Evolutionary variation in the expression of phenotypically plastic color vision in Caribbean mantis shrimps, genus Neogonodactylus
Evolutionary variation in the expression of phenotypically plastic color vision in Caribbean mantis shrimps, genus Neogonodactylus
Date
2006-03-07
Authors
Cheroske, Alexander G.
Barber, Paul H.
Cronin, Thomas W.
Barber, Paul H.
Cronin, Thomas W.
Linked Authors
Alternative Title
Citable URI
As Published
Date Created
Location
DOI
Related Materials
Replaces
Replaced By
Keywords
Abstract
Many animals have color vision systems that are well suited to their local environments.
Changes in color vision can occur over long periods (evolutionary time), or over relatively short
periods such as during development. A select few animals, including stomatopod crustaceans,
are able to adjust their systems of color vision directly in response to varying environmental
stimuli. Recently, it has been shown that juveniles of some stomatopod species that inhabit a
range of depths can spectrally tune their color vision to local light conditions through spectral
changes in filters contained in specialized photoreceptors. The present study quantifies the
potential for spectral tuning in adults of three species of Caribbean Neogonodactylus
stomatopods that differ in their depth ranges to assess how ecology and evolutionary history
influence the expression of phenotypically plastic color vision in adult stomatopods. After 12
weeks in either a full-spectrum “white” or a narrow-spectrum “blue” light treatment, each of the
three species evidenced distinctive tuning abilities with respect to the light environment that
could be related to its natural depth range. A molecular phylogeny generated using
mitochondrial cytochrome oxidase C subunit 1 (CO-1) was used to determine whether tuning
abilities were phylogenetically or ecologically constrained. Although the sister taxa N. wennerae
and N. bredini both exhibited spectral tuning, their ecology (i.e. preferred depth range) strongly
influenced the expression of the phenotypically plastic color vision trait. Our results indicate
that adult stomatopods have evolved the ability to undergo habitat-specific spectral tuning,
allowing rapid facultative physiological modification to suit ecological constraints.
Description
Author Posting. © The Author(s), 2006. This is the author's version of the work. It is posted here by permission of Springer for personal use, not for redistribution. The definitive version was published in Marine Biology 150 (2006): 213-220, doi:10.1007/s00227-006-0313-5.