Impacts of deep-sea mining on microbial ecosystem services

Thumbnail Image
Date
2020-01-13
Authors
Orcutt, Beth N.
Bradley, James
Brazelton, William J.
Estes, Emily R.
Goordial, Jacqueline M.
Huber, Julie A.
Jones, Rose M.
Mahmoudi, Nagissa
Marlow, Jeffrey
Murdock, Sheryl
Pachiadaki, Maria G.
Alternative Title
Date Created
Location
DOI
10.1002/lno.11403
Related Materials
Replaces
Replaced By
Keywords
Abstract
Interest in extracting mineral resources from the seafloor through deep‐sea mining has accelerated in the past decade, driven by consumer demand for various metals like zinc, cobalt, and rare earth elements. While there are ongoing studies evaluating potential environmental impacts of deep‐sea mining activities, these focus primarily on impacts to animal biodiversity. The microscopic spectrum of seafloor life and the services that this life provides in the deep sea are rarely considered explicitly. In April 2018, scientists met to define the microbial ecosystem services that should be considered when assessing potential impacts of deep‐sea mining, and to provide recommendations for how to evaluate and safeguard these services. Here, we indicate that the potential impacts of mining on microbial ecosystem services in the deep sea vary substantially, from minimal expected impact to loss of services that cannot be remedied by protected area offsets. For example, we (1) describe potential major losses of microbial ecosystem services at active hydrothermal vent habitats impacted by mining, (2) speculate that there could be major ecosystem service degradation at inactive massive sulfide deposits without extensive mitigation efforts, (3) suggest minor impacts to carbon sequestration within manganese nodule fields coupled with potentially important impacts to primary production capacity, and (4) surmise that assessment of impacts to microbial ecosystem services at seamounts with ferromanganese crusts is too poorly understood to be definitive. We conclude by recommending that baseline assessments of microbial diversity, biomass, and, importantly, biogeochemical function need to be considered in environmental impact assessments of deep‐sea mining.
Description
© The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Orcutt, B. N., Bradley, J. A., Brazelton, W. J., Estes, E. R., Goordial, J. M., Huber, J. A., Jones, R. M., Mahmoudi, N., Marlow, J. J., Murdock, S., & Pachiadaki, M. Impacts of deep-sea mining on microbial ecosystem services. Limnology and Oceanography, 65(7), (2020): 1489-1510, doi:10.1002/lno.11403.
Embargo Date
Citation
Orcutt, B. N., Bradley, J. A., Brazelton, W. J., Estes, E. R., Goordial, J. M., Huber, J. A., Jones, R. M., Mahmoudi, N., Marlow, J. J., Murdock, S., & Pachiadaki, M. (2020). Impacts of deep-sea mining on microbial ecosystem services. Limnology and Oceanography, 65(7), 1489-1510.
Cruises
Cruise ID
Cruise DOI
Vessel Name
Except where otherwise noted, this item's license is described as Attribution-NonCommercial 4.0 International