Please use this identifier to cite or link to this item: https://hdl.handle.net/1959.11/20417
Title: Daily torpor and hibernation in birds and mammals
Contributor(s): Ruf, Thomas (author); Geiser, Fritz  (author)orcid 
Publication Date: 2015
Open Access: Yes
DOI: 10.1111/brv.12137Open Access Link
Handle Link: https://hdl.handle.net/1959.11/20417
Abstract: Many birds and mammals drastically reduce their energy expenditure during times of cold exposure, food shortage, or drought, by temporarily abandoning euthermia, i.e. the maintenance of high body temperatures. Traditionally, two different types of heterothermy, i.e. hypometabolic states associated with low body temperature (torpor), have been distinguished: daily torpor, which lasts less than 24 h and is accompanied by continued foraging, versus hibernation, with torpor bouts lasting consecutive days to several weeks in animals that usually do not forage but rely on energy stores, either food caches or body energy reserves. This classification of torpor types has been challenged, suggesting that these phenotypes may merely represent extremes in a continuum of traits. Here, we investigate whether variables of torpor in 214 species (43 birds and 171 mammals) form a continuum or a bimodal distribution. We use Gaussian-mixture cluster analysis as well as phylogenetically informed regressions to quantitatively assess the distinction between hibernation and daily torpor and to evaluate the impact of body mass and geographical distribution of species on torpor traits. Cluster analysis clearly confirmed the classical distinction between daily torpor and hibernation. Overall, heterothermic endotherms tend to be small; hibernators are significantly heavier than daily heterotherms and also are distributed at higher average latitudes (~35°) than daily heterotherms (~25°). Variables of torpor for an average 30 g heterotherm differed significantly between daily heterotherms and hibernators. Average maximum torpor bout duration was >30-fold longer, and mean torpor bout duration >25-fold longer in hibernators. Mean minimum body temperature differed by ~13°C, and the mean minimum torpor metabolic rate was ~35% of the basal metabolic rate (BMR) in daily heterotherms but only 6% of BMR in hibernators. Consequently, our analysis strongly supports the view that hibernators and daily heterotherms are functionally distinct groups that probably have been subject to disruptive selection. Arguably, the primary physiological difference between daily torpor and hibernation, which leads to a variety of derived further distinct characteristics, is the temporal control of entry into and arousal from torpor, which is governed by the circadian clock in daily heterotherms, but apparently not in hibernators.
Publication Type: Journal Article
Source of Publication: Biological Reviews, 90(3), p. 891-926
Publisher: Wiley-Blackwell Publishing Ltd
Place of Publication: United Kingdom
ISSN: 1469-185X
1464-7931
Fields of Research (FoR) 2008: 060806 Animal Physiological Ecology
Fields of Research (FoR) 2020: 310907 Animal physiological ecology
Socio-Economic Objective (SEO) 2008: 970106 Expanding Knowledge in the Biological Sciences
Socio-Economic Objective (SEO) 2020: 280102 Expanding knowledge in the biological sciences
Peer Reviewed: Yes
HERDC Category Description: C1 Refereed Article in a Scholarly Journal
Appears in Collections:Journal Article

Files in This Item:
2 files
File Description SizeFormat 
Show full item record

SCOPUSTM   
Citations

510
checked on Mar 9, 2024

Page view(s)

1,162
checked on Oct 22, 2023
Google Media

Google ScholarTM

Check

Altmetric


Items in Research UNE are protected by copyright, with all rights reserved, unless otherwise indicated.