e.g. [5–7], and it is a finely question to ask: Are there alterna-

tive ways to circumvent the Coleman-Mandula theorem?

The answer to this question is: Yes. We therefore relax the

assumption that spacetime is described by the 4-dimensional

Poincaré symmetry. We then investigate new alternative sce-

narios to mix global spacetime and internal symmetries. Next,

we review the Coleman-Mandula theorem to understand how

to circumvent the theorem with extra space dimensions. In

section III, we discuss translational invariant extra dimensions

and show how momentum conservation can be interpreted as

new internal symmetry. We then go further in section IV and

consider extra dimensions described by rotational invariant

spacetimes which lead to “hidden” spins. Finally, we inves-

tigate how rotational and internal symmetries can mix if the

rotational symmetry group is compact in section V. Such sce-

narios can for example lead to an explanation of the three

Standard Model families. We conclude and give an outlook

for further investigations in section VI.

II. COLEMAN-MANDULA NO-GO THEOREM

The Coleman-Mandula theorem [3, 8, 9] states, if G is a

connected symmetry group of the S-matrix and

(i) G has a subgroup which is locally isomorphic to the

Poincaré group,

(ii) all physical particles have positive definite mass and

there exists only a finite number of particles below an

energy threshold Emax,

(iii) the S-matrix is an analytic function of the Mandelstam

variables s and t,
(iv) the S-matrix is non-trivial at almost all energies,

(v) generators ofG are representable as integrals in momen-

tum space,

then G is locally isomorphic to the Poincaré group times an

internal symmetry group.

It is important to develop a physical intuition for the

Coleman-Mandula theorem [10, 11]. A physical scattering

amplitude has to respect all symmetries of the theory and thus

the number of independent variables describing the scatter-

ing process is reduced. Requiring that the theory respects the

laws of special relativity implies that the scattering amplitude

is a Lorentz scalar. Moreover, for a scattering process to be

physical the initial and final 4-momenta have to be on the

mass-shell. We further demand that the scattering process re-

spects energy-momentum conservation. Taking into account

all these kinematic restrictions for a 2→2 scattering process

only leaves the famous Mandelstam variables s and t as free

parameters in d + 1 dimension with d > 1. If we would

demand that the scattering process respects an additional con-

served charge which is a function of the momenta, then only

discrete scattering angles would be allowed. This is how-

ever in conflict with the assumptions since scattering should

be non-trivial for most energies. We therefore can conclude

that further restrictions on the scattering amplitudes should
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be independent of the 4-momenta of the particles. We would

call such a symmetry an internal symmetry since its generator

would commute with the spacetime generators. This implies

for the general symmetry structure of the S-matrix

G→ P(1, 3)⊗ “internal symmetries” . (1)

A more detailed mathematical treatment can be found in [3, 8,

9] but the essence is that Lorentz invariance severely restricts

the possible symmetries of the S-matrix.

However, if we extend the underlying 4-dimensional

Poincaré invariant spacetime by d space-like dimensions,

where we assume that the symmetry generators commute with

the 4-dimensional Poincaré group, the scattering process is al-

lowed to respect conserved charges which depend on the mo-

menta in the d space-like dimensions without discretizing the

4-dimensional Mandelstam variables. We will implement this

in section III.

Until now we only considered scattering of scalar degrees

of freedom which transform trivially with respect to Lorentz

transformations. However, introducing particles with spin, we

introduce degrees of freedom which transform non-trivially

with respect to Lorentz transformations. We can now ask

if there is a conserved charge of a scattering process which

depends on the spin of the particles. Such a conserved

charge would belong to symmetry transformations which re-

late particles in different representations of the Lorentz group.

Such symmetries were considered in the context of relativis-

tic SU(6) theories [12–14] and it was soon pointed out that

such theories have unfavorable features such as an infinite

number of particles [15–17]. The root of these problems is

the structure of the Lorentz group. The semi-simple part of

the Lorentz group, SO(1, 3), is non-compact due to the un-

bounded Lorentz boosts and thus does not have non-trivial

unitary finite-dimensional representations. When comparing

to non-relativistic spacetimes which transform according to

the Galilean symmetry group, we do not observe such incon-

sistencies [18]. This is due to the compactness of the semi-

simple part of the Galilean group, SO(3).
Utilizing this property, we will introduce additional space-

like dimensions which transform rotationally according to a

compact symmetry group in section V. We then illustrate how

global spacetime and internal symmetries can mix. This can

then give rise to new symmetries which may be the origin of

the family and flavor structure of the Standard Model.

III. TRANSLATIONAL SYMMETRIES

First, we consider the simple and well known example of a

D-dimensional theory, D = 4 + d, with d extra dimensions

where spacetime is described by

M4 × Σd , (2)

with M4 the 4-dimensional Minkowski spacetime and Σd the

additional d-dimensional space. The spacetime coordinates

can thus be written as zA = (xµ, ya) with µ = (0, 1, 2, 3) and

a = (4, . . . , D − 1). The spacetime symmetry group factors

as

P(1, 3)⊗Gd , (3)

where P(1, 3) is the 4-dimensional Poincaré group and Gd is

the symmetry group of Σd. We further assume that the space

described byGd is translational invariant such that the (4+d)-
dimensional momentum

PA =

∫

d3xddy T 0A , (4)

with A = (0, 1, . . . , D − 1) and energy-momentum tensor

TAB is conserved, ∂0P
A = 0. We also assume that

m2 = P †
AP

A with A = (0, 1, . . . , D − 1) , (5)

commutes with all group generators and that m2 is a constant

for all irreducible representations. The particles momenta in

the extra dimension thus contribute to the energy-momentum

relation

E2 = m2 + |~p|2 +
(

p24 + · · ·+ p2D−1

)

, (6)

although the generatorsP a with a ∈ (4, . . . , D−1) commute

with all generators of the Poincaré group P(1, 3) and would

thus naively account for internal symmetries.

The assumed spacetime structure gives rise to additional

conserved charges connected to the particle momenta in the

extra dimensions P a with a ∈ (4, . . . , D−1). Scattering pro-

cesses will then have to respect additional conservation laws.

The schematic scattering process

(~pA, pD) + (~pB, 0) → (~pA, 0) + (~pB, 0) , (7)

would for example be forbidden. Note that the new conserved

charges will not discretize the 4-dimensional scattering pro-

cess. Moreover, from a 4-dimensional point of view the scat-

tering process respects additional internal symmetries. We

cannot distinguish from the scattering process if the additional

symmetry is due to an enriched spacetime structure, or due

to additional internal symmetries. This is not a contradiction

to the Coleman-Mandula theorem. The factorization of the

general symmetry group of the S-matrix G can also include

additional spacetime symmetries

G→ P(1, 3)⊗Gd ⊗ “internal symmetries” . (8)

A prime example for such a symmetry are Kaluza-Klein

numbers in theories with universal extra dimensions [19, 20]

which can stabilize dark matter [21, 22]. The Kaluza-Klein

number is no longer a continuous observable such as the mo-

menta discussed above. The extra dimensions have to be com-

pactified in phenomenologically viable models which breaks

the translational invariance of the extra dimensions. After

compactification, the translational invariance of the d space-

like dimensions is not conserved globally, but only locally in

space. The momenta in the extra dimensions can only take

discrete values. Quantum corrections to the particles mass

will depend on the momentum in the extra dimensions due to
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non-local loop contributions [20]. Note that for orbifold com-

pactifications translational invariance is further broken by the

orbifold fixpoints. Scattering processes then have to conserve

Kaluza-Klein parity [20].

IV. ROTATIONAL SYMMETRIES

The 4-dimensional spacetime we observe is not only trans-

lational invariant but also rotational invariant. It seems there-

fore natural to consider rotational symmetries in extra dimen-

sions. Let us thus move to the scenario where Gd further in-

corporates rotational symmetries. The simplest scenario has

two extra space-like dimensions, d = 2. We hence assume

that the additional space dimensions are given by Σ2
∼= R

2

and the spacetime symmetry which describes Σ2 is given by

G2
∼= R

2
⋊ SO(2). G2 does now generate translational and

rotational symmetries. The full spacetime structure is thus

given by

M4 × R
2 , (9)

with spacetime symmetry

P(1, 3)⊗
(

R
2
⋊ SO(2)

)

. (10)

Again, we find two additional conserved momenta

∂0P
4 = 0 and ∂0P

5 = 0 . (11)

Furthermore, the angular momentum L45 = y4p5 − y5p4 in

the plane Σ2 is also conserved

∂0L
45 = 0 . (12)

Since we focus on particle interactions and their symmetries

we can always choose a reference frame where the initial an-

gular momentum is zero.1

We also have to take into account that particle wave func-

tions do not have to transform trivially under space rotations.

To illustrate this point, we consider the rotation R45(θ) in the

plane Σ2 given by

(

y′
4

y′
5

)

=

(

cos(θ) −sin(θ)
sin(θ) cos(θ)

)(

y4

y5

)

. (13)

The wave function of a particle in a non-trivial representation

with respect to G2 then transforms under the rotation R45(θ)
as

Ψ(xµ, y4, y5) → e−iθsh Ψ(xµ, y4, y5) . (14)

We can thus introduce the “hidden” spin sh in the extra plane

which, for a two dimensional space, can take values sh ∈ R.

1 But note that the additional overall angular momentum conservation could

have interesting implications for finite temperature dynamics in early uni-

verse cosmology.

Particles therefore behave as anyons in the additional space

dimensions. However, from a 4-dimensional perspective, this

transformation corresponds to a global U(1) symmetry. In

other words: The 4-dimensional U(1) charge of the particle

can be identified with the “hidden” spin sh. The U(1) sym-

metry related to the non-trivial transformation of the particle

wave function under rotations in Σ2 is indistinguishable from

global internal U(1) symmetries in 4-dimensions.

Such a rotational symmetry on the extra dimensional space

Σd which induces a symmetry in the effective 4-dimensional

theory is known from the compactification on the chiral

square [23, 24]. To have a realistic theory which includes chi-

ral fermions the compactification further requires orbifolding.

The folding boundary conditions break the continuous rota-

tional symmetry U(1) to a discrete rotational symmetry Z8.

V. MIXED SYMMETRIES

So far we have only considered how spacetime symmetries

induce internal symmetries in the effective 4-dimensional the-

ory. However, we are mostly interested in scenarios where

global internal and spacetime symmetries mix in agreement

with the Coleman-Mandula theorem. We therefore have to

demonstrate how global internal and spacetime symmetries

can be combined in a single global symmetry. Following the

example of non-relativistic theories where spacetime is char-

acterized by the Galilean group [18], we require that the space

rotations in Σd are described by a compact subgroup of Gd.

We can then construct mixed global symmetries where parti-

cles with different “hidden” spin sh are in the same multiplet.

To illustrate this new aspect and make a connection to the pre-

vious example, we assume that at high energies spacetime is

given by

M4 × R
3 . (15)

In this section, we assume that spacetime is not an ordinary

manifold. Moreover, we assume that spacetime arises effec-

tively from a more fundamental theory and that there is an

effective structure, such as a condensate, which allows locally

to distinguish M4 and R
3.2 Moreover, we explicitly assume

that M4×R
3 does not originate from M7.3 We then propose

to interpret elementary particles as irreducible representations

of the global spacetime symmetry of M4 × Σd. The global

spacetime symmetry of M4×R
3 would thus be P(1, 3)⊗G3

with G3
∼= R

3
⋊ SU(2). However, to illustrate the mixing of

global spacetime symmetries and internal symmetries, we fur-

ther assume that the spacetime symmetry P(1, 3)⊗G3 is now

given by G3
∼= R

3
⋊ SU(3). The global SU(3) symmetry

mixes an internal global U(1)I symmetry and the rotational

spacetime symmetry described by the compact group SU(2)

SU(3) ⊃ U(1)I ⊗ SU(2) . (16)

2 We thank Arthur Hebecker for clarification.
3 Hence, the theory is intrinsically not higher dimensional Poincaré invariant.
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As a toy model, we consider the fermionic field Ψ which

transforms as a spin 1
2 -representation of P(1, 3) and a “hid-

den” spin 1
2 -representation of G3.4 The field Ψ is thus given

by

ΨF f(xµ, yi) = ψF(xµ)ψf(yi) with i ∈ (1, 2, 3) , (17)

with the 4-dimensional spinor index F ∈ (0, 1, 2, 3). The

spinor index f would range in f ∈ (1, 2) if ψf(yi) would

transform according to the fundamental representation of

SU(2). However, since the spacetime symmetry is assumed

to be the mixed symmetry SU(3) the spinor index f ranges in

f ∈ (1, 2, 3) for ψf(yi) in the fundamental representation of

SU(3). The action of a free fermion is thus given by

S =

∫

d4xd3y

(

Ψ̄F f

(

i (γµ)
F
G ∂µ − δFG

2M
∂i∂

i

)

ΨGf

−m Ψ̄F fΨ
F f

)

, (18)

where Ψ̄F f (x
µ, yi) = ψ̄F (x

µ)ψ†
f (y

i). The action can be fur-

ther simplified

S =N

∫

d4x
(

ψ̄F (x
µ)
(

i (γµ)
F
G ∂µ −mδFG

)

ψG(xµ)
)

+

∫

d4x ψ̄F (x
µ)ψF(xµ)

∫

d3y ψ†
f (y

i)

(

− 1

2M
∂i∂

i

)

ψf(yi) ,

(19)

with normalization constant

N =

(
∫

d3y ψ†
f (y

i)ψf(yi)

)

. (20)

Note that the “non-relativistic kinetic term”, (1/2M)∂i∂
i, for

the “static” field ψf(yi) is due to the “non-relativistic” space-

time symmetry G3.

The global “non-relativistic” spacetime symmetry SU(3)
acts on ΨF f(xµ, yi) as

ΨF f(xµ, yi) → (e−iαNλN

)fgΨ
F g(xµ, yi) ,

with N ∈ (1, . . . , 8), αN finite group parameters and λN the

Gell-Mann matrices.

The fact that the SU(3) symmetry mixes global internal

and spacetime symmetries becomes evident upon compactifi-

cation of one extra dimension onto a circle. The spacetime

structure breaks down to

M4 × R
3 → M4 × R

2 × S1 , (21)

and thus the remaining spacetime symmetries are P(1, 3)⊗G2

with G2
∼= R

2
⋊U(1)S . The former global SU(3) symmetry

4 In principle, all possible combinations of irreducible representations of

P(1, 3) and G3 are allowed.

is now broken to a global internal U(1)I symmetry and an

1-dimensional spacetime rotational symmetry U(1)S

SU(3) → U(1)I ⊗ U(1)S . (22)

The “static field” ψf(yi) can now be expanded as

ψf (yj , y3) =
1√
2πR

∑

l

ψ(l)f(yj) ei
l

R
y3

, (23)

with j ∈ (1, 2) and R the compactification radius of S1. The

second term of the action thus simplifies to

S ⊃
∫

d4x ψ̄F (x
µ)ψF(xµ)

∫

d2y
∑

l

ψ
(l)
f

†
(yj)

×
(

− 1

2M
∂j∂

j − l2

2MR2

)

ψ(l)f(yj) . (24)

We can thus define

M1 =

∫

d2y
∑

l

ψ
(l)
1

†
(yj)

(

− 1

2M
∂j∂

j − l2

2MR2

)

ψ(l)1(yj) ,

M2 =

∫

d2y
∑

l

ψ
(l)
2

†
(yj)

(

− 1

2M
∂j∂

j − l2

2MR2

)

ψ(l)2(yj) ,

M3 =

∫

d2y
∑

l

ψ
(l)
3

†

(yj)

(

− 1

2M
∂j∂

j − l2

2MR2

)

ψ(l)3(yj) ,

(25)

and further require

m1 = m−M1 ,

m2 = m−M2 ,

m3 = m−M3 , (26)

where m1, m2 and m3 are the experimentally measured

masses of the three Standard Model fermion generations. The

different Standard Model fermion masses are therefore due to

the different field configurations of ψ(l)1(yj), ψ(l)2(yj) and

ψ(l)3(yj).

The fundamental representation of the global SU(3) breaks

down such that

3 → (1, (sh =
1

2
)) + (1, (sh = −1

2
)) + (−2, (sh = 0)) ,

which illustrates that states of different “hidden” spins were

mixed in the SU(3) multiplet. The individual components

of the “static” field ψ(l)f(yj) thus transform with respect to

U(1)S as

ψ(l)1(yj) → e−i
α3

2 ψ(l)1(yj) ,

ψ(l)2(yj) → ei
α3

2 ψ(l)2(yj) ,

ψ(l)3(yj) → ψ(l)3(yj) , (27)
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and with respect to U(1)I as

ψ(l)1(yj) → e
−i

α8

2
√

3ψ(l)1(yj) ,

ψ(l)2(yj) → e
−i

α8

2
√

3ψ(l)2(yj) ,

ψ(l)3(yj) → e
i
α8
√

3ψ(l)3(yj) . (28)

We interpret the discrete “hidden” spin index f ∈ (1, 2, 3)
as generation index. The different mass contributions of the

“static” fields ψ(l)f (yi) to ψF (xµ) can thus be interpreted

as the appearance of three generations with different masses

in the effective 4-dimensional theory. This example demon-

strates how “hidden” spins might explain the appearance of

three copies of fermions which could be identified with the

three generations in the Standard Model of particle physics.

By assuming spacetime is described by M4×R
3 with a global

mixed SU(3) symmetry where the Standard Model fermions

transform in the fundamental representation, we automatically

find three copies of Standard Model fermions at low energies.

It is important to note that the appearance of three genera-

tions is a consequence of the transformation property of the

Standard Model fermions with respect to a mixed symmetry.

Moreover, such “hidden” spins could also lead to viable ex-

planations for the flavor [25–29] and family [30–34] structure

of the Standard Model.

A different mechanism which relates flavor symmetries to

spacetime symmetries was discussed in [35, 36]. The dis-

crete flavor symmetries arise as a remnant of 6-dimensional

Poincaré symmetry. Upon compactification via orbifolding

and identifying the 4-dimensional branes at the orbifold fixed

points with representations of a discrete symmetry group such

as A4, a connection to discrete flavor symmetries is estab-

lished. The number of fermionic generations in the Stan-

dard Model was derived from anomaly cancellation in a 6-

dimensional Lorentz invariant theory in [37].

Note that this scenario is again no contradiction to the

Coleman-Mandula theorem. We are exploiting the fact that

the additional symmetries of the S-matrix which appear in the

direct product with the Poincaré symmetry can be a mixture of

additional non-relativistic spacetime symmetries and common

internal symmetries

G→ P(1, 3)⊗ “mixed Gd and internal symmetries” . (29)

It is important to stress again that the spacetime symmetries

Gd can only mix with global internal symmetries if Gd con-

tains a compact subgroup which gives rise to non-trivial uni-

tary finite-dimensional representations.

VI. CONCLUSIONS & OUTLOOK

In this paper, we discuss how to connect in principle

global spacetime and internal symmetries without supersym-

metry. The construction of phenomenologically viable mod-

els based on the toy models presented is left for future work.

Phenomenologically viable models are more complex and

evolved since interactions have to be included. However, we

have pointed out how spacetime extensions can give rise to in-

ternal symmetries and further how it is possible to mix space-

time and internal symmetries in rotational compact extra di-

mensions without supersymmetry. All presented extensions

are in full agreement with the Coleman-Mandula theorem.

These mechanisms could also be used to explain the stabil-

ity of dark matter, the flavor structure of the Standard Model

or give a physical reason for the three fermionic generations

in the Standard Model as our example in section V illustrates.

There exist very good reasons which make a connection be-

tween internal symmetries and spacetime symmetries attrac-

tive. The discovery of supersymmetry would establish such a

connection and it would show that four spacetime dimensions

are sufficient. One could even argue that this could be con-

sidered as a strong hint towards the fundamental nature of a

4-dimensional Minkowski spacetime.

In this paper, we point out that internal symmetries and

spacetime symmetries could still be connected even if super-

symmetry is not discovered. For that, one has to rethink the

structure of spacetime such that connections between global

internal and spacetime symmetries emerge.

To illustrate that point, we used spacetimes for simplic-

ity which are the direct product of 4-dimensional Minkowski

spacetime and d extra space dimensions. We discussed a class

of theories which circumvent the Coleman-Mandula theorem

by arriving at a 4-dimensional Minkowski spacetime from

higher dimensions by compactification. This led to interest-

ing possibilities how, for example, hidden spins could ulti-

mately be related to fermion generations. We would like to

emphasize that this work should be viewed as a step towards

more general cases. Future work is also necessary to under-

stand field theories which can lead to spacetimes which are

a direct product of Minkowski spacetime and d extra space

dimensions without relying on higher dimensional Poincaré

invariance.

One possible scenario where no extra dimensions are re-

quired are theories where the Poincaré symmetry emerges

only effectively at low energies, while it is absent at the fun-

damental level. An example of such a theory is Horava-

Lifshitz gravity which is intrinsically non-relativistic at high

energies [38]. Another route could be to add extra dimen-

sions where more complicated dynamical mechanisms lead to

the emergence of 4-dimensional Minkowski spacetime. Al-

together, we conclude that even without supersymmetry in-

teresting connections between internal symmetries and space-

time symmetries could exist.
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