Signal-specific amplitude adjustment to noise in common bottlenose dolphins (Tursiops truncatus)

Thumbnail Image
Date
2019-11-08
Authors
Kragh, Ida M.
McHugh, Katherine
Wells, Randall S.
Sayigh, Laela S.
Janik, Vincent M.
Tyack, Peter L.
Jensen, Frants H.
Alternative Title
Date Created
Location
DOI
10.1242/jeb.216606
Related Materials
Replaces
Replaced By
Keywords
Cetacean
Signature whistle
Communication
Anthropogenic noise
Masking
Lombard response
Abstract
Anthropogenic underwater noise has increased over the past century, raising concern about the impact on cetaceans that rely on sound for communication, navigation and locating prey and predators. Many terrestrial animals increase the amplitude of their acoustic signals to partially compensate for the masking effect of noise (the Lombard response), but it has been suggested that cetaceans almost fully compensate with amplitude adjustments for increasing noise levels. Here, we used sound-recording DTAGs on pairs of free-ranging common bottlenose dolphins (Tursiops truncatus) to test (i) whether dolphins increase signal amplitude to compensate for increasing ambient noise and (ii) whether adjustments are identical for different signal types. We present evidence of a Lombard response in the range 0.1–0.3 dB per 1 dB increase in ambient noise, which is similar to that of terrestrial animals, but much lower than the response reported for other cetaceans. We found that signature whistles tended to be louder and with a lower degree of amplitude adjustment to noise compared with non-signature whistles, suggesting that signature whistles may be selected for higher output levels and may have a smaller scope for amplitude adjustment to noise. The consequence of the limited degree of vocal amplitude compensation is a loss of active space during periods of increased noise, with potential consequences for group cohesion, conspecific encounter rates and mate attraction.
Description
Author Posting. © Company of Biologists, 2019. This article is posted here by permission of Company of Biologists for personal use, not for redistribution. The definitive version was published in Journal of Experimental Biology 222 (2019): jeb.216606, doi: 10.1242/jeb.216606
Embargo Date
Citation
Kragh, I. M., McHugh, K., Wells, R. S., Sayigh, L. S., Janik, V. M., Tyack, P. L., & Jensen, F. H. (2019). Signal-specific amplitude adjustment to noise in common bottlenose dolphins (Tursiops truncatus). The Journal of Experimental Biology, 222, jeb.216606.
Cruises
Cruise ID
Cruise DOI
Vessel Name
Collections