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Evolutionary games on cycles with strong selection

P. M. Altrock,%3" A. Traulsen,* and M. A. Nowak!
YProgram for Evolutionary Dynamics, Harvard University, Cambridge, Massachusetts, USA
2Dana-Farber Cancer Institute, Boston, Massachusetts, USA
3Harvard T. H. Chan School of Public Health, Boston, Massachusetts, USA
4Department of Evolutionary Theory, Max Planck Institute for Evolutionary Biology, Plon, Germany
(Received 19 November 2016; revised manuscript received 18 January 2017; published 13 February 2017)

Evolutionary games on graphs describe how strategic interactions and population structure determine
evolutionary success, quantified by the probability that a single mutant takes over a population. Graph structures,
compared to the well-mixed case, can act as amplifiers or suppressors of selection by increasing or decreasing
the fixation probability of a beneficial mutant. Properties of the associated mean fixation times can be more
intricate, especially when selection is strong. The intuition is that fixation of a beneficial mutant happens fast
in a dominance game, that fixation takes very long in a coexistence game, and that strong selection eliminates
demographic noise. Here we show that these intuitions can be misleading in structured populations. We analyze
mean fixation times on the cycle graph under strong frequency-dependent selection for two different microscopic
evolutionary update rules (death-birth and birth-death). We establish exact analytical results for fixation times
under strong selection and show that there are coexistence games in which fixation occurs in time polynomial
in population size. Depending on the underlying game, we observe inherence of demographic noise even under
strong selection if the process is driven by random death before selection for birth of an offspring (death-birth
update). In contrast, if selection for an offspring occurs before random removal (birth-death update), then strong
selection can remove demographic noise almost entirely.
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I. INTRODUCTION

Evolutionary game theory models Darwinian selection
among genetically hard-wired strategic traits or behaviors in
a population [1,2]. Often the interaction between behaviors
is cast into an evolutionary game, and the performance
in this evolutionary game determines the rate at which
strategies spread. As payoffs from the game are mapped to
fitness, i.e., the expected number of offspring in the near
future, more successful behaviors have a higher tendency to
spread in the population. In infinitely large populations this
spreading of successful behaviors due to Darwinian selection
is described by the deterministic replicator dynamics [3-7].
In finite populations fluctuations cannot be neglected and the
evolutionary dynamics become stochastic [8—12]. A parameter
that governs the interplay between the determinism of selection
and intrinsic stochasticity in finite populations is the strength
of selection [13]. Neutral evolution emerges in absence of
selective differences. If selection acts, then the stochastic
evolutionary dynamics become payoff dependent, which can
be the same in each state (constant selection) or entirely
state dependent (frequency-dependent selection), whereby the
state is defined as the number of mutants. In the case of
frequency-dependent selection the probability that one strategy
replaces another can be fairly complicated. In particular,
structure of the population itself influences the evolutionary
game and the potential success of strategic behaviors [14—18].

In stochastic evolutionary game dynamics the event of
interest is fixation of a mutant [19]. Two quantities have
been of special interest: the fixation probability and the
expected fixation time [13,20-24]. Fixation probabilities have
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served as the gauge whether a graph can be an amplifier of
suppressor of selection [14,25]. An open problem is the general
quantification of fixation times in graph structured populations.
Fixation times quantify the expected time new traits need to
take over the population. For constant selection, recent findings
have established that evolution can slow down substantially
in populations where selection is amplified [26], and that
there are no obvious relations between fixation probabilities
and fixation times on graphs [17]. In addition, structured
population dynamics may differ if selection occurs before or
after random death of individuals [25,27]. Here we seek to start
closing this gap using analytical procedures in an evolutionary
game between resident strategy and a mutant strategy. To this
end, we consider dynamics on the simplest structure, in which
exactly one individual occupies a node on an undirected cycle
graph [28], and focus on strong selection [13].

This manuscript is organized in the following way. First, we
introduce the stochastic evolutionary dynamics. We review the
well-mixed population and discuss the analytical expressions
for fixation probabilities, sojourn times, and fixation times.
Then we introduce the transition probabilities of birth-death
(Bd) and death-birth (dB) updating on cycle graphs. In the
results section, we consider neutral evolution and briefly
address constant selection before we turn to strong frequency-
dependent selection. Then we discuss standard cases of two
player-two strategy games between a mutant strategy A and a
resident strategy B, given by the payoff matrix

A B
Ala b (D)
B|c¢ d

We consider strategic dominance games of the mutant strategy
in which A always has a higher payoff (a > c,b > d),
coordination games in which both mutants and residents
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receive highest payoffs when interacting with their own types
(a > ¢, b < d), and coexistence games in which both mutants
and residents receive highest payoffs when interacting with
the other respective strategy (a < ¢, b > d). As particular
examples, we discuss the Prisoner’s dilemma (where defec-
tion dominates cooperation) and the snowdrift game (where
defection and cooperation can coexist).

II. EVOLUTIONARY GAME DYNAMICS

First, we describe the discrete-time Markov chain model re-
sulting from subsequent birth and death events in a population
of finite fixed size. Two key assumptions are that we start with
a single mutant individual and that no further mutations occur.
Thus, on a cycle graph, the mutant population can only grow
as a cluster. We also make the assumption that replacement
graph and interaction graph are identical [28]. The resulting
Markov chain eventually gets absorbed either of the boundary
state of no or all mutants. The population size is N and we
denote the evolutionary transition probabilities by T7*. Here
i is the number of mutant individuals that at any time can
increase or decrease by exactly one. The process stays in state
i with probability 1 — T+ — T~,

We can then examine the fixation probability of a group of
i type A individuals, @', as well as other quantities of interest
without specifying the transition probabilities. The fixation
probability follows from solving the backward Kolmogorov
equation ¢' = Tt + T~ + (1 = T+ — T'")¢' re-
cursively [see, e.g., Refs. 13,19,29] and is given by

i 1+ 30 ;(:1%
1+ 20 T 5=
where only the ratios of transition probabilities enter.

To characterize the expected time scale of the evolutionary
process, one can consider two different quantities. First, the
mean unconditional fixation time describes the expected time
the process takes to reach either extinction or fixation of the
mutant, which occurs with probability 1. Second, the mean
conditional fixation time describes the expected number of
time steps the process takes to fixation of the mutant, which
occurs with probability ¢!. One way to derive an expression
for mean fixation times is to think about the expected time
spent in each intermediate state (including waiting times)
j=12,...,N—2,N—1,which are called sojourn times. The
sojourn time of a particular state j can be found by considering
its escape process. Say that at time ¢, the process is in state j.
Then, the probability that it either stays or ever returns to that
state j (denoted as the superscript) is given by

o= (1-— Ti+ — T.i—) + Tt ¢j+1,j LTI~ ¢j—l,_i. (3)

, 2

Here, ¢*/ is the probability to start in state k and ever return
to state [ (¢** = 1) [30], which is not conditioned on fixation.
The conditional probability to start in state i, return a positive
number of time steps ¢ to that state, but then escape is given
by

$" (YT A =), “)

The first factor of Eq. (4) describes the probability to ever get
from i to j, the second factor describes recurrence such that
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the total time spent amounts to exactly ¢ time steps, and the
third factor describes definite escape from state j.

The mean sojourn time in state j, starting from one mutant,
i =1, is thus given by the first moment of this conditional
probability

=M YT A=, ®)

t=1

This geometric sum can be solved exactly, and inserting
the definition of / we obtain an exact expression for the
mean sojourn time of state j, t'/ = ¢!/ /(1 — r/). The mean
unconditional fixation time is then given by the sum over all
sojourn times [28,30,31],

N-1

P
"= mragrnsrra—ey ©

—1

~

The mean conditional fixation time can be found in a similar
way, only resorting to conditional transition probabilities of
the Markov process T~/ = (¢/ /¢")T'~/ [31], from which
we find the probabilities to start in_i and ever visit j
under the condition of fixation in N, ¢"/ = (¢//¢') x ¢™/.
Consequently, the mean sojourn time in state j conditioned on
fixation, starting from a single mutant, can be expressed by the
mean unconditional sojourn time

. i
= Z—] thi (7
such that the mean conditional fixation time can be calculated

by

N-—1

R ¢! 9L
= L TG g T g

j=1

®)

whereby the stationary probabilities to ever go from state i to
state j, ¢"/ are derived in the book by Ewens [31]. We repeat
them in our Appendix, Egs. (B1) and (B2).

A. Well-mixed population

The reference case for evolutionary game dynamics is the
well-mixed population [32]. In the well-mixed population, an
expected payoff is calculated taking into account interactions
between all individuals. This is equivalent to a fully connected
unweighted graph. Here we briefly recall the properties of
the Moran process of frequency-dependent selection in well-
mixed populations. Formally, the Moran process is introduced
as a birth-death process, but in a well-mixed population,
the ordering of a fitness-proportional birth and a random
death event does not have any influence on the dynamics
as long as we include self-replacement, which is commonly
assumed [25].

The well-mixed population assumes that there are interac-
tions between all individuals, which lead to an average payoff,
and in turn determines selection via a specific choice of payoff
to fitness mapping [33-35]. In this paper, we focus on an
exponential payof-to-fitness mapping [36]. If i and N — i are
the numbers of A and B individuals, the expected payoff
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of any A individual is given by 74 =a (@ — 1)/(N — 1) +
b(N —i)/(N — 1). The expected payoff of any B individ-
ual is given by g =ci/(N—-1)+d(N —i —1)/(N —1).
Then, the Moran process is a Markov chain with transition
probabilities to neighboring states given by

it _ i efma N —i ©
WM jefTa (N —i)efs N

- (N —i)efms i
Tom = - - —. (10)
iefms 4+ (N —i)efms N

These transition probabilities are nonlinear functions of the
number of mutant individuals. For most types of game in
well-mixed populations, the states between all-mutant and
all-resident have different probabilities to increase or decrease
the number of mutants.

There are two popular mechanisms often used to de-
scribe evolutionary dynamics on graph structured populations
[14,27,37-39]. First, in the death-birth process, there is random
death of an individual and subsequent selection among its
neighbors for filling the vacant spot. Thus, competition is
only among individuals of the immediate neighborhood of
the vacant spot. Second, in the birth-death process, there
is selection for birth of an identical offspring within the
entire population, before random death of a neighbor of the
reproducing individual occurs. Hence, the death-birth process
models random death which precedes local competition,
whereas the birth-death process models global completion
which precedes random death. The basic difference between
the two update mechanism on the cycle are depicted in Fig. 1
and described in more detail in the following.

B. Death-birth process on a cycle

The death-birth update on a cycle works as follows.
Each node of the graph represents one individual. First,
all individuals play the evolutionary game with their two
neighbors. Then a random individual is selected for removal.
The neighbors of this empty spot then compete for placing
an identical offspring. The number of mutants only changes
when random death occurs at the boundary, as mutants grow
in a cluster. There are two sites that can be chosen for
random death at the boundary of residents and mutants, which
occurs with probability 2/N. Competition among the two
neighbors of the vacant spot then leads to a probability that a
mutant fills the spot. Let f4 and fp be the fitness values of
the two neighbors of the vacant spot. Then the probability
that the A individual’s offspring occupies the vacant spot
is fa/(fa+ fe) =1/(1 + fs/fa), resulting in the transition
probabilities

2 1 L

N TreP@-20) ifi=1

2 1 . .

N Tfe Pats—2d) if l<i<N-=2
Ti+ — ]2 1 i N_2 an
B =\ VigeFaw—a Hi=N-—

0 ifi=0N
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FIG. 1. Example of a possible transition. During a single time
step, one possible event is that the number of mutants (A) increases
by one at the expense of one resident (B) [shown in (a)] (otherwise it
could decrease by one or stay constant). These transitions are driven
by the fitness values of the nodes involved. We use the exponential
payoff to fitness conversion with selection intensity 8, shown for
each node above. The fitness from a mutant-mutant interaction is
exp(B a), from the mutant-resident interaction it is exp(8 b), and
from a resident-resident interaction it is exp(8 d). Transitions from i
to i + 1 mutants can be described by the death-birth update rule (b),
Egs. (11) and (12), or by the birth-death update rule (c), Egs. (A1) and
(A2). These basic local rules matter for the time scale of the process
of fixation (takeover or extinction of mutants).

and
% ifi=1
%W if i =2
Tog = %m if2<i<N-—1. (12
%m ifi=N-—-1
0 if i =0,N

The states with one mutant individual or one resident indi-
vidual are special in the sense that there is no competition,
only random selection for removing that last individual. Inter-
estingly, for 2 < i < N — 2, the expansion of a cluster of A
players does not depend on the payoff parameter c. This makes
sense as the only individual affected by ¢ had to be subject to
random death before selection. Similarly, the expansion of a
B cluster does not involve the payoff parameter b. Note also
that since all transition probabilities are determined by payoff
differences, this process is invariant under adding a constant
to each payoff value, and multiplication of the payoff matrix
with a positive real number changes the strength of selection.

C. Birth-death process on a cycle

For the frequency dependent birth-death (Bd) update on
a cycle, with exponential payoff to fitness mapping, we find
more complicated transition probabilities. The transition from
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one mutant to a cluster of two mutants occurs with probability

B2b
T+ — ¢
Bd T gB2b 4 DpBletd) 4 (N — 3)eb 2
and the extinction of a single mutant occurs with probability

efletd)

(13)

1—

Ty = P2 L 2pBctd) 1 (N — 3)eB2d’ (14)
In similar fashion we find
eﬂ(;fb) fl<i<N-—1
T]Slsg = e;:t?) ifi=N-1 (15)
0 if i=0,N
and
LD i l<i<N-—1
i— — Eﬁzr . . _
Tpq = Frs if i=N-—1 , (16)
0 if i=0,N

where we used the abbreviations F; for the total fitness of
the population in state i, see Appendix A. Again, the birth-
death process is invariant under adding a constant to the payoff
values. In this case, there are only three states for which the
ratio of transition probabilities Tég /Té?{ deviates from the
constant value e~P@tb—c=d) and we obtain a different value
only fori =1,2,N —2,and N — 1.

III. RESULTS

A. Neutral evolution

Neutral evolution means that the probability to increase or
to decrease the number of mutants on the cycle are always the
same, irrespective of the number of mutant individuals. On a
cycle, this probability is the same for any number of mutants
as long as neither mutant or resident is extinct. The probably
to increase or decrease the number of mutants also becomes
independent of the specific update mechanism used and simply
amounts to 1/N. Under any of the two update rules we thus
find

Bl = Bha =

aB = PBa =

for the fixation probability starting from i mutants. For the
fixation times stating from one mutant we obtain

a7)

tip = tgg = 3(N — DN (18)
for the mean unconditional fixation times and
tig N =137 N = (N = DN(N + 1) (19)

for the mean conditional fixation times. For the well-mixed
population the the mean unconditional fixation time of the neu-
tral process is tvlvm =NHy_, where H, =14+ 1/2+---+
1/k is the harmonic number, which increases logarithmically
for large k. Thus, fixation or loss is slower on the cycle graph,
where it scales as ~N2. Also the mean conditional fixation
time on the cycle (~N?) is much longer than in a well-mixed
population, where it only scales quadratically in N, />N =
N(N — 1). Often, the times under neutral evolution set the
reference against which the mean times under selection are
measured [13,25,30].
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B. Constant selection

For constant selection we assume f4 = ePr and fe=1.In
this case, the death-birth process and the birth-death process
inherently differ (see Appendix). The death-birth process un-
der strong constant selection in favor of the mutant, 8 r — oo,
leads to mean sojourn times that are constant proportional to
N. The birth-death process under strong constant selection
leads to mean sojourn times in state j that are equal to j.
Ultimately, this leads to

N2
IJ;N = t(}B — ?, (20)
N -1
N =t — N——, 1)

where the conditional and unconditional fixation times are
identical because the fixation probability quickly converges
to 1. We can also make a quick comparison of the Moran
process on the ring (the Bd process) and the Moran process
in a well-mixed population. In Appendix D we calculate
approximations for these two strongly related processes for
finite but large r, resulting in the mean conditional fixation
times téfN ~ NN —1)/2+ NN —2)e?" and t\}VK,IN R
N Hy_, +2N Hy_, e #". These relations are able to de-
scribe how the mean fixation times approach the value of
the strong selection limit value for any population larger than
N =2.

C. Strong frequency-dependent selection

Now we discuss the semianalytical solutions given by
Egs. (6) and (8) for frequency-dependent selection. We focus
on the limiting case of strong selection, 8 — oo, to obtain
further analytical insights. These insights can guide our
intuition as to how strong frequency-dependent selection and
spatial structure impact times to extinction or fixation in
structured populations of finite size.

We now quantify how the different update rules on
the cycle behave in the strong selection limit in order to
develop an intuition for the limiting behavior of fixation
probabilities, as well as mean fixation times. We focus
on nontrivial sets in payof space, e.g., a +b > c+d, and
exclude special cases which are of measure zero in parameter
space, e.g., b =d. We start with the dB update on the
cycle. The limiting cases of § — oo for the transition
probabilities to increase the number of A individuals are given
by

2 .
= ifb>d
TH 5 IN , 22
dB 0 ifb<d 22)
2 .
. 2 f b>2d
Tif > | ¥ hat+h=zd (23)
0 ifa+b<?2d
2 .
e o I x TarbEetd oy
0 ifa+b<c+d
1
T 25
dB _>N (25)
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In the same way, we obtain the limiting cases of the transition
probabilities to decrease the number of A individuals:

1
To = (26)
2 .
Td2137_> 5 1fa+b<c+d7 27
0 ifa+b>c+d
2 .
TdiB__) v 1f2a<c+d’ 28)
0 if 2a>c+d
2 .
< fa<c
TWN-D=  IN ! , 29
dB 0 ifa>c 29

where, again, the last step before B fixes in the population is
independent of the game.

The spread of a single A mutant is impossible under strong
selection if the payoff of A against B is lower than the payoff
of B against itself. However, the loss of the single A mutant
occurs with an expected waiting time proportional to the
size of the population. Fixation of A can only occur under
strong selection if this initial step is possible (b > d) and if
additionally a + b > 2d,aswellasa + b > c + d.

If there is an unstable mixed Nash equilibrium in the game
(which is then a coordination game), fixation of A is only
possible in a subset of all games. Generally, under the dB
process fixation and extinction may still take long in large
populations, as the nonvanishing transition probabilities are
proportional to N !

In contrast, the transitions rates of the Bd process (evolu-
tionary Moran process on graphs [27]) can become indepen-
dent of the population size. The limiting cases for the transition
probabilities are given by the following conditions, where it
is important to note that for nontrivial transition probabilities,
all the payoff relations have to be fulfilled,

I+ 1 if2b>c+d,b>d
Ty — . ) (30)
0 if 2b<c+dorb<d
1 .
Té:—> 3 %fb>a,a+b>c+d,a+b>2d’ 31)
0 ifb<a,a+b<c+d,ora+b<2d
TN-D+ % if b>a,a+b>2c (32)
Bd 0 if b<aora+b <2
and
1 .
TBI(;_) 3 .1fc>dandc+d>2b’ (33)
0if c<dorc+d <2b
1 -
ng—> E}fc+d>a+b,c+d>2b,c>d’ (34)
0 if c+d<a+b,c+d <2b,orc<d
TN-D- 1if 2c>a+b,c>a ‘ (35)
Bd 0 if either 2c < a+b,c <a

Hence, the last transition before extinction or fixation of A
can become entirely deterministic. All other transitions have
a nontrivial limiting case of 1/2, independent of the size of
the population, which is due to the fact that the selection
(birth) step comes first, which deterministically selects the best
performing individual(s). This selection step is then followed
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by the death step, which can only select one of the two
neighbors of the parent. Thus, under strong selection, fixation
in a Bd process can occur at a much faster rate than fixation
in a dB process. In addition, it is possible that strong selection
on the cycle becomes static; neither increase nor decrease of
the mutant strategy A is possible.

For comparison, we again consult the well-mixed pop-
ulation, where, based on Egs. (9) and (10), the dynamics
always depends on the payoff in the form of relations
between expected payoffs w4, mg. As a consequence, the
strong selection limiting cases in the well-mixed population
are

. Nobif ar— +b>c—+d
Tvlv;_){ N ] N[_l N[—l , (36)
0 lfam+b<6'm+d
ri- o v Maygtb<eygtd o)

Wi 0 ifags+b>cys+d

The dynamic time scales of fixation or extinction processes
are generally population size dependent but depend on the
payoff matrix only implicitly. For sufficiently large but finite
population size N, the mean unconditional fixation time
of a strategic dominance game or a suitable coordination
game is proportional to N log[N — 1] plus a constant (in fact
Euler’s constant [40]) but generally diverges exponentially for
coexistence games [30,41].

IV. DISCUSSION

A. Strategic dominance

We speak of strategic dominance if, in any one shot
interaction, A does always better than B, i.e., a > ¢, b > d.
In the well-mixed population, this immediately leads to a
relation for the transition rates for any strength of selection,
Tt > Ti—. In structured populations, additional conditions
on the payoffs may be required for this to be fulfilled.

For the death-birth process the strong selection limiting case
leads to the following payoff relations. If the three inequalities
a+b>2d,a+b>c+d, and 2a > ¢ + d hold, we obtain
limiting cases of the transition rates and sojourn times,

12 i N-2 N-1
T2 2 Z z T
d'B N N N N N (38)
Tis |+ O 0 0 0
NN N N 2w
3 3 3 3 3

A single mutant has an extinction probability of only one-third
but a probability to reach fixation of two-thirds: Once the
mutation spreads to two or more individuals, it is bound to take
over with certainty. The fixation times can again be calculated
by summation over the sojourn times, using Egs. (6) and (8),
which leads to
2
thy — NT (39)

and

N?2 N
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In both cases, the leading order term is quadratic in the
population size N.

The second case of nonvanishing fixation probability of
a single mutant is when 2a < ¢ + d. Then, fixation of the
dominant mutant takes considerably longer on average but the
fixation probability of a single mutant is still 2/3:

1 2 i ...N—-2 N-1

i+ 2 2 2 2 1
T | v W v v v

[ — 1 2 2
Ig | x O W v 0

1i N N-3 N—i—1 N 2N

| 3 NZF NS 5 =

(41)

such that the mean fixation times become

N3 —5N? 4+ 12N

NI ' , “2)
IN® — 15N? + 34N
N = N (43)

Hence for large population size, conditional fixation takes on
average 50% longer than unconditional fixation.
Mutant-fixation with nonvanishing probability in the birth-
death process requires the four conditions 2b > ¢ +d,a +
b>2d,a <b, and a+ b > 2c. As a result, we find the
following transition probabilities and sojourn times:

1 2 i N-2 N-1
i+ 1 1 1 1
fa | 1 2 P Wy
iolo o ... 0 ... 0 0
o2 2 2 2

The mutant fixes with probability 1. We obtain fixation times
linear in population size

thg=tarV — 2N - 3. (45)

We can also find generic payoff matrices in which the mutant
neither spreads nor goes extinct, despite strategic dominance
of one strategy.

B. Coordination games

In coordination games, the interactions between two indi-
viduals of the same type always yield higher payoffs than
interactions between two different types, hence the payoff
relations for all coordination games are a > ¢ and b < d.
In a well-mixed population, A can then not invade B and
vice versa. Coordination games are used to study evolution of
technological standards [42], emerge in a subset of strategies
in collective risk dilemmas [43,44], and have a population-
genetic equivalent in genetic underdominance (heterozygote
disadvantage) between two alleles of the same gene [45].

In the death-birth process, the limiting cases of the transition
matrix (22)—(25) immediately tell us that a mutant A cannot
invade, and we obtain

| 1 i N-2 N-1
T 10 0 0 0 0 =
i- |1 2 2 2 (46)
Tg | v~ v v 0
t" | N 0 0 0 0
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Thus, the conditional mean fixation time is not a meaningful
quantity to compute. The unconditional mean fixation time,
which only measures extinction of A, follows as

tls — N. (47)

This asymptotic relation holds for all coordination games
under strong selection.

The birth-death process leads to limiting cases in which
the single mutant cannot invade. If the inequalities ¢ > d and
d + ¢ > 2b hold, we discover the following transition proba-
bilities and sojourn times:

12 .. N-2 N-1
1 1

TB; 0o 1 0 0 0 0 48)
Ty | 30 0 ... 0 0
20 0 ... 0 0

The mutant goes extinct with probability 1 in two time steps
on average,

fhg — 2. (49)

C. Coexistence

In coexistence games, it is always better for an individual
to interact with an individual that plays a different strategy.
The payoff relations are a < ¢ and b > d. Such strategic
interactions emerge when cooperators generate a benefit that
can be exploited by both cooperators and defectors [46]. A
coexistence game was the original motivation to study a game
in an evolutionary context, namely the Hawk-Dove game
[1], which allows a coexistence of such behaviors, in which
common strategies outperform rare strategies [47].

In order to observe nonvanishing fixation probability of a
single A mutant in the death-birth process, we require the
following payoff-conditions tohold: a +b > c+d,a+b >
2d, and ¢ + d > 2a as an additional relation that determines
the speed to fixation. Then, we can summarize the limiting
cases of transition probabilities and sojourn times as follows:

2 ...N=2N-1

1+
TdB
i—
TdB

tli

(50)

z O =
ESEIICEES

wlz Z|— z —
Z =zl =
SEEIREE

-1 N—i+1
NNSL N

5.
In this case of coexistence game, the mean unconditional
fixation time sums up to a cubic polynomial in N,

N -1
- NZT, (51
and the mean conditional fixation time amounts to
3N(N —1)-2

If the coexistence game does not fulfill ¢ + d > 2a, then we
obtain

1 2 i N—-2 N-1
T Z 2 z ) T
dB N N N N N
i | > (53)
T |+ 0 0 0 2
1i N N N 2N
3 3 3 N 5
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k=)
Q
(0]
£
c
S
(]
X
g 10°; c=8.0, a+b<2c
o) c=4.0, at+b<2c
O 100 c=3.0, a+b>2c

00 05 10 15 20 25
Selection intensity 8

FIG. 2. The conditional mean fixation time of the birth-death pro-
cess in a coexistence game critically depends on payoff parameters. If
all conditions are met, then reaction (45) predicts the strong selection
limit (N = 10). However, the behavior with increasing selection
strength can depend on a single parameter of the payoff matrix, e.g.,
¢, for which we show various curves ¢!~V (8) (payoffs as inset).
If a + b > 2c, then it follows that #i7¥ — 2N — 3 = 17 (dashed
line), but if @ + b > 2c, then it follows that i7" — 0o (~eomt*F).
The neutral mean fixation time is N(N — 1)/2 and for intermediate
selection strength, speedup can be observed [30].

which slightly differs from (38). Thus

N2

i N2 (54)
3N +5

N N 6+ . (55)

There are two generic regimes of payoffs which lead to
significantly different fixation times in coexistence games. In
the first parameter regime, the mutation can go extinct even
after it has spread to intermediate frequencies, and the fixation
times scale in leading order with N3. In the second regime the
times scale with N2, because in (50), the process can go down
from i again but not so in (53), which make the process more
efficient.

The birth-death process under a coexistence game requires
the following five relations between payoffs in order to lead to
nonvanishing fixation probability of the mutant: 2b > c+d,
a+b>c+d,a+b>2d,a<b, and a + b > 2¢, which
together resultin ¢! — 1 and the same transition probabilities,
sojourn times, and fixation times we have already discovered
for strategic dominance, Table (44). Note that if we relaxed the
conditiona + b > 2c, such that Téfiv_l)+ — Oand Téfjv_l)_ —
1, fixation would take infinitely long to occur. Similarly, in
coexistence games with a + b < ¢ + d, we find Té’d>1)+ -0
but TBICT — 1, and at the same time TBld_ — 0 but Té’;])_ -

1/2, Téi,v D7 5 1: The process gets trapped between states 1
and 2, see Fig. 2.

In coexistence games the intuition is that mean fixation
times tend to infinity [41]. For both the death-birth and the
birth-death process on the cycle graph, we have shown that
there are generic subsets of game parameters that allow fixation
of the mutant with nonvanishing probability in a finite amount
of time. Compared to a dominance game, the time scales in
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(a) 10f =
0
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Simulation time
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Conditional fixation time

FIG. 3. Trajectories and distributions of conditional fixation
times in the Prisoner’s dilemma game, determined from simulations.
The population size was N = 10 individuals on a cycle. The payoff
matrix in Eq. (56) was used with benefit = 8 and cost =5. (a)
Single independent realizations in which the defective mutation
reached fixation for the dB process and the Bd process, darker shade
B =1, lighter shade 8 = 10. (b) Histograms of 10* independent
realizations in which the defective mutation reached fixation. The
mean conditional fixation time of the death-birth (dB) process
is 48.4 (standard deviation 15.5), while for the birth-death (Bd)
process it is 16.9 (standard deviation 4.0). In the dB case, (38)
yields t'”V — N2/2 — N/6 ~ 48.3, while in the Bd case, (44)
yields t'"N¥ — 2N —3 =17 (8 = 10).

such coexistence games may be longer by a factor N in the
death-birth process but identical for the birth-death process.

D. Prisoner’s dilemma vs. snowdrift game

We now turn to two concrete examples of social dilemma
situations. We denote cooperators as the resident type and de-
fectors as the mutant type. First, a game between a cooperative
resident strategy C and a defective mutant strategy D is the
prisoners’ dilemma game, where cooperation corresponds to to
offer a benefit to the coplayer at a cost smaller than the benefit:

| D C
D 0 benefit (56)
C | —cost benefit-cost

The distribution of the conditional fixation times of this game,
for both death-birth and birth-death update rules are shown in
Fig. 3. We assumed benefit = 8 and cost = 5 and measured
the mean conditional fixation times for the death-birth and
the birth-death processes. Due to the inherent stochasticity
of the death-birth process even under very strong selection,
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FIG. 4. Conditional fixation time distributions in the snowdrift
game, obtained from simulations. The population size was N = 10
individuals on the cycle. We show histograms of 10* independent
realizations in which the defector type reached fixation. The payoff
matrix (57) was used. (a) For 8 = 1, the mean conditional fixation
time of the death-birth (dB) process is 263.2 (standard deviation
198.7), while for the birth-death (Bd) process it is 10.3 (standard
deviation 10.7). (b) For g = 10, the mean conditional fixation time
of the death-birth (dB) process is 218.1 (standard deviation 168.9),
while for the birth-death (Bd) process it is 17.0 (standard deviation
4.0). In the dB case, (43) yields ¢!~V ~ 223.3, while in the Bd case,
(45) yields t'>¥ — 2 N — 3 = 17. (c) For neutral evolution, 8 = 0,
the mean conditional fixation time is 165 according to Eq. (19) (only
death-birth process shown). From the simulates we calculated a mean
of 158.3 (standard deviation 92.0). These values are smaller than in the
strong selection case, and the fixation time distribution is concentrated
around smaller values and rare events of long fixation time are less
common.

the fixation time is considerably larger and more variable
[compare (38) with (44)].

Second, in the snowdrift game there is a benefit to the coop-
erator even when facing a defector. Cooperation still comes at a
cost, but this cost is shared under mutual cooperation. A respec-
tive example payoff matrix of this form of coexistence game is

D C
D1 8 (57)
c|3 4

This payoff configuration leads to the cases (50) for the
death-birth process and to (44) for the birth-death process.
Hence with Eq. (51), we expect long fixation times in the
death-birth precess and fast fixation in the birth-death process,
Eq. (45). Our simulations show that fixation times in the
death-birth process of this coexistence game tend to be
extremely widely distributed, Fig. 4, whereas the death-birth

PHYSICAL REVIEW E 95, 022407 (2017)

processes fixation times are narrowly distributed around the
mean for strong selection. For comparison, in the neutral case,
Fig. 4(c), rare events of long fixation times are less common.

These examples show that while in birth-death-driven evo-
lutionary dynamics in structured populations an advantageous
mutant can take over quickly under strong selection, the
inherent stochasticity of the death-birth-driven dynamics can
lead to a wide distribution of fixation times. For coexistence
games, birth-death processes can again lead to fast fixation
in times of order N, and death-birth process fixes in times
of order N3, but with a very wide distribution. This leading
order is much smaller than in the well-mixed population case,
in which fixation times tend to infinity for strong selection
[30,48].

V. SUMMARY AND CONCLUSIONS

Selective forces of stochastic evolutionary dynamics in
structured populations are driven by the underlying update rule
[25-27] and by how payoff is translated into fitness [49]. Here
we focus on strong selection on the cycle graph [28] and an
exponential payoff to fitness mapping. Using both analytical
calculations and simulations, we show that outcomes of the
death-birth process may differ drastically from outcomes of
the birth-death process. Under strong selection, transitions
in the death-birth process remain stochastic (proportional
to 1/N), as the random death-step before selection always
depends on population size. The maintenance of this degree
of demographic noise is surprising, as for neutral evolution
conditional fixation times are of leading order N 3 and there
are games for which the strong selection fixation times are
also of this leading order (or of leading order N?). Under
the birth-death process, fitness effects can eliminate depen-
dence on population size, and transition rates become constant
under strong selection. Hence, the leading order of mean
fixation times is N. For dominance games, both the death-
birth and the birth-death processes can lead to nonvanishing
fixation probability and finite fixation times when the payoff
of mutants interacting with a resident, b, is sufficiently large
compared to all other payoffs. This condition ensures that the
mutant can invade and stays advantageous at the boundary
between residents and mutants. For the example of a strategic
dominance game, such as the the prisoner’s dilemma, not all
payoff configurations allow mutant invasion [28]: If the cost
of cooperation is sufficiently low, a population of cooperators
is immune to invasion and fixation of a defective mutant under
both update processes. This result stands in contrast to the
well-mixed population. If the payoff configuration is such that
defective mutants can invade, i.e., for high benefit and low
cost, fixation is expected to take long and fixation remains
highly stochastic for the death-birth process, even under
strong selection. For a birth-death update-driven process, rapid
takeover by an advantageous mutant can be observed, see
Fig. 5.

Stochastic evolutionary dynamics of coordination games on
the cycle graph show closest resemblance to their well-mixed
counterpart: Under strong selection, mutants cannot invade,
and the respective extinction times are short (of order N in the
death-birth process, of order 1 in the birth-death process),
see Fig. 5. The snowdrift game promotes coexistence of
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(a) Well-mixed population under strong selection, -
lim @lm lim N lim &
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evolution N N(N —1) N Hy—1
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of A
- N
coordination 0 n/a -
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n/a
(b) Cycle under strong selection, f—%

H 1 H 1 H 1—=N | 1N H 1 H 1
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FIG. 5. Overview of fixation probability and times in the strong
selection limit, comparing the well-mixed population with dynamics
on the cycle. (a) In case of the well-mixed population, the results have
been worked out previously [30]. Most importantly, for coexistence
games the fixation times under strong selection tend to infinity for any
population size. (b) In spatial populations, the update process matters.
Already the constant selection cases show differences comparing Bd
to dB update processes. For strong frequency-dependent selection
not only fixation times but also fixation probabilities can differ. As
opposed to the well-mixed population, there are generic subsets of
coexistence games for which fixation occurs in a finite number of time
steps, with averages depending on the game. This leads to distinct
strong selection limit cases (see Sec. IV). For example, compare
Eq. (52) (conditional fixation time is of leading order N3) with
Eq. (55) (conditional fixation time is of leading order N2). Note
that there also are coexistence games with payoff configurations such
that strong selection works entirely against fixation of the mutant
(comparable to coordination games).

cooperators and defectors in well-mixed populations under
strong selection [13,30]. For this game on the cycle the evolu-
tionary dynamics can get trapped at intermediate numbers of
mutants of either kind and fixation would also take infinitely
long. There are coexistence game payoff configurations that

PHYSICAL REVIEW E 95, 022407 (2017)

permit mutant invasion, on the cycle, again when b is the
dominating payoff. In such cases, fixation times of the death-
birth process tend to be much longer and experience a broader
distribution than fixation times of the birth-death process.

Our analytical results focus on mean fixation times, but the
simulation results highlight that future work has to focus on
other features of the fixation time distribution, such as higher
moments. Overall our work highlights that selective advantage
might not guarantee fixation within a desired time frame, even
on graphs that are deemed not to be a suppressor or amplifier
of selection.
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APPENDIX A: TRANSITION PROBABILITIES
OF THE BIRTH-DEATH PROCESS

The transition probabilities of the birth-death process on
the cycle graph for any strength of selection, in full form, are
given by

i+
TBd
£2b .
3 .
P2 {2ePFD L (N—3)eP 2 ifi=1
eBlath) . .
_ ) 2R )P e e P D (N =i —2)eP M if l<i<N-1
- oBla+h) e
2eP@tD) { (N —3)eP 201 ¢b2c ifi=N-1
0 if i =0,N
(AD)
and
i—
TBd
Bletd) e
4 —
PP ADL(N—3)eP M if i =1
Blc+d) . .
e
_ ) 2P 1= 2)eP T 1 2Pt D (N—i—2)eP ifl<i<N-1
i e :
¢ p—
2PED (N—3)eP 2 oP 2% ifi=N-1
0 if i =0,N
(A2)

APPENDIX B: THE PROBABILITY TO EVER VISIT j,
STARTING FROM i

The probabilities to ever go from any internal state i to
any other internal state j are useful when calculating sojourn
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times [30,31],

N—1 k Tm=
k=i l_[m =j+1 Tm+
S oy
m ]+] Tm+
Zk 0 1 T
ij _ = m=1 Tm+
¢ = Zj S B A
k=0 1 Lm=1 77%
which hold for any birth-death process with absorbing bound-
aries [50].

¢U —

ifi> ], (B1)

if i <], (B2)

APPENDIX C: CONSTANT SELECTION ON CYCLE
GRAPHS

We speak of constant selection if the fitness of mutants is
fa > landthefitness of residentsis fp = 1,irrespective of the
number of mutants. Often, the success of the mutant is given by
r > 1, where the fitness of the resident is 1. We can then define
g = fg/fa = e P, and strong constant selection (8 r — 00)
in favor go the mutant means g — 0. In the following
we derive exact expressions for transition probabilities,
sojourn times, and the fixation time under strong constant
selection. ‘ .

In case of the birth-death process we find g = Ty, / Tlag for
all j and get g1 =1—(1 —¢q)/(1 —g"™), and ¢}, =
(1—-gH/( - ’*1). Then, we obtain the ﬁxatlon probablhty
[25,26,51]

. 1—g¢g'
P = (1)
1—gV
as well as the sojourn times
; 1 1- 1
1= — q. (C2)

Tas (@) 1 — 4/ ;

1 —q/!
(1 ql )
In the strong selection limit g — 0 we obtain TB’ ; — 1/j,and
we can immediately see that

05— j (C3)
and summing over all sojourn times case leads to
-1
th — NT, (C4)

which is equal to téj’v as the mutant fixes with probability 1.

For the death-birth process, we obtain Td'B_ / Td'B+ =
(1+q)/2, Tis | Tyg = for  l<i<N-1 and
Td(l;v_l)_/Td(llgv_])Jr =2g/(1+ ¢q). Since the first and last
state are special due to the structure of random death and
subsequent competition, we obtain a more complicated
expression for the fixation probability

1+ ]"'_‘Ii
i 2
Pip = = (C5)
14 V2 4 e

With the appropriate values of ¢/ "/ and ¢Ji/ ™, the expected
sojourn times become
;;];:2 i l21 e (C6)
vig(l—dm)+ 5
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2(1 —q)
tdB: . !
3—qg—0+q)q’
1
x 2 1 4 JFLJ 2 q j—1,j
vig(l—¢m )+ 31— )
(C7)
tl(N H_ 2(1 —¢q)
T 3-g -+
1
X . (C8)

F A=)

For strong selection, q— 0, we observe that ¢AB — 1,

dip 17 0, and ¢dB 7 5 const for all j, respectively. For

the sojourn times we can now see that

11 N
iy~ (C9)
ty 3 (C10)
2N
VD - -5 (C11)

and hence the mean fixation times amount to
2
| N
=ty = —.

3

1-N

1 (C12)

APPENDIX D: CONSTANT SELECTION APPROXIMATION
FOR THE BD PROCESS (CYCLE AND WELL MIXED)

Here we are interested in finding approximations of the
conditional mean fixation times for finite but large values of
the product § r. In this case, we can perform a Taylor expansion
to linear order in the quantity g = e™#" = fz/fa, as defined
above. For the well-mixed case we obtain ¢y, ~ 1 — ¢ and

{)\71\}1 ~ 1, as well as T\f\,?\/l/T\;'&'\,I =g forall0 <i < N. To
calculate the conditional mean fixation time of the well-mixed
population we here resort to an equation that does not involve
mean sojourn times [50]

N—-1 &k

. i
o = ZZTz{i q" (D1)

k=1 I=1

and sort this equation in all terms involving directly ¢° or ¢'
N- N-2
it = Y@ +4q Y si(q), (D2)

whereby s;(q) = ¢]\§VM / TVIE,JI(,I Now we use Eq. (9) with ef™ =
e? and ef™» = 1, which is equivalent to setting the payoff
a=b=r/2 and c=d =0, and we get the linear in ¢
approximation

1 N
N+ g (D3)
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to result in

N N
81 %m—qH-i-qN, (D4)
N N
Sk>1 ~ Nk + ;q' (D5)

Then, the first sum of Eq. (D2) amounts to

N-1
> si(@)~ N Hy_1+q N Hy > (D6)
k=1
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and the second sum solves similarly. We thus obtain
tom ~ N Hy_1+2¢ N Hy_,. (D7)

In case of the birth-death process on the cycle, we use the
mean sojourn times from Eq. (C2), the definition of the mean
fixation time of Eq. (8), and 1/ Té‘; =k + (N — k)q, to result
in

pon o yN =1 N(N —2) (D8)
Bd 5 q .
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