English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Multiplexing molecular tension sensors reveals piconewton force gradient across talin-1

MPS-Authors
/persons/resource/persons145475

Ringer,  Pia
Grashoff, Carsten / Molecular Mechanotransduction, Max Planck Institute of Biochemistry, Max Planck Society;

/persons/resource/persons128315

Cost,  Anna-Lena
Grashoff, Carsten / Molecular Mechanotransduction, Max Planck Institute of Biochemistry, Max Planck Society;

/persons/resource/persons127894

Freikamp,  Andrea
Grashoff, Carsten / Molecular Mechanotransduction, Max Planck Institute of Biochemistry, Max Planck Society;

/persons/resource/persons78025

Grashoff,  Carsten
Grashoff, Carsten / Molecular Mechanotransduction, Max Planck Institute of Biochemistry, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Ringer, P., Weissl, A., Cost, A.-L., Freikamp, A., Sabass, B., Mehlich, A., et al. (2017). Multiplexing molecular tension sensors reveals piconewton force gradient across talin-1. Nature methods, 14(11), 1090-1096. doi:10.1038/NMETH.4431.


Cite as: https://hdl.handle.net/11858/00-001M-0000-002E-95F4-2
Abstract
Forster resonance energy transfer (FRET)-based tension sensor modules (TSM s) are available for investigating how distinct proteins bear mechanical forces in cells. Yet, forces in the single piconewton (pN) regime remain difficult to resolve, and tools for multiplexed tension sensing are lacking. Here, we report the generation and calibration of a genetically encoded, FRET -based biosensor called FL-TSM, which is characterized by a near-digital force response and increased sensitivity at 3-5 pN. In addition, we present a method allowing the simultaneous evaluation of coexpressed tension sensor constructs using two-color fluorescence lifetime microscopy. Finally, we introduce a procedure to calculate the fraction of mechanically engaged molecules within cells. Application of these techniques to new talin biosensors reveals an intramolecular tension gradient across talin-1 that is established upon integrin-mediated cell adhesion. The tension gradient is actomyosin-and vinculin-dependent and sensitive to the rigidity of the extracellular environment.