Title:
Electronic and mechanical properties of chemically functionalized nanowires

Thumbnail Image
Author(s)
Bidasaria, Sanjay K.
Authors
Advisor(s)
Marchenkov, Alexei
Advisor(s)
Editor(s)
Associated Organization(s)
Organizational Unit
Organizational Unit
Series
Supplementary to
Abstract
Organic and inorganic nanostructured materials, nano- and mesoscale objects and devices, and their integration into existing microelectronic technologies have been at the center of recent fundamental and applied research in nanotechnology. One of the critical needs is to develop an enhanced predictive capability of structure-property correlations and enable robust high performance systems by design. My thesis work was concerned with the theoretical and experimental studies of electronic and mechanical properties of chemically functionalized nanowires. I will describe a theoretical approach for investigating structure-property correlations in atomic-sized metallic wires based on the Density Functional Theory (DFT) for structure calculations and the Non-equilibrium Green's Function (NEGF) technique for electronic transport properties simulations. This synergistic approach is shown to yield the atomic structure of the smallest niobium nanowires. Furthermore, the method was applied to simulate electronic properties of chemically functionalized graphene nanoribbons. Further, I will demonstrate an experimental technique for simultaneous measurements of force and conductance in atomic-size objects based on quartz tuning fork piezoelectric sensors. A peculiar scaling effect, relevant for a broad range of test and measurement applications, namely the squeeze film effect, was observed during the development of the sensors. Using theoretical analysis based on finite element simulations of the hydrodynamic behavior of the sensors in a broad range of ambient conditions, I explain the observed phenomenon.
Sponsor
Date Issued
2008-12-16
Extent
Resource Type
Text
Resource Subtype
Dissertation
Rights Statement
Rights URI