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ABSTRACT In this paper, we prove two general lower bounds for algebraic decision 
trees which test membership in a set S ~ !Rn which is defined by linear inequalities. Let 
rank(S) be the maximal dimension of a linear subspace contained in the closure of S. 

First we prove that any decision tree which uses multilinear functions (i.e. arbitrary 
products of linear functions) must have depth at least n - rank(S). This solves an open 
question raised by A.C. Yao ([Y89]) and can be used to show that multilinear functions 
are not really more powerful than simple comparisons between the input variables when 
computing the largest k elements of n given numbers. Yao could only prove this result 
in the special case when products of at most two linear functions are used. Our proof is 
based on a dimension argument. It seems to be the first time that such an approach yields 
good lower bounds for nonlinear decision trees. 

Surprisingly, we can use the same methods to give an alternative proof for Rabin 's 
fundamental Theorem ([Rab]), namely that the depth of any decision tree using arbitrary 
analytic functions is at least n - rank(S). Since we show that Rabin's original proof is 
incorrect, our proof of Rabin's Theorem is not only the first correct one but also generalizes 
the Theorem to a wider class of functions. 

1. Introduction 

Among other algebraic complexity measures (e.g. [MST], [ST]), the algebraic decision 
tree and algebraic computation tree models have have turned out to be very useful in 
proving lower bounds for elementary combinatorial or geometric problems like maximum 
finding, set equality, set disjointness and sorting (see [Be] for more examples) or even more 
complicated problems like convex polygon inclusion ([Ram]) and motion planning ([OD]). 

The algebraic decision tree model is an abstraction of "real" algorithms where only 
comparisons between input variables or functions of input variables are counted whereas 
all other time-consuming operations like data-management, function evaluation or other 
control structures have zero cost. For complex problems, this simplification can make the 
problem considerably easier; for example, the knapsack problem which is known to be NP­
complete has a polynomial solution in the decision tree model (e.g. [MadH]). Therefore, 
lower bounds in the decision tree model can only be tight for quite simple problems. 

1 This work was (partially) supported by the ESPRIT Basic Research Action No. 7141 (ALOOM II) 
2 Max-Planck-Institut fiir Informatik, W-6600 Saarbriicken, Germany, e-mail: rudolf@mpi-sb.mpg.de 
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A decision problem is a disjoint partition IRn = S 1 U · · · U Sq of [Rn into arbitrary 
sets Si. A decision tree T for a decision problem is a binary tree whose internal nodes 
are labeled by predicates defined on IRn, whose outgoing edges of an internal node are 
labeled by true or false, and whose leaves are labeled by one of the Si (Fig. 3.1 shows 
an example). The evaluation of Ton input x E IRn starts at the root and then proceeds 
downwards by evaluating the predicate at an internal node and taking the appropriate of 
the two outgoing edges. Finally, a leaf with label Sx is reached. Sx is the result of the 
computation, the path x followed is the computation path of x, and T is correct if x E Sx 
for all x. The worst-case running time of T is the length of the longest computation path 
in T. 

T is called an algebraic decision tree if all functions evaluated at internal nodes are 
defined by polynomials. The most restricted algebraic decision trees are comparison trees 
where only comparisons between two input variables are allowed ([FG], [MT]). Linear 
decision trees ([Sn82]) where linear functions of the input variables can be used ([BLY], 
[DL], [FG], [MT], [RY]) are more powerful. Products of linear functions were used in [Y89]) 
and arbitrary polynomials of bounded degree in [Be] and [Y92]. Finally, arbitrary analytic 
functions were allowed in [Ja] and [Rab]. Of course, this classification of algebraic decision 
trees is not exhaustive and many less natural restrictions on the functions can be found in 
the literature (e.g. [DL], [MMS]). 

In our paper, we only prove lower bounds for algebraic decision trees, but we also 
want to mention the algebraic computation tree model where additional computing nodes 
exist which evaluate elementary functions on all input variables and previously computed 
functions ([Be], [OD]). Of course, this can be simulated by an algebraic decision tree which 
uses polynomials of increasing degree, but this model is much closer to the model of "real" 
algorithms (e.g. [PS]). Probabilistic and nondeterministic decision trees have also been 
studied ([MT], [Sn85]). 

From now on, we assume that the decision problem is a membership problem, i.e. we 
want to decide whether an input x E IRn is in a set S ~[Rn (we call S the target set), but the 
lower bounds mentioned below can easily be transformed into similar bounds for arbitrary 
decision problems. Several lower bound techniques are known for algebraic decision trees. 
One of the first and most widely used arguments was that the logarithm of the number of 
connected components of Sis a lower bound for the depth of linear decision trees ([DL]. 
This was generalized in [Be] to bounded degree decision trees. And recently Ramanan has 
shown how this technique can sometimes give strong lower bounds even for sets S which 
do not have many connected components by intersecting S with another easily computable 
set and thus increasing the number of components ([Ram]). Another old approach is to 
use an adversary argument to show that there must be at least one long path in the tree 
([DL]) or proving the existence of many disjoint subtrees ([FG]). 

An interesting topological lower bound, at least for linear decision trees, was proved 
by Rivest and Yao. They showed that the logarithm of the number of s-dimensional faces 
of S for arbitrary s is a lower bound ([RY]). And very recently, Yao et. al. have found a 
way to exploit even a much more complex topological property of S, i.e. they showed that 
the logarithm of the Euler characteristic of S is a lower bound not only for linear decision 
trees ([BLY]) but also for bounded degree decision trees ([Y92]). 
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The only known results about analytic decision trees are due to Rabin ([Rab]) and 
Jaromczyk ([Ja]). Rabin proved the fundamental Theorem that any analytic decision tree 
for S must have depth IHI if Sis defined by a set H of independent linear inequalities. 
Jaromczyk tried to generalize Rabin's Theorem to sets S defined by arbitrary polynomial 
inequalities but faced heavy problems concerning real algebraic varieties which he could 
not solve adequately. Unfortunately, Rabin's proof is not correct (see Section 3). The 
same is probably true for Jaromczyk's generalization because Rabin's error lies in a basic 
definition which is also used by Jaromzyk. 

Surprisingly, we can give an alternative (and hopefully correct) proof of Rabin 's The­
orem by using a new lower bound technique which we have developed to solve an open 
question raised by Yao. In [Y92], Yao showed that median tests are not really more pow­
erful than simple comparisons between the input variables when computing the largest k 
elements of n given numbers. He raised the question whether this can be generalized to 
functions which are arbitrary products of linear functions (the median test can be written 
as the product of only two linear functions). 

We show in this paper that it can be generalized. Our proof technique is based on a 
dimension argument and works only for sets S defined by linear inequalities. Let rank(S) 
be the maximal dimension of a linear subspace contained in the closure of S. We show that, 
for any computation path p in the decision tree, the closure of the set of inputs x which 
have computation path p always contains a linear subspace of dimension n - length(p). 
Hence length(p) ~ n - rank(S). 

It seems to be the first time that a dimension argument is used to derive good lower 
bounds for nonlinear decision trees. And it seems to be the first time that someone has 
looked carefully in Rabin's proof and, finding it incorrect, gives a correct proof. This 
is even more important because no other lower bounds for this most general model are 
known. 

This paper is organized as follows. In Section 2 we give some geometric definitions 
and Lemmas. In Section 3 we define certificates and proofs, an abstraction of the decision 
tree model, and show why we consider Rabin's proof incorrect. The generalization of Yao's 
Theorem and Rabin's corrected Theorem follow in Sections 4 and 5, respectively. And we 
conclude with some remarks in Section 6. 

2 . Geometric Preliminaries 

In this Section we will give some elementary definitions. We use the notations B = cl B 
and B 0 = int B, where B ~!Rn is any set. Bn(z, €)denotes then-dimensional ball of radius 
€ centered at z. 

A linear variety (fiat) in !Rn is a subset G ~!Rn of the form G = v + L where L ~!Rn 
is a linear subspace and v E !Rn. The flat has dimension dimG := dimL. 

n 

Let Ln := {Ao + L AiXi I Ao, ... , An E IR} be the set of linear functions in n real 
i=l 
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variables x = (x 1 , ... ,xn)· Let L<:,f,) := {11 ···Zj I Zi E Ln,Vi} be the set of multilinear 
functions of degree j in n variables which is a proper subset of the set of all polynomials 

00 

of degree j in n variables and L~ := L': = U L~). 
j=l 

Each l E Ln induces an oriented hyperplane h = {x E !Rn I l(x) = O} with normal 
vector n. Let A := {>, 2':, =, #} be the set of all comparison operators and A> := {>, 2':}. 
For a set L = {li, ... , lm.} C Ln of linear functions we usually denote the set of its 
corresponding hyperplanes by H = {h1, ... , hm.}· Arr(H) is the arrangement of the 
hyperplanes in H (see [Ed] for details of arrangements). If Op= {op1, ... , opm.}, opi EA, 
is a set of comparison operators then we define the set of simultaneous solutions of L with 
respect to Op as SL,Op := {x E !Rn I h(x) OPi O, i = 1, ... ,m}; if L = 0 then SL,Op :=!Rn. 
We omit the index Op whenever it is clear from the context which Op should be used. 

To measure the degree of independence of the linear functions in L we introduce the 
rank of L: rank(L) := n - dimspan(n1 , ••. ,nm.) where ni is the normal vector of the 
hyperplane hi defined by li. The following Lemma shows that rank(L) is the maximal 
dimension of a linear variety contained in SL. 

Lemma2.1 Let L = {[i, ... ,lm.} C Ln be a set of linear functions and let Op ES> be 
arbitrary. Let H be the set of hyperplanes defined by L. If SL # 0 then 

(a) SL contains a linear variety of dimension rank( L); 

(b) SL does not contain a linear variety of dimension rank( L) + 1; 

(c) rank(L) = min{k I Arr(H) contains a k-face}, and there is a rank(L)­
face of Arr( H) contained in SL. 

Proof: Let hi be the hyperplane corresponding to the function li with normal vector ni. 

(a) Let z E SL be arbitrary and let V be a linear subspace of dimension rank(L) 
such that span(V, n 1 , •.. , nm.) = !Rn. Then V is perpendicular to all normal 
vectors ni and therefore parallel to all hyperplanes hi; hence z + V ~ SL. 

(b) If V is any linear variety contained in SL then V must be parallel to all 
hyperplanes hi, i.e. perpendicular to all normal vectors ni. Hence dim V ::; 
n - dim span( n 1 , ..• , nm.)· 

( c) Any k-face in Arr( H) is a k-dimensional subset of the intersection of n - k 
linearly independent hyperplanes of H ([Ed]). Since there are at not more 
than span(n1 , ••• ,nm.) linearly independent hyperplanes in H, Arr(H) con­
tains only k-faces for k 2': n-dimspan(ni, ... ,nm.)= rank(L). Furthermore, 
all cells in Arr(H) are bounded by at least one rank(L)-face. D 

Let L C Ln be a set of linear functions and H the set of hyperplanes defined by 
L. Then Arr(H) induces a signature on the points x E !Rn: sig(x) := (t:1 , •.• ,Em.) 
where Ei = - , 0, + iff x lies under, on, above hi, respectively. We call L sign-independent 
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if all possible signatures are realized in Arr(H). The notion of sign-independence was 
introduced by Rabin ([Rab]) but he failed to observe the following simple characterization 
of sign-independence in terms of rank(L). 

Lemma2.2 Let L = {li, ... , lni} C Ln and let hi be the hyperplane defined by li. Then 
= 

Lis sign-independent {:===} dim n hi= n - m {:===} rank(L) = n - m. 
i=l 

Proof: Elementary geometry, or see [Ed]. 0 

The definitions above will mainly be used in the next Section for defining the target 
set, i.e. the subset of !Rn which is computed by the decision tree. But we also need some 
definitions concerning the functions which are used at internal nodes of the decision tree. 
Yao restricted the internal functions to products of linear functions, whereas Rabin allowed 
arbitrary analytic functions. We give a more general framework by defining the functions 
by means ofthe properties they should have (to make our proofs work). Theorem 2.4 shows 
that our model includes the models of Yao and Rabin. 

Let F = (Fn)n=l,2,3, ... be a family of sets of real-valued functions in n real variables 
with the following properties : 

Let fn,9n E Fn and h be a hyperplane in !Rn. 

(Fl) fn is continuous. 

(F2) f n · 9n E Fn, i.e. Fn is closed under multiplication. 

(F3) Fn is closed under translations and rotations of the coordinate system. 

(F4) If there is an open set U ~ IRn with fnj U = 0 then fn = 0. 

(F5) fnl(a::n = O) E Fn-l• 

(F6) If f nj h = 0 then there exists an 9n E Fn such that f n = [. 9n, where l is the linear 

function defining h. 

Lemma2.3 Then the following properties are also satisfied for fn E Fn : 

(F7) If his a hyperplane in !Rn then fnjh E Fn-1· 

(F8) Let V be a linear subspace of !Rn of dimension k < n. If a relatively 
open set U ~ V exists with fnlu = 0 then also fnlv - 0. 

Proof: (F7) follows from F(3) and (F5). 

(F8) V can be defined as the intersection of n - k hyperplanes V 
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Successive application of (F7) yields a function fk = fnJv E Fk· Now (F4) 

proofs the claim. D 

Theorem 2.4 The following classes of functions satisfy (Fl)-(F6) : The linear functions 
Ln, L~, real polynomials and analytic functions. 

Proof: (Fl)-(F5) are obviously true. Only (F6) needs a closer look if we deal with poly­
nomials, so let fn be a polynomial and ha hyperplane in !Rn (with defining linear 
function l) such that fnJh = 0. From the Hilbertsche Nullstellensatz (see [vdW], 

page 164, formula (2)) it follows that a q E [N and a polynomial f~ exist such that 
n = f~ · l. But l is prime and hence divides fn· D 

3 . Certificates and Proofs 

In this Section we recall Yao's definition of certificates ([Y89]), give a definition of 
complete proofs which slightly differs from Rabin's definition ([Rab]) and show how these 
definitions are related to decision trees. Then we prove some simple geometric Lemmas 
and show why Rabin's model is not so useful when proving lower bounds for decision trees. 

Let L = {Zi, ... , Zm} C Ln be a set of linear functions, and let OpL E Ll>7' be a set of 
comparison operators for L. Then the pair (L, OpL) defines the target set SL = SL,OpL· 
Let F = (Fn)n=l,2,3, ... be a class of functions satisfying (Fl)-(F6). This is the universe of 
functions which can be used at internal nodes of the decision tree. 

Let G = {91, ... , gk} be a set of functions with either 9i E Fn or ~; E Fn (in fact, 
since we are only interested in the sign of 9i, we can w.l.o.g. assume that 9i E Fn), and let 
OpG E .6. k be a set of comparison operators for G. Then SG = SG,OpG is defined as before 
(where all 9i had been linear functions). We call the pair Z = ( G, OpG) a certificate for 
(L,OpL) if SG s:;;; SL. The size of the certificate is defined to be IZI := k, i.e. the number 
of defining functions of G. Z is called strict if OpG = {> }k. In this case we write for short 
( G, >) or SG,> instead of ( G, {> }k) or SG,{> }k, respectively. Similarly, we call the target 
set strict if OpL = {> }m and we then also write SL,>. Analogously, we write S 9 ,= for the 
set of zeros of a function g EL~. Since all functions in Fn are continous, if SG,> f. 0 then 
SG,> is an open set and hence truly n-dimensional. 

Let 0 :j= Q E Fn be an arbitrary function and let Z = {Z1, ... , Zp} be a set of 
certificates. Z is a complete proof for (L, OpL) with respect to Q if 

(Cl) Each Zi is a certificate for L, i.e. Vx Vi: x E Sz; :::::} ;v E SL. 

(C2) SL is covered by SQ,= and the Sz;, i.e. Vx, Q(x) f. 0: (x E SL :::::} 3i: x E Sz;). 

The size of Z is the maximal size of one of its certificates, i.e. IZI :=maxi IZil· If all Zi 
are strict then we call Z a strict complete prool 
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There is a strong correspondence between certificates and complete proofs on the one 
hand and decision trees on the other hand. Given a decision tree which decides membership 
in a set SL,opL the set of functions evaluated along any 1-path (i.e. a path which gives 
the answer "is member") is a certificate for (L, OpL)· And the collection of all certificates 
corresponding to all 1-paths is a complete proof for (L, OpL) w.r.t. any function Q. Hence 
any lower bound on the size of a certificate or complete proof is also a lower bound for 
decision trees. 

Also, each certificate can easily be transformed into an equivalent path of a decision 
tree. However, the transformation of an arbitrary complete proof into a whole decision 
tree can result in a rather complicated and nonoptimal decision tree. 

The next two Lemmas show that we can restrict our lower bound proofs to strict 
complete proofs. Here we differ from Rabin who only allowed nonstrict inequalities (i.e. ;:::) 
in the definition of Sa and SL. 

Lemma3.1 Let Z = (G, >)be a strict certificate for (L, Op), Op E ~;1' arbitrary. Then 
Z is also a certificate for (L, > ). 

Proof: W.l.o.g. is Sa f:. 0. Assume that there exists a z E Sa with li(z) = 0. But since 
So is an open set there exists an E > 0 such that Bn(z, e) ~Sa which means that 
also Bn(z, e) ~SL, a contradiction to li(z) = 0. D 

Lemma3.2 Let Z be a complete proof for (L, OpL) w.r.t. Q. Then there exists a set of 
certificates Z' and a 0 =/=. Q' E Fn such that IZ'I :S IZJ and Z' is a strict 
complete proof for (L, >) w.r.t. Q'. 

Proof: Assume that Z = {Z1, ... ,Zp} with Zi = (Gi,OPi), Gi = {9i1, ... ,gik} and 
Opi = { OPil, ... , OPik}· We first define Q' := Q · Il,j 9ij where the product is 
taken over all 9ij =/=. 0. Then we define Z' by 

( 1) Replacing all predicates "9ij -=/= O" by "9Tj > O". 

(2) Throwing away all Zi with OPij ='='for some j. 

(3) And then defining all remaining op~j := '>'. 

Obviously, IZ'J :S IZI and all certificates are strict. It remains to show that Z' is 
a complete proof for (L, > ). Step (1) did not change anything except the degree 
of some functions which is irrelevant for us. So suppose w.l.o.g. that Z did not 

t . '-.l' con run any OPij = -r · 

(Cl) Since Sz~ ~ Sz; for all z: remaining after step (2), the z: are also certifi­
cates for

1

(L, OpL) and hence for (L, >)by Lemma 3.1. 

(C2) If there is an a:J E SL,> with Q'(m) f:. 0 then in particular a:J E SL and 
Q(m) f:. 0. By (C2) there must be an i such that m E Sz;, i.e. Vj : 
9ij(m) OPij O, DPij E {>, ;:::, = }. From Q'(m) f:. 0 follows DPij E {>,;:::}and 
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9ij( x) > 0 for all j. Hence Zi was not removed in step (2) and ZI is a 
strict certificate for x, i.e. x E S Z'. D . 

We remark that in the Lemma above SL,> might be empty, but then all certificates 
ZI would also define empty sets S z~. In Section 5 we will prove lower bounds for strict 
complete proofs and then use Lem~a 3.2 to extend these results to arbitrary complete 
proofs. In [Rab] Rabin tried just the opposite. Instead of restricting the inequalitites of L 
to strict inequalities (which is what we have done above) he restricted them to nonstrict 
inequalities (:2:). This enabled him to give a fairly straightforward inductive proof for his 
lower bound, but unfortunately his definition of a complete proof can not model decision 
trees correctly. We give an example in IR.2 

: Let SL= {(x,y) E IR.2 I x,y :2: O} and consider 
the decision tree in Fig. 3.1 which tests membership in SL. Then the 1-paths in the tree are 
a complete proof for L according to our definition, and Lemma 3.2 shows how to transform 
it into a strict complete proof for ( L, >) to which our lower bounds of Section 5 can be 
applied. 

However, Rabin claimed that all 1-paths in the tree are a complete proof for SL (after 
certain sign changes) according to his notion of a complete proof, i.e. if all comparisons 
are changed to ':2: '. But this is wrong because then the rightmost path would become the 
certificate Z 1 = { x :2: O, x · y :2: O} which is true for ( x, y) = (0, -5), a point far away from 
SL. Hence Z1 would not be a valid certificate for L. 

Fig. 3.1 A decision tree for SL= {(x,y) I x,y :2: O} 

The problem hidden in the example above is the fact that Sa> can be a proper 

superset of Sa,op, Op E ~~I, whereas always Sa,> ~ s&,op· It s~~ms difficult to fix 
Rabin's proof only by slight changes of his definitions because the whole proof depends 
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heavily on the fact that ';::::'is used everywhere instead of'>'. (Remark : We found this 
bug when we observed that the first step in his proof is to simply forget about this strange 
polynomial Q whereas this very polynomial Q is needed when the proof is applied to 
decision trees). 

We close this Section with some simple geometric observations. 

Lemma3.3 Let L = {li, ... , lm} be a set of linear functions. Let h be a hyperplane with 
defining function l and let x be some point on h. 

(a) Let C ~ IR.n be truly n-dimensional and 91, ... ,gk be a set of nonzero 
functions from Fn· Then for all x E C and all€> 0 a z E C 0 n Bn(x, €) 
exists such that 9i( z) =f=. 0 for all i, i.e. each x E C can be slightly 
perturbed within C 0 to avoid the zerosets of all the 9i· 

(b) Let 0 -;f= g E Fn with l not dividing g. Then for all€> 0 a z E Bn(;n,E) 
exists with l(z) · g(z) > 0. 

( c) If an € > 0 exists such that Bn(x, €) - h ~ SL,> then x E SL,> . 

( d) Let Z be a strict certificate for L. If an € > 0 exists such that h n 
Bn( x, €) ~ S z then li( x) > 0 for all li =f l, i.e. if some small environment 
of x within some hyperplane does not stick outside of S z then x must be a 
point within SL,> or lying on its boundary if his a bounding hyperplane 

of SL,>. 

Proof: (a) C 0 n Bn(x, €) is an open set in IR.n. Then (F4) proves the claim. 

(b) From (F8) and (F6) it follows that there must be a y E h n Bn(x, ~) with 
g(y) =f=. 0. But then sgn(g) is constant in Bn(Y, 1) for a ~ > I > 0. Since 
h divides Bn(Y, I) into two halves with different signs of l there exists a z E 

Bn(y,1) ~ Bn(x,E) with l(z) · g(z) > 0. 

( c) Obvious. 

(d) x E Sz ~ SL implies li(x) ;:::: 0 for all i. If li(x) = 0 and li =f=. l for an i then 
li divides the (n-1)-dimensional ball h n Bn(x, t) into two halves (h n h is 
a (n-2)-dimensional hyperplane in the (n-1)-dimensional space h), and li is 
positive in one of the halves and negative in the other. But this contradicts 
h n Bn(x, t) ~ Sz ~ SL. D 

4. Yao's Theorem (Improved) 

In [Y89] A.C. Yao showed that the size of a certificate which uses only linear functions 
(i.e. from Ln) is bounded from below by the number of linearly independent functions in 
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the target set L. He raised the question whether this result generalizes to certificates 
which use multilinear functions (from L~). In this Section we will prove that it does 
indeed generalize by extracting and exploiting the main idea behind Yao's proof (which is 
carefully hidden in [Y89]). 

Theorem4.1 Let (G,Opa), G CL~, be a certificate for some (L,OpL), L C Ln. If 
Sa=/=- 0 then JZJ ~ n-rank(L). Hence any accepting path in a decision tree 
for SL,opL with functions from L~ must have length at least n - rank(L). 

Proof: The Theorem follows immediately from the next Theorem and Lemma 2.1. D 

Theorem4.2 Let G = {g1, ... ,gk} CL~ and Op E !:J..k. If Sa,op =/=- 0 then there exists a 
linear variety V ~ Sa,Op of dimension n - k. 

A similar Theorem (for Ln only) was stated in [Y89] but there was no Lemma 2.1 so 
the proofs became rather complicated. The proof of Theorem 4.2 is obtained by induction 
on k but one has to be very careful about some subtle difficulties (the proof is quite trivial 
in the case of linear functions only). The inductive step is based on the following reduction 
scheme. 

Reduction4.3 Let G = {g1, ... ,gk} CL~ and Op E !:J..k. Leth be a hyperplane in !Rn. 
Then we define G' C L~_1 and Opi by 

{

9ilh 
l:= .. 

i not existmg 

opi := opi if g~ exists. 

if 9iJ h :;E 0; 

if 9ilh = O; 

Then obviously JG'I ::; IGI and gHa::) = 9i(a::) for all a:: E h. But we also need 
0 =/=- Sa1 ~ Sa , which is not necessarily true. In fact, this may fail for three reasons. 
Firstly, if h n Sa = 0 then Sa, = 0. Secondly, if 9i = l 2 

• ili where l is the defining function 
of h then we discard 9i in the reduction step; but if opi ='>'this can add points to Sa1 
which may not be in Sa, namely all points z Eh with iJi(z) < 0 which are not excluded by 
other constraints. And thirdly, if l is a common factor of several of the 9i (which are all 
missing in G') then Sa, can also be larger than Sa. For example, if Z = ({a::, a:: ·y, a::+5}, >) 
and his the hyperplane (a::= 0) then the reduced certificate is just ({a::+ 5}, >),which is 
true everywhere on h whereas only the upper half of h bounds Sz. 

In the next seven Lemmas we will show how to solve these problems by transforming 
an arbitrary certificate into a certificate of at most the same size which does not cause any 
of these problems. First we will show that we can w.l.o.g. assume that the certificates do 
not use any '=/=-'-comparisons. 
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Lemma4.4 Let G = fo1, ... ,gk} C L':i, and Op E A_k. If Sa,op =/= 0 then there exists an 
Op', '=/=' tf. Op', such that 0 =/= Sa,Op' ~ Sa,op. 

Proof: Let z E Sa,Op be arbitrary. Now we define 

{ 

opi, if opi E {>, ~' = }; 
op~:= >, if OPi ='=/='and 9i(z) > O; 

<, if OPi ='=/='and 9i(z) < 0. 

Then z E Sa,Op' ~ Sa,op . D 

So we can from now on w .l.o.g. assume that A = { >, ~, =}. The next Lemma shows 
that we can sometimes restrict A even further to{>}, i.e. we have to consider only strict 
certificates. 

Lemma4.5 Let G = fo1, ... ,gk} C L':i, and Op E Ak. If S~,op =/= 0 then 0 =/= Sa,> ~ 
Sa,op. 

Proof: S~,Op f. 0 implies the existence of an x E Sa,op and an E > 0 such that Bn(x, e) ~ 
Sa,op . Then Lemma 3.3.(a) guarantees the existence of a z E Bn(x, e) with 
9i( z) =/= 0 for all i. But this means 9i(z) > 0 for all i. Hence z E Sa,> . D 

The next two Lemmas show how to solve the third problem for strict certificates, i.e. if 
the hyperplane l( x) = 0 is used in the reduction and l is a common factor of several of the 

9i· 

Lemma4.6 Let F = {l·f1,l·fd and G = {l·f1,f1 ·f2} with Ji,f2 E Fn and 
l E Ln· Then SF,> =Sa,>, i.e. we can replace the "bad" certificate F with 
two occurrences of l by the "good" certificate G with only one occurrence of 
l (at least if l is not a factor of f2). 

Proof: xESF,> {:=::} l(x)·f1(x)>O /\ l(x)·f2(x)>O 

{:=::} sgn(l(x)) = sgn(f1(x)) = sgn(f2(x)) 

{:=::} l(x) · f1(x) > 0 /\ fi(x) · h(x) > 0 

{:=::} x E Sa,> . o 

Lemma4.7 Let G = {91, ... ,9k} C L~ with l E Ln dividing 91· Then a G' 
foi, ... , 9G C L':i, with Sa,> = Sa,,> exists such that l is at most a 
squared factor of gi and does not divide any of the other 9~, i ~ 2. 

Proof: Assume 9i = za; · fli, ai E IN0 , for all i. We proceed in two steps. First we show 
that the multiplicities of the factor l can be made small, i.e. 1 or 2 for 91 and 0 or 
1 for 92, ... ,9k· Then we show how to eliminate the factor l from all 9i, i ~ 2. 

11 



(1) We define 

" zb A wi"th bi -- { 
2

' 9i := 1
• 9i 1, 

and for i = 2, ... , k 

9~1 := zb; . [Ji with bi= { o, 
1, 

if ai is even; 
if ai is odd; 

if ai is even; 
if ai is odd. 

Then JGJ = JG"J and Sa,> 
l2 (x) 2 0 for all x E !Rn) : 

San,> which can be seen as follows (observe 

x E Sa,> -{=:::}- Vi : 9i( x) = za; · [Ji( x) > 0 

-{=:::}- l(x)=JO /\ Vi: zb;(x)·[Ji(x)>O 

-{=:::}- 9i'(x) > 0 /\ Vi 2 2 : g?(x) > 0 

(2) If bi = 0 for i 2 2 then we can choose G' := G". Otherwise bj = 1 for a 
j 2 2. If bi = 2 then we must exchange 9i' and 9j', i.e. we define 9i' := 9j' and 
9j' := fJi. Now the multiplicity of the factor l in all 9y is at most 1 and still 
Sa,> = Sa",>. But then we can apply Lemma 4.6 to all pairs (9i', g?) where 
l divides 9~1 , i 2 2. This gives us our G'. D 

The G' constructed in the previous Lemma may still have gi = l 2 ·[Ji which was our 
second problem. But the next Lemma shows that we can neglect squared factors without 
increasing the set of solutions to much. 

Lemma4.8 Let l E Ln and G = foi, ... , 9k} C L~ with 9i = l2 ·[Ji. Define G' by 
9i := 9i and 9~ := 9i, i 2 2. Then Sa,> ~ Sa,,> ~ Sa,> . 

Proof: The first inclusion is trivial. If Sa1 ,> = f/J then nothing is to show. So let 
x E Sa',> be arbitrary. Since Sa',> is truly n-dimensional, Lemma 3.3.(a) implies 
the existence of a sequence (xi)i=i,2, ... of points Xi E Sa',> with limi--+oo Xi = x 
and l(xi) =/ 0 for all i. But this implies Xi E Sa,> for all i and hence x E Sa,>. o 

Cor. 4.9 Let G = foi, ... ,9k} CL~ and l E Ln dividing one of the 9i· Then a G' CL~ 
exists such that IG'I = JGI, Sa,> ~ Sa',> ~ Sa,> and l is unique in G, 
i.e. divides exactly one of the 9~, and l 2 does not divide any of the 9i. 

Proof: Lemmas 4. 7 and 4.8. D 

In this case we can prove that Reduction 4.3 works properly. 
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Lemma4.10 Let h be a hyperplane with defining function l. Let G = {g1, ... ,9k} C 

L~ such that l does not divide any of the 9i or is unique in G. If G' is 
constructed by Reduction 4.3, applied to G and h, then Sa,,> ~ Sa,> . 

Proof: If l does not divide any of the 9i then G' = Glh· So assume 91 = l · 91, i.e. 9~ 

does not exist. Let :z: E Sa,,> ~ h be arbitrary. Then an € > 0 exists such that 
9i(z) > 0 for all i 2:: 2 and z E Bn(x, E). Let Ej be a sequence of numbers with 
E 2:: Ej > 0 and limj->oo Ej = 0. Then, by Lemma 3.3.(b), Xj E Bn(x, €j) exist with 
91(£j) > 0. Hence :z: E Sa,>. D 

Proof of Theorem 4.2 : 

Because of Lemma 4.4 we can assume Op E {>, 2::, = }. The proof is obtained by induction 
on k = IGI. 

k = 1 : Let G = fo1}. Now we have to consider two cases. Either 91 is a product of 
squared factors, i.e. 91 = l2 

• 9i with l E Ln and 91 E £~. We define V := St,=· 
Then trivially dim V = n - 1 and V ~ Sa,Op· 

Or 91 has a linear factor l of odd multiplicity. Then w .l.o.g. 91 = l · 91 with 
91 E £~ and l does not divide 91 (s9n(l3 

• 91) = s9n(l · 91)). We define V := Si,=· 
If op1 E {2::, =} then trivially V ~ Sa,op· Otherwise, Lemma 3.3.(b) implies that 
each :z: E V is also in Sa,op· 

k > 1 : Let G = {g1, ... , 9k}, 9i E £~. Now we have to consider two cases. 

S&,op = 0 : Let z E Sa,op be arbitrary. Since s&,op = 0 there must be an l E Ln such 
that l(z) = 0 and w.l.o.g. 91 = l · 91· Let h be the hyperplane defined by l 
and G' constructed by Reduction 4.3, applied to G and h. Then obviously 
z E Sa',Op' and IG'I < k. Hence, by induction hyptothesis, a linear variety 
V ~ Sa',Op' of dimension at least (n - 1) - (k -1) = n - k must exist. 

Then for all :z: E V a sequence (:z:j )j=l,2, ... exists with limj->oo Xj = :z: 
and Xj E Sa',Op' for all j, i.e. 9I{xj) op~ 0 for all i such that 9~ E G' exists. 
All 9i which were discarded in the reduction must contain the factor l; hence 
9i( Xj) = 0 for all these i and all j. Furthermore, 9i( z) = 0 for all these i and, 
since z E Sa,op, all these opi must be from {2::, = }. But then Xj E Sa,Op 
for all j (because 9~ = 9i I h and op~ = opi if it exists) and hence :z: E Sa,Op· 

s&,op f. 0 : Then we can assume Op = {> P by Lemma 4.5. Sa,> is a subset of !Rn 
which is bounded by hyperplanes whose defining functions are all among the 
linear factors of the 9i. Let h be such a bounding hyperplane with defining 
function land assume w.l.o.g. that 91 = l · 91. By Cor. 4.9, we can assume 
that l is unique in G. 

Let C be the (n - 1)-face of Sa,> which is supported by h and let z 
be an arbitrary point in C 0

• Then 91 (z) = 0 and 9i(z) f. 0 for all i 2:: 2. 
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Since all 9i have a constant sign in Bn(z, f.) for some small f.> 0 (the 9i are 
continuous) and z E Sa,>, we even know that 9i(z) > 0 for all i 2 2. 

Reduction 4.3, applied to G and h, gives us a G' with gi(z) = 9i(z) > 0 
for all i 2 2 (and g~ not existent). Hence z E Sa',>' i.e. Sa',> =J:. 0. And 
also Sa',> ~Sa,> by Lemma 4.10. 

Since IG' I < k we have, by induction hypothesis, a linear variety V ~ 
Sa',> of dimension ( n - 1) - ( k - 1) = n - k. Therefore we know that for all 
x E Va sequence (xj )j=1,2, ... exists with limj ....... = Xj = x and Xj E Sa',> for 
all j, i.e. 9i(Xj) > 0 for all i 2 2. But then, for all j, Ej > 0 exist such that 
9i( Zj) > 0 for all Zj E En( x j, Ej) and i 2 2. We can w .l.o.g. assume that 
limj->= Ej = 0. Since Xj Eh, by Lemma 3.3.(b) Xj E Bn(Xj, Ej) exist with 
g1 (xj) = l(xj) ·91 (xj) > O and also 9i(xj) > 0 for i 2 2. Hence x E Sa,>. o 

We now apply Theorem 4.1 to the problem of finding the k largest elements, including 
their individual rankings, of n real numbers. Let Wk(n) denote the worst-case complexity 
in the decision tree model when arbitrary functions l E L~ are allowed. The following 
Theorem generalizes Yao's Theorem ([Y89], Theorem 1) to arbitrary functions L~ (instead 
of L;). 

Theorem4.11 Wk(n) 2 n - k + '2.:i<i<k-1 log(n - i + 1) for all n > k 2 2. 

Proof: (Sketch, see [Y89] for complete proof) Let G C L~ be a certificate for SL = 
{x1 - Xi I 2 :::; i :::; n}. Then rank(L) = n - 1 and hence IGI 2 n - 1 by 
Theorem 4.1. It follows that any decision tree which finds the maximum of n 
numbers must have at least 2n-l leaves (because each path is a certificate for 
maximum). Now partition the leaves of a decision tree T which finds the k largest 
numbers into Il1 <i<k-l ( n - i + 1) disjoint classes, each class containing the leaves 
which output Xi1 ;-. :-: , Xik-i as the k-1 largest numbers for some fixed ii, ... , ik-l · 

Then each class induces a subtree of T which finds the maximum of n - k numbers 
and hence has at least 2n-k leaves. D 

5. Rabin's Theorem (Corrected) 

In [Rab] M. Rabin showed that the size of a complete proof for a sign-independent 
linear target set Lis bounded from below by ILi if arbitrary polynomials or even analytic 
functions are allowed in the complete proof. But we have seen in Section 3 that his 
notion of complete proofs seems to be useless in the context of decision trees. In this 
Section we will prove an analogous result with respect to our definition of a complete 
proof. In fact, our result is stronger than Rabin 's because we bound the size of the complete 
proof by n - rank(L), and more general because we allow a wider class of functions Fn· 
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Throughout this Section, F = (Fn)n=I,2, ... will be some set satisfying (Fl)-(F6) (but it is 
always possible to think of Fn as real polynomials inn variables). All certificates will use 
functions from Fn· 

Theorem 5.1 Let Z be a complete proof for some (L, OpL), L C Ln, w.r.t. some Q E Fn. 
If S£,0PL f. 0 then IZI 2:: n - rank(L). Hence any decision tree for SL,OpL 
with functions from Fn must have depth at least n - rank(L). 

We remark that this bound does not necessarily hold if S£,0PL = 0. For example, 
l(x) 2:: 0 and -l(x) 2:: 0 both together are equivalent to l(x) = O; hence any linear subspace 
V of lR n of dimension k < n can be achieved as target set using a set L of 2( n - k) linear 
functions with rank(L) = k. But there is a trivial complete proof Z for V which consists 
of only one certificate, and this certificate consists of only one quadratic polynomial (let 
g = xi + · · · + x;_k; then Sg,= is equal to IRk), i.e. IZI = 1. 

Since SJ,,0PL f. 0, we can w.l.o.g. assume that SL,> f. 0 and Z is a strict complete 
proof for (L, >) (Lemma 3.2). Hence we can also assume that all functions 9ij used in Z 
are "¥=. 0. This makes the proofs in this Section a little bit easier than they have been in 
Section 4. The proof of the Theorem will be obtained by induction on JZJ. The inductive 
step is based on the following reduction scheme which is an extension of Reduction 4.3. 

Reduction 5.2 Let Z = {Z1 , ... , Zp} be a strict complete proof for L w.r.t. Q, where 
Zi = ( Gi, >) with Gi = {9i1, ... ,9ik} c Fn. Let h be a hyperplane. 
Then we define a set Z' of ( n - 1 )-dimensional certificates and a new 
( n - 1 )-dimensional target set L' by 

(1) Q' := Il9ijlh where the product is taken over all gij which are not 

dividable by l. 

(2) Zi is the result of Reduction 4.3 applied to Zi and h; if S z~ = 0 
then Zi is discarded. ' 

(3) L' is the result of Reduction 4.3 applied to Land h. 

Then obviously JZ'J :S JZI and 9ij(x) = 9ij(x) and li(x) = li(x) for all x E h 
and all i, j. If h is defined by one of the linear functions li E L then we even know that 
IZ' I :S IZ l-1 because each Zi is either shortened by Reduction 4.3 or it completely vanishes 
(if it does not contain the factor l) as the next Lemma shows. 

Lemma5.3 Let Zi be a strict certificate for Land let l E L define hyperplane h. If l does 
not divide any of the functions of Zi then Reduction 4.3, applied to Zi and 
h, yields a certificate Zi with Sz:,> = 0. 

Proof: Zi = Zil h because l does not divide any of the functions used in Zi· Assume that 
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an :z.: E Szi,> ~ h exists. Then also :z.: E Sz;,> and there exists an E > 0 such that 
Bn(:.u, E) ~ Sz;,>· But this contradicts the fact that not both sides of h can belong 
to SL. D 

It remains to show that Z' is a strict complete proof for L' w.r.t. Q'. Unfortunately, 
this is not always true as we have seen in the last Section. So, once again, we need some 
transformations before we can prove that Reduction 5.2 works (Lemma 5.7). Similarly 
to Lemma 4.8 we first show that in a strict complete proof squared linear factors are not 
important. 

Lemma5.4 Let Z = {Z1 , ... , Zp} be a strict complete proof for L w.r.t. Q and 9ii = l 2 ·!Jii 
a function used in certificate Zi with l E Ln. We define another set of 
certificates Z' which only differs in Zi, namely we define 9~j := !Jij· Then Z' 
is also a strict complete proof for L w.r.t. Q, and obviously IZ'I :; IZJ. 

Proof: We must show (Cl) and (C2) for Z'. 

(Cl) We must show that Z~ is still a certificate for L. Obviously Sz; ~ Sz(· Let 
h be the hyperplane defined by l. If :z.: E h n S v then an E > 0 exist~ such 
that Bn(:.u, E) ~ Sz~. But then Bn(:.u, E) - h ~ s~i ~ SL and hence :z.: E SL 
by Lemma 3.3.( c). ' 

( C2) :z.: E S Z; implies :z.: E S Z!. Therefore SL is still covered by the certificates of 
Z'. • D 

The next Lemma is quite fundamental for our inductive proof because it shows that 
each defining function of a bounding hyperplane of SL must divide at least one of the 
functions used in any strict complete proof for L. 

Lemma5.5 Let Z be a strict complete proof for L w.r.t. Q and SL =J. 0. Let h be a 
bounding hyperplane of SL with defining function l. Then there is a function 
g used in Z such that l divides g. 

Proof: Let 0 i= f := IT g and assume tl h i= 0. Then there exists an :z.: E h n SL with 
yEZ 

f(:.u) =J. 0 (by (F7) and (F4) and because h bounds SL)· But then an E > 0 
exists such that all g in Z have a constant sign in Bn(:.u, E) which means that 
Bn(:.u,E) ~SL by (Cl), a contradiction. Hence flh = 0 and l divides f by (F6). 

But l is prime and hence divides one of the g in Z. D 

Cor. 5.6 Let Z be a strict complete proof for L w.r.t. Q and SL =J. 0. Leth be a bounding 
hyperplane of SL with defining function l. Then there exists a strict complete 
proof Z' for L w.r.t. Q with IZ':; IZI and l divides some function g used in Z' 
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but l 2 does not. 

Proof: First eliminate in Z all linear factors of multiplicity 2 or more using Lemma 5.4, 
then apply Lemma 5.5. o 

In this case we can prove that Reduction 5.2 works properly. 

Lemma5.7 Let Z be a strict complete proof for L w.r.t. Q and SL -=/: 0. Let h be a 
bounding hyperplane of SL with defining function l. If l is unique in each 
certificate where it appears as a linear factor then Reduction 5.2, applied with 
hyperplane h, yields a strict complete proof Z' for L' w.r.t. Q'. Furthermore 
IZ'I s; IZI -1. 

Proof: We must show (Cl) and (C2) for Z'. Let Z = {Z1 , ••• ,Zp} with Zi = (Gi,>) 
and Gi = {9il,···i9ik}· By Lemma5.3, l divides w.l.o.g. 9i1i hence ZJ = (G~,>) 
with G~ = {9i2 J h, ... , 9ik I h} for all i. Furthermore, w .l.o.g. l = l1 where L = 
{l1, ... ,lm}, and hence L' = {l2lh' ... ,lmlh}. 

(Cl) Let x E Sz( for an i. Then an€> 0 exists such that hnBn(x, c) ~ Sz( ~ Sz; 
' ' by Lemma 4.10. But then li(x)-=/: 0 for i 2: 2 by Lemma 3.3.(d) and, since 

x E sL; even li(X) > 0. Hence x E SL'. 

(C2) Let x E SL' ~SL with Q'(x)-=/: 0. There exists a sequence (xs)s=l,2, ... with 
Xs E SL, Q(xs) -=/: 0 and lim8 _,00 X8 = x. For each X8 there is an index is 
such that x 8 E Sz; •. Since we only have a finite number of certificates, one 
index must be infinitely often in the sequence (is)s=l,2, ... · Let i be this index. 

Therefore we have a subsequence (Ys)s=l,2,. .. of (xs)s=l,2, ... with Ys E Sz; 
and lim8 _,00 Ys = x. Hence, for all s, 9ij(Xs) > 0 for all j and therefore 
9iJ(x) 2: 0. Since Q'(x)-=/: 0 we even have 9iJ(x) > 0 for j 2: 2. 

Assume 9i1 ( x) > 0. Then l does not divide any of the 9ij and hence, by 
Lemma 5.3, Sz1 = 0, a contradiction. Therefore 9ii(x) = 0 and l divides 9i1 
(otherwise, 9i1 ~ould be a factor of Q' and then Q'(x) = 0, a contradiction). 
Therefore ZJ exists and x E S Z' . 

• 
JZ'J s; JZJ - 1 follows directly from Lemma 5.3. D 

Proof of Theorem 5.1 : 

As mentioned before, we can assume that Z is a strict complete proof for (L, >) and 
SL,> -=/: 0 (Lemma 3.2). By Lemma 2.1.(c) we know that there is a hyperplane h in L 
which bounds SL and which contributes to a rank(L)-face in SL. Let l be the defining 
function of h. By Car. 5.6 we can assume that l is a linear factor of some of the functions 
used in Z but 12 is not. We can even further assume that l is unique in each certificate of 
Z where it appears as a linear factor (Lemma 4.7). 
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Now we can apply Reduction 5.2 to Z, Land hand know by Lemma 5.7 that Z' is a 
strict complete proof for L' w.r.t. Q' with JZ'I :::; IZl-1. Furthermore, rank(L') = rank(L). 
By induction hypothesis, IZ'J 2:: (n - 1) - rank(L') and therefore JZJ 2:: 1 + IZ'J 2:: n -
rank(L). D 

6. Conclusions 

The proofs in this paper are mainly based on two techniques. One technique is to 
examine the number of free dimensions of the target set and the set of solutions for a 
certificate (Theorem 4.2); this seems to be a new approach to derive lower bounds for 
nonlinear decision trees. The other technique is not to stick to the given decision tree but 
to transform it into another decision tree with nicer properties and of at most the same 
depth. Although this technique is not new, it is not widely used. There is one paper by 
Ramanan ([Ram]) proposing a similar approach by introducing artificial components thus 
increasing the quality of classical lower bounds which are based on counting the number 
of connected components. 

The proof of the generalization of Yao's Theorem is quite straightforward when our 
dimension-technique is used, even if some details turn out to be rather tricky. The Theorem 
can not be further generalized by allowing arbitrary polynomials in the certificates because 
two quadratic polynomials can have an arbitrarily small solution set which can be contained 
in any target set. But [Y89] mentions a few more interesting problems. One of them is the 
question whether lower bound proofs for "simple" combinatorial problems (such as finding 
the k largest numbers) can always be carried out purely combinatorially, i.e. without the 
detour of geometric arguments. 

At the first glance it seems to be surprising that the methods used in the proof of 
Yao's Theorem can also be used to prove Rabin's Theorem. But a closer look at our proof 
of Rabin's Theorem shows that in fact we inductively prove the existence of a certificate 
with a set of solutions which is bordered by a rank(L)-face of Arr(H) and which has the 
hyperplanes defining this rank(L)-face as linear factors (unfortunately, things are more 
complicated; what we really prove is that there could be such a certificate). But this is 
very similar to Yao's Theorem. 

Our proof of Rabin's Theorem is actually also a generalization. Firstly, because our 
notion of complete proofs allows arbitrary comparison operators instead of only '2::' which 
makes it equivalent to decision trees (see Section 3). And secondly, because our proof 
applies to a wider class of functions than only polynomials or analytic functions. In fact, 
Rabin claimed that his Theorem may be not true if the condition "analytic functions" 
is relaxed and he gave an example of a decision tree using nonanalytic functions which 
computes the maximum of n numbers with only log n comparisons. But our proof (and 
actually also Rabin's original proof) shows that the reason why the Theorem can not be 
applied to these functions is not that they are nonanalytic but mainly the fact that these 
functions are not defined on the hyperplanes bounding the target set SL. And in this case 
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the inductive step which restricts everything to one of these bounding hyperplanes can not 
work. This leads us to the following observation : We do not really require the functions 
used in a decision tree to satisfy (Fl)-(F6) everywhere in IRn; our proof only requires them 
to satisfy these properties in a small environment around the rank(L)-face of SL which is 
used in the inductive step. This is similar to the method of focussing on some convex set 
C ~ IRn in [Rab]. 

The main open problem now seems to be to generalize Rabin's Theorem to arbitrary 
target sets, i.e. which are not defined by linear inequalities but by arbitrary polynomial 
inequalities. This would not be too difficult if we considered complex polynomials instead 
of real polynomials. Unfortunately, real algebraic varieties are much more difficult to 
handle than complex varieties. A first step in this direction was taken by Jaromczyk 
([Ja]) who solved all difficulties arising from real algebraic varieties by defining them away, 
i.e. imposing heavy restrictions onto the functions used. Even worse, it is nontrivial to 
verify for a given problem that his Theorems can be applied. 
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