Artículo

Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

In 2015, the dominant greenhouse gases released into Earth’s atmosphere—carbon dioxide, methane, and nitrous oxide—all continued to reach new high levels. At Mauna Loa, Hawaii, the annual CO2 concentration increased by a record 3.1 ppm, exceeding 400 ppm for the first time on record. The 2015 global CO2 average neared this threshold, at 399.4 ppm. Additionally, one of the strongest El Niño events since at least 1950 developed in spring 2015 and continued to evolve through the year. The phenomenon was far reaching, impacting many regions across the globe and affecting most aspects of the climate system. Owing to the combination of El Niño and a long-term upward trend, Earth observed record warmth for the second consecutive year, with the 2015 annual global surface temperature surpassing the previous record by more than 0.1°C and exceeding the average for the mid- to late 19th century—commonly considered representative of preindustrial conditions—by more than 1°C for the first time. Above Earth’s surface, lower troposphere temperatures were near-record high. Across land surfaces, record to near-record warmth was reported across every inhabited continent. Twelve countries, including Russia and China, reported record high annual temperatures. In June, one of the most severe heat waves since 1980 affected Karachi, Pakistan, claiming over 1000 lives. On 27 October, Vredendal, South Africa, reached 48.4°C, a new global high temperature record for this month. In the Arctic, the 2015 land surface temperature was 1.2°C above the 1981–2010 average, tying 2007 and 2011 for the highest annual temperature and representing a 2.8°C increase since the record began in 1900. Increasing temperatures have led to decreasing Arctic sea ice extent and thickness. On 25 February 2015, the lowest maximum sea ice extent in the 37-year satellite record was observed, 7% below the 1981–2010 average. Mean sea surface temperatures across the Arctic Ocean during August in ice-free regions, representative of Arctic Ocean summer anomalies, ranged from ~0°C to 8°C above average. As a consequence of sea ice retreat and warming oceans, vast walrus herds in the Pacific Arctic are hauling out on land rather than on sea ice, raising concern about the energetics of females and young animals. Increasing temperatures in the Barents Sea are linked to a community-wide shift in fish populations: boreal communities are now farther north, and long-standing Arctic species have been almost pushed out of the area. Above average sea surface temperatures are not confined to the Arctic. Sea surface temperature for 2015 was record high at the global scale; however, the North Atlantic southeast of Greenland remained colder than average and colder than 2014. Global annual ocean heat content and mean sea level also reached new record highs. The Greenland Ice Sheet, with the capacity to contribute ~7 m to sea level rise, experienced melting over more than 50% of its surface for the first time since the record melt of 2012. Other aspects of the cryosphere were remarkable. Alpine glacier retreat continued, and preliminary data indicate that 2015 is the 36th consecutive year of negative annual mass balance. Across the Northern Hemisphere, late-spring snow cover extent continued its trend of decline, with June the second lowest in the 49-year satellite record. Below the surface, record high temperatures at 20-m depth were measured at all permafrost observatories on the North Slope of Alaska, increasing by up to 0.66°C decade–1 since 2000. In the Antarctic, surface pressure and temperatures were lower than the 1981–2010 average for most of the year, consistent with the primarily positive southern annular mode, which saw a record high index value of +4.92 in February. Antarctic sea ice extent and area had large intra-annual variability, with a shift from record high levels in May to record low levels in August. Springtime ozone depletion resulted in one of the largest and most persistent Antarctic ozone holes observed since the 1990s. Closer to the equator, 101 named tropical storms were observed in 2015, well above the 1981–2010 average of 82. The eastern/central Pacific had 26 named storms, the most since 1992. The western north Pacific and north and south Indian Ocean basins also saw high activity. Globally, eight tropical cyclones reached the Saffir–Simpson Category 5 intensity level. Overlaying a general increase in the hydrologic cycle, the strong El Niño enhanced precipitation variability around the world. An above-normal rainy season led to major floods in Paraguay, Bolivia, and southern Brazil. In May, the United States recorded its all-time wettest month in its 121-year national record. Denmark and Norway reported their second and third wettest year on record, respectively, but globally soil moisture was below average, terrestrial groundwater storage was the lowest in the 14-year record, and areas in “severe” drought rose from 8% in 2014 to 14% in 2015. Drought conditions prevailed across many Caribbean island nations, Colombia, Venezuela, and northeast Brazil for most of the year. Several South Pacific countries also experienced drought. Lack of rainfall across Ethiopia led to its worst drought in decades and affected millions of people, while prolonged drought in South Africa severely affected agricultural production. Indian summer monsoon rainfall was just 86% of average. Extremely dry conditions in Indonesia resulted in intense and widespread fires during August–November that produced abundant carbonaceous aerosols, carbon monoxide, and ozone. Overall, emissions from tropical Asian biomass burning in 2015 were almost three times the 2001–14 average. © 2015 by the artist.

Registro:

Documento: Artículo
Título:State of the climate in 2015
Autor:Multitudinario:468
Filiación:Trinidad & Tobago Meteorological Service, Piarco, Trinidad and Tobago
CIMSS, University of Wisconsin– Madison, Madison, WI, United States
NOAA/NMFS Northwest Fisheries Science Center, Seattle, WA, United States
Earth System Sciences Interdisciplinary Center, University of Maryland, College Park, MD, United States
National Meteorological Service of Mexico, Mexico
Center for Geophysical Research and School of Physics, University of Costa Rica, San José, Costa Rica
Met Office Hadley Centre, Exeter, United Kingdom
Centro de Ciencias do Sistema Terrestre, Instituto Nacional de Pesquisas Espaciais, Cachoeira Paulista, Sao Paulo, Brazil
Center for Geophysical Research and School of Physics, University of Costa Rica, San José, Costa Rica
Section for Glaciers, Ice and Snow, Oslo, Norway
Applied Physics Laboratory, University of Washington, Seattle, WA, United States
Instituto Nacional de Meteorología e Hidrología de Venezuela, Caracas, Venezuela
NOAA/NESDIS National Centers for Environmental Information, Asheville, NC, United States
Russian Institute for Hydrometeorological Information, Obninsk, Russian Federation
UiT The Arctic University of Norway, Tromsø, Norway
Instituto Pirenaico de Ecología, Consejo Superior de Investigaciones Científicas, Zaragoza, Spain
NOAA/NESDIS National Centers for Environmental Information, Asheville, NC, United States
Islamic Republic of Iranian Meteorological Organization, Iran
Instituto de Conservación, Biodiversidad y Territorio, Universidad Austral de Chile, Center for Climate and Resilience Research (CR)2, Chile
NOAA/OAR Atlantic Oceanographic and Meteorological Laboratory, Miami, FL, United States
Argentine Naval Hydrographic Service, Buenos Aires, Argentina
NOAA/NWS Climate Prediction Center, College Park, MD, United States
Servicio Nacional de Meteorología e Hidrología de Perú, Lima, Peru
Global Precipitation Climatology Centre, Deutscher Wetterdienst, Offenbach, Germany
NASA Langley Research Center, Hampton, VA, United States
Oregon State University, Corvallis, OR, United States
NOAA/NWS Climate Prediction Center, College Park, MD, United States
Seychelles National Meteorological Services, Pointe Larue, Mahé, Seychelles
European Centre for Medium-Range Weather Forecasts, Reading, United Kingdom
Biospherical Instruments, San Diego, CA, United States
European Centre for Medium-Range Weather Forecasts, Reading, United Kingdom
National Oceanography Centre, Southampton, United Kingdom
Departamento Ciencias de la Atmósfera y los Océanos, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Argentina
Geophysical Institute, University of Alaska Fairbanks, Fairbanks, AK, United States
Instituto Uruguayo de Meteorologia, Montevideo, Uruguay
NOAA/NMFS Northwest Fisheries Science Center, Seattle, WA, United States
Scripps Institution of Oceanography, University of California, San Diego, CA, United States
Deutscher Wetterdienst, WMO RA VI Regional Climate Centre Network, Offenbach, Germany
NOAA/NWS National Hurricane Center, Miami, FL, United States
NOAA/NESDIS National Centers for Environmental Information, Asheville, NC, United States
Global Modelling and Assimilation Office, NASA Goddard Space Flight Center, Greenbelt, MD, United States
Laboratoire de Météorologie Dynamique, Institut Pierre Simon Laplace, CNRS/UPMC, Paris, France
Climate Center, Institute of Meteorology of Cuba, Cuba
Geological Survey of Denmark and Greenland, Copenhagen, Denmark
NOAA/NESDIS National Centers for Environmental Information, Silver Spring, MD, United States
WMO Atmospheric Environment Research Division, Geneva, Switzerland
Byrd Polar and Climate Research Center, The Ohio State University, Columbus, OH, United States
Climate Research Division, Environment and Climate Change Canada, Montreal, QC, Canada
Russian Institute for Hydrometeorological Information, Obninsk, Russian Federation
Geological Survey of Canada, Ottawa, ON, Canada
Center for Geophysical Research, University of Costa Rica, San José, Costa Rica
Lamont-Doherty Earth Observatory, Columbia University, Palisades, NY, United States
Department of Physics, The University of the West Indies, Jamaica
Danish Meteorological Institute, Copenhagen, Denmark
Servicio Nacional de Meteorología e Hidrología de Bolivia, La Paz, Bolivia
Joint Institute for the Study of the Atmosphere and Ocean, University of Washington, and NOAA/OAR Pacific Marine Environmental Laboratory, Seattle, WA, United States
College of Marine Science, University of South Florida, St. Petersburg, FL, United States
Bureau of Meteorology, Melbourne, VIC, Australia
Arctic Geology Department, UNIS-The University Centre in Svalbard, Longyearbyen, Norway
University of Alabama in Huntsville, Huntsville, AL, United States
Department of Geodesy and Geoinformation, Vienna University of Technology, Vienna, Austria
Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, FL, United States
Melbourne Water, Melbourne, Australia
School of Geography, Environment, and Earth Sciences, Victoria University of Wellington, Wellington, New Zealand
CPTEC/INPE Center for Weather Forecasts and Climate Studies, Cachoeira Paulista, Brazil
Department of Geography, Trent University, Peterborough, ON, Canada
German Aerospace Center (DLR) Oberpfaffenhofen, Wessling, Germany
British Antarctic Survey, Cambridge, United Kingdom
Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, and NOAA/OAR Earth System Research Laboratory, Boulder, CO, United States
Department of Geography, University of Ottawa, Ottawa, ON, Canada
NOAA/OAR Pacific Marine Environmental Laboratory, Seattle, WA, United States
NOAA/OAR Pacific Marine Environmental Laboratory, Seattle, WA, United States
Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, and NOAA/OAR Earth System Research Laboratory, Boulder, CO, United States
NOAA/NESDIS National Centers for Environmental Information, Asheville, NC, United States
Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, and NOAA/OAR Earth System Research Laboratory, Boulder, CO, United States
Marine Institute, Newport, Ireland
Transmissivity, and VanderSat, Noordwijk, Netherlands
Royal Netherlands Meteorological Institute (KNMI), DeBilt, Netherlands
King County Water and Land Resources Division, Seattle, WA, United States
University of Saskatchewan, Saskatoon, SK, Canada
Turkish State Meteorological Service, Ankara, Turkey
Climate Research Division, Environment and Climate Change Canada, Toronto, ON, Canada
Antigua and Barbuda Meteorological Service, St. John’s, Antigua and Barbuda
University of Illinois at Urbana– Champaign, Urbana, IL, United States
European Centre for Medium-Range Weather Forecasts, Reading, United Kingdom
NOAA/NESDIS National Centers for Environmental Information, Silver Spring, MD, United States
NOAA/OAR Earth System Research Laboratory, Boulder, CO, United States
Earth and Space Research, Seattle, WA, United States
Research Institute for Limnology, University of Innsbruck, Mondsee, Austria
Knipovich Polar Research Institute of Marine Fisheries and Oceanography, Murmansk, Russian Federation
Department of Earth Sciences, Earth and Climate Cluster, VU University Amsterdam, Amsterdam, Netherlands
Institute for Marine and Antarctic Studies, University of Tasmania, and Antarctic Climate and Ecosystems Cooperative Research Centre, and Australian Research Council’s Centre of Excellence for Climate System Science, Hobart, TAS, Australia
Climate Change Research Centre, University of New South Wales, Sydney, NSW, Australia
NOAA/OAR Atlantic Oceanographic and Meteorological Laboratory, and Cooperative Institute for Marine and Atmospheric Science, Miami, FL, United States
Department of Geodesy and Geoinformation, Vienna University of Technology, Vienna, Austria
NOAA/NOS National Centers for Coastal Ocean Science, Center for Sponsored Coastal Ocean Research, Silver Spring, MD, United States
NOAA/NOS National Centers for Coastal Ocean Science, Center for Coastal Environmental Health and Biomolecular Research, Charleston, SC, United States
Earth Cryosphere Institute, Tyumen, and Tyumen State Oil and Gas University, Tyumen, Russian Federation
Lamont–Doherty Earth Observatory, Columbia University, New York, NY, United States
Met Office Hadley Centre, Exeter, United Kingdom
Center for Geophysical Research and School of Physics, University of Costa Rica, San José, Costa Rica
Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, NOAA/OAR Earth System Research Laboratory, Boulder, CO, United States
Egyptian Meteorological Authority, Cairo, Egypt
Rabat, Morocco
NOAA/OAR Earth System Research Laboratory, Boulder, CO, United States
Instituto Geofisico del Perú, Lima, Peru
Meteorological Department of St. Maarten, St. Maarten, United States
NOAA/NWS Central Pacific Hurricane Center, Honolulu, HI, United States
Department of Earth System Science, University of California, Irvine, CA, United States
Earth System Science Interdisciplinary Center, University of Maryland, College Park, MD, United States
Islamic Republic of Iranian Meteorological Organization, Iran
Geological Survey of Denmark and Greenland, Copenhagen, Denmark
National Institute of Water and Atmospheric Research, Ltd, Auckland, New Zealand
NOAA/OAR Pacific Marine Environmental Laboratory, Seattle, WA, United States
Pacific Northwest National Laboratory, Richland, WA, United States
NOAA/NESDIS National Centers for Environmental Information, Asheville, NC, United States
University of Liège, Liège, Belgium
Environment and Climate Change Canada, Toronto, ON, Canada
European Centre for Medium Range Weather Forecasts, Reading, United Kingdom
Canadian Hurricane Centre, Environment and Climate Change Canada, Dartmouth, NS, Canada
Department of Geography, Ohio University, Athens, OH, United States
Met Office Hadley Centre, Exeter, United Kingdom
Climate Center, Institute of Meteorology of Cuba, Cuba
Institute of Marine Research, Bergen, Norway
Department of Geology, CIMSS, University of Wisconsin–Madison, Madison, WI, United States
Portland State University, Portland, OR, United States
Nigerian Meteorological Agency, Abuja, Nigeria
NASA Goddard Space Flight Center, Greenbelt, MD, United States
CIMSS, University of Wisconsin– Madison, Madison, WI, United States
NASA Goddard Space Flight Center, Greenbelt, MD, United States
Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, United States
Bureau of Meteorology, Melbourne, VIC, Australia
NOAA/OAR Atlantic Oceanographic and Meteorological Laboratory, Cooperative Institute for Marine and Atmospheric Science, Miami, FL, United States
Norwegian Polar Institute, Fram Centre, Tromsø, Norway
Land Resources Monitoring Unit, Institute for Environment and Sustainability, Joint Research Centre, European Commission, Ispra, Italy
NOAA/OAR Atlantic Oceanographic and Meteorological Laboratory, Miami, FL, United States
Sorbonne Universités (UPMC-Paris 6), LOCEAN-IPSL, CNRS-IRD-MNHN, Paris, France
NOAA/OAR Atlantic Oceanographic and Meteorological Laboratory, Miami, FL, United States
Japan Meteorological Agency, Tokyo, Japan
Forschungszentrum Jülich, Jülich, Germany
Department of Geodesy and Geoinformation, Vienna University of Technology, Vienna, Austria
NOAA/NWS Weather Forecast Office, Guam
Department of Theoretical and Applied Sciences, Insubria University, Varese, Italy
Science Systems and Applications, Inc., Hampton, VA, United States
Instituto de Física de Cantabria (CSIC UC), Santander, Spain
Atmospheric Sciences and Global Change Division, Pacific Northwest National Laboratory, Richland, WA, United States
Department of Geodesy and Geoinformation, Vienna University of Technology, Vienna, Austria
Department of Meteorology and Geophysics, University of Vienna, Vienna, Austria
Finnish Meteorological Institute, Helsinki, Finland
NOAA/OAR Earth System Research Laboratory, Boulder, CO, United States
NOAA/NWS Climate Prediction Center, College Park, MD, United States
Center for Coastal Physical Oceanography, Old Dominion University, Norfolk, VA, United States
Department of Geography, University of Sheffield, Sheffield, United Kingdom
Danish Meteorological Institute, Copenhagen, Denmark
Norwegian Meteorological Institute, Blindern, Oslo, Norway
Climatic Research Unit, School of Environmental Sciences, University of East Anglia, Norwich, United Kingdom
NOAA/NESDIS Center for Satellite Applications and Research, University of Wisconsin–Madison, Madison, WI, United States
Finnish Meteorological Institute, Helsinki, Finland
Max Planck Institute for Chemistry, Mainz, Germany
NOAA/NESDIS National Centers for Environmental Information, Asheville, NC, United States
Alfred Wegener Institute, Bremerhaven, Germany
Climate Center, Institute of Meteorology of Cuba, Cuba
Center for Geophysical Research and School of Physics, University of Costa Rica, San José, Costa Rica
Remote Sensing Systems, Santa Rosa, CA, United States
COSMIC, UCAR, Boulder, CO, United States
Woods Hole Research Center, Falmouth, MA, United States
NOAA/NWS National Centers for Environmental Prediction, Climate Prediction Center, College Park, MD, United States
NOAA/NESDIS National Centers for Environmental Information, Asheville, NC, United States
State University of New York, Albany, NY, United States
NASA Goddard Space Flight Center, Greenbelt, MD, United States
University of Liverpool, and National Oceanography Centre, Liverpool, United Kingdom
Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, NOAA/OAR Earth System Research Laboratory, Boulder, CO, United States
Finnish Meteorological Institute, Helsinki, Finland
Nigerian Meteorological Agency, Abuja, Nigeria
Institute of Marine Research, Bergen, Norway
European Centre for Medium-Range Weather Forecasts, Reading, United Kingdom
Norwegian Meteorological Institute, Blindern, Oslo, Norway
Japan Meteorological Agency, Tsukuba, Japan
National Oceanography Centre, Liverpool, United Kingdom
Estellus, and LERMA, Observatoire de Paris, Paris, France
Woods Hole Oceanographic Institution, Woods Hole, MA, United States
Institute of Marine Research, Bergen, Norway
EUMETSAT, Darmstadt, Germany, and Met Office Hadley Centre, Exeter, United Kingdom
Norwegian Radiation Protection Authority, Østerås, Norway
NOAA/OAR Earth System Research Laboratory, Global Monitoring Division, and University of Colorado Boulder, Boulder, CO, United States
NOAA/OAR Pacific Marine Environmental Laboratory, Seattle, WA, United States
Climatic Research Unit, School of Environmental Sciences, University of East Anglia, Norwich, United Kingdom
Dominica Meteorological Service, Dominica
Météo France, Reunion
Rabat, Morocco
Max Planck Institute for Chemistry, Mainz, Germany
European Centre for Medium- Range Weather Forecasts, Reading, United Kingdom
NASA Langley Research Center, Hampton, VA, United States
Islamic Republic of Iranian Meteorological Organization, Iran
Department of Atmospheric and Oceanic Sciences, University of Wisconsin–Madison, Madison, WI, United States
Met Office Hadley Centre, Exeter, United Kingdom
Met Office Hadley Centre, Exeter, United Kingdom
Trinidad & Tobago Meteorological Service, Piarco, Trinidad and Tobago
Geophysical Institute, University of Alaska Fairbanks, Fairbanks, AK, United States
Islamic Republic of Iranian Meteorological Organization, Iran
Met Office Hadley Centre, Exeter, United Kingdom
Institute of Industrial Science, University of Tokyo, Japan
Korea Polar Research Institute, Incheon, South Korea
NOAA/NWS National Hurricane Center, Miami, FL, United States
Department of Atmospheric Science, Colorado State University, Fort Collins, CO, United States
NOAA/NESDIS Center for Satellite Applications and Research, Fort Collins, CO, United States
Japan Meteorological Agency, Tokyo, Japan
Norwegian Polar Institute, Tromsø, Norway
Freshwater Centre, Finnish Environment Institute (SYKE), Helsinki, Finland
All-Russian Research Institute of Hydrometeorological Information - World Data Center, Obninsk, Russian Federation
Norwegian Polar Institute, Tromsø, Norway
Science Systems and Applications, Inc., NASA Goddard Space Flight Center, Greenbelt, MD, United States
NASA Langley Research Center, Hampton, VA, United States
South African Weather Service, Pretoria, South Africa
ERT, Inc., NOAA/NESDIS National Centers for Environmental Information, Asheville, NC, United States
University of California, Santa Cruz, CA, United States
NOAA/NWS National Centers for Environmental Prediction, Climate Prediction Center, College Park, MD, United States
Hungarian Meteorological Service, Budapest, Hungary
Finnish Meteorological Institute, Arctic Research Centre, Sodankylä, Finland
University of Guam, Mangilao, Guam
NOAA/NWS National Hurricane Center, Miami, FL, United States
Scripps Institution of Oceanography, University of California, San Diego, CA, United States
Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, NOAA/OAR Earth System Research Laboratory, Boulder, CO, United States
Space Science and Engineering Center, University of Wisconsin–Madison, Department of Physical Sciences, Madison Area Technical College, Madison, WI, United States
U.S. Fish and Wildlife Service, Anchorage, AK, United States
NOAA/NESDIS NCWCP Laboratory for Satellite Altimetry, College Park, MD, United States
NOAA/NWS Climate Prediction Center, College Park, MD, United States
Antarctic Climate and Ecosystems Cooperative Research Centre, University of Tasmania, Hobart, TAS, Australia
National Taiwan University, Taipei, Taiwan
Department of Geography, University of Cincinnati, Cincinnati, OH, United States
Cooperative Institute for Meteorological Satellite Studies, University of Wisconsin–Madison, Madison, WI, United States
NOAA/NESDIS National Centers for Environmental Information, Silver Spring, MD, United States
NASA Langley Research Center, Hampton, VA, United States
Sorbonne Universités (UPMC-Paris 6), LOCEAN-IPSL, CNRS-IRD-MNHN, Paris, France
NOAA/NWS National Centers for Envrionmental Prediction, Camp Springs, MD, United States
Instituto de Hidrología de Meteorología y Estudios Ambientales de Colombia (IDEAM), Bogotá, Colombia, United States
National Institute of Water and Atmospheric Research, Ltd, Auckland, New Zealand
German Aerospace Center (DLR) Oberpfaffenhofen, Wessling, Germany
NOAA/OAR Atlantic Oceanographic and Meteorological Laboratory, Miami, FL, United States
Bureau of Meteorology, Melbourne, VIC, Australia
Finnish Meteorological Institute, Helsinki, Finland
Norwegian Polar Institute, Tromsø, Norway
NOAA/OAR Pacific Marine Environmental Laboratory, Seattle, WA, United States
Joint Institute for Marine and Atmospheric Research, University of Hawaii, Honolulu, HI, United States
Lake Ecosystems Group, Centre for Ecology and Hydrology, Lancaster, United Kingdom
AOS/CIMSS University of Wisconsin– Madison, Madison, WI, United States
Instituto Nacional de Pesquisas Espaciais, Brasilia, Brazil
Earth Cryosphere Institute, Tyumen, and Tyumen State Oil and Gas University, Tyumen, Russian Federation
NorthWest Research Associates, and New Mexico Institute of Mining and Technology, Socorro, NM, United States
Dominica Meteorological Service, Dominica
Geophysical Institute, University of Alaska Fairbanks, Fairbanks, AK, United States
Centro Nacional de Monitoramento e Alertas aos Desastres Naturais, Cachoeira Paulista, Sao Paulo, Brazil
NOAA/NESDIS National Centers for Environmental Information, Honolulu, HI, United States
Department of Hydrology and Water Management, Nicolaus Copernicus University, Toruń, Poland
Laboratory of Hydrology and Water Management, Ghent University, Ghent, Belgium
CIIFEN Centro Internacional para la Investigación del Fenómeno de El Niño, Guayaquil, Ecuador
Australian Antarctic Division, and Antarctic Climate and Ecosystems Cooperative Research Centre, University of Tasmania, Hobart, TAS, Australia
Laboratório de Estudos dos Oceanos e Clima, Instituto de Oceanografia, Universidade Federal do Rio Grande-FURG, Rio Grande, Brazil
NOAA/OAR Arctic Research Program, Climate Observation Division, Silver Spring, MD, United States
Centre for Ecology and Hydrology, Edinburgh, United Kingdom
Department of Meteorology and Geophysics, University of Vienna, Vienna, Austria
Scripps Institution of Oceanography, University of California, San Diego, CA, United States
South African Weather Service, Pretoria, South Africa
Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
Met Office Hadley Centre, Exeter, United Kingdom
Marine Science Institute, University of Texas at Austin, Port Aransas, TX, United States
Bureau of Meteorology, Melbourne, VIC, Australia
CSIRO Land and Water Flagship, Canberra, Australian Capital Territory, and Australian Research Council Centre of Excellence for Climate System Science, Sydney, NSW, Australia
Remote Sensing Systems, Santa Rosa, CA, United States
NASA Goddard Space Flight Center, Greenbelt, MD, United States
NOAA/OAR Atlantic Oceanographic and Meteorological Laboratory, Miami, FL, United States
Department of Energy and Environmental Systems, North Carolina A & T State University, Greensboro, NC, United States
Environmental Hydraulic Institute, Universidad de Cantabria, Cantabria, Spain
Department of Earth and Environmental Sciences, Botswana International University of Science and Technology, Palapye, Botswana, and Department of Physics, Addis Ababa University, Addis Ababa, Ethiopia
Space Science and Engineering Center, University of Wisconsin–Madison, Madison, WI, United States
Department of Meteorology, University of Reading, Reading, United Kingdom
British Antarctic Survey, NERC, Cambridge, United Kingdom
Joint Institute for Marine and Atmospheric Research, University of Hawaii, Honolulu, HI, United States
Sorbonne Universités (UPMC-Paris 6), LOCEAN-IPSL, CNRS-IRD-MNHN, Paris, France
Science Directorate, NASA Langley Research Center, Hampton, VA, United States
Department of Earth Sciences, VU University Amsterdam, Amsterdam, Netherlands
Department of Geodesy and Geoinformation, Vienna University of Technology, and EODC, Vienna, Austria
College of Marine Science, University of South Florida, St. Petersburg, FL, United States
CSIRO Oceans and Atmosphere, Hobart, TAS, Australia
CSIR Natural Resources and the Environment, Stellenbosch, South Africa
NOAA/OAR Earth System Research Laboratory, Boulder, CO, United States
Met Office Hadley Centre, Exeter, United Kingdom
Department of Geography, The University of Georgia, Athens, Georgia
Department of Physics, University of Toronto, Toronto, ON, Canada
Scripps Institution of Oceanography, University of California, San Diego, La Jolla, United States
National Institute of Water and Atmospheric Research, Ltd, Wellington, New Zealand
Science Systems and Applications, Inc., NASA Goddard Space Flight Center, Greenbelt, MD, United States
University of Southampton, National Oceanography Centre, Southampton, United Kingdom
Colorado Center for Astrodynamics Research, Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, Boulder, CO, United States
NASA Goddard Space Flight Center, Greenbelt, MD, United States
CIIFEN Centro Internacional para la Investigación del Fenómeno de El Niño, Guayaquil, Ecuador
WSL Institute for Snow and Avalanche Research, Davos, Switzerland
USGS, Alaska Science Center, Anchorage, AK, United States
Climatic Research Unit, School of Environmental Sciences, University of East Anglia, Norwich, United Kingdom
NOAA/OAR Pacific Marine Environmental Laboratory, Seattle, WA, United States
Hydrology and Environmental Monitoring, Institute of Meteorology and Hydrology, National Agency for Meteorology, Ulaanbaatar, Mongolia
School of Civil and Environmental Engineering, Water Research Centre, University of New South Wales, Sydney, NSW, Australia
Korea Meteorological Administration, South Korea
Met Office Hadley Centre, Exeter, United Kingdom
European Centre for Medium-Range Weather Forecasts, Reading, United Kingdom
NOAA/NESDIS National Centers for Environmental Information, Silver Spring, MD, United States
NOAA/NWS National Hurricane Center, Miami, FL, United States
National Meteorological Service of Mexico, Mexico
Dorset Environmental Science Centre, Ontario Ministry of the Environment and Climate Change, Dorset, ON, Canada
Department of Geodesy and Geoinformation, Vienna University of Technology, Vienna, Austria
National Institute of Water and Atmospheric Research, Ltd, Auckland, New Zealand
Nichols College, Dudley, MA, United States
UCAR COSMIC, Boulder, CO, United States
Climate Change Research Centre, University of New South Wales, Sydney, NSW, Australia
USACE, ERDC, Cold Regions Research and Engineering Laboratory, and Thayer School of Engineering, Dartmouth College, Hanover, NH, United States
NOAA/OAR Earth System Research Laboratory, Global Monitoring Division, and University of Colorado Boulder, Boulder, CO, United States
Greater Wellington Regional Council, Wellington, New Zealand
Environment and Climate Change Canada, Toronto, ON, Canada
Land Resource Management Unit, Institute for Environment and Sustainability, European Commission Joint Research Centre, Ispra, Italy
NASA Langley Research Center, Hampton, VA, United States
Agencia Estatal de Meteorología, Santander, Spain
Cayman Islands National Weather Service, Grand Cayman, Cayman Islands
UiT The Arctic University of Norway, Tromsø, Norway
Woods Hole Oceanographic Institution, Woods Hole, MA, United States
University of Sheffield, Sheffield, United Kingdom
Atmospheric Science and Meteorological Research Center, Tehran, Iran
Earth System Science Organization, Ministry of Earth Sciences, New Delhi, India
Service de la Climatologie et du Changement Climatique, Madagascar
All-Russian Research Institute of Hydrometeorological Information, Obninsk, Russian Federation
NOAA/NESDIS National Centers for Environmental Information, Silver Spring, MD, United States
Earth System Science Interdisciplinary Center, Cooperative Institute for Climate and Satellites– Maryland, University of Maryland, College Park, MD, United States
Australian Bureau of Meteorology, and ACE CRC, Hobart, TAS, Australia
Department of Geodesy and Geoinformation, Vienna University of Technology, and EODC, Vienna, Austria
Laboratoire de Météorologie Dynamique, Paris, France
Victoria University of Wellington, Wellington, New Zealand
Indian Institute of Tropical Meteorology, Pune, India
USACE Cold Regions Research and Engineering Laboratory, Hanover, NH, United States
GeoVille Information Systems, Innsbruck, Austria, Institute of Geography, University of Bern, Bern, Switzerland
Kinneret Limnological Laboratory, Israel Oceanographic and Limnological Research, Migdal, Israel
CSIRO-CMAR/CAWCR/ACE-CRC, Hobart, TAS, Australia
Department of Geography, Rutgers University, Piscataway, NJ, United States
Hydrological Sciences Laboratory, NASA Goddard Space Flight Center, Greenbelt, MD, United States
National Meteorological Service of Mexico, Mexico
Geophysical Institute, University of Alaska Fairbanks, Fairbanks, AK, United States
Université Paris Diderot (UPMC-Paris 7), LOCEAN-IPSL, CNRS-IRD-MNHN, Paris, France
NOAA/OAR Earth System Research Laboratory, Boulder, CO, United States
University of Saskatchewan, Saskatoon, SK, Canada
Dorset Environmental Science Centre, Ontario Ministry of the Environment and Climate Change, Dorset, ON, Canada
NOAA/OAR Pacific Marine Environmental Laboratory, Seattle, WA, United States
Sorbonne Universités (UPMC-Paris 6), LOCEAN-IPSL, CNRS-IRD-MNHN, Paris, France
British Antarctic Survey, NERC, Cambridge, United Kingdom
NOAA/NESDIS National Centers for Environmental Information, Asheville, NC, United States
NASA Jet Propulsion Laboratory, Pasadena, CA, United States
Science Systems and Applications, Inc., Hampton, VA, United States
Rabat, Morocco
National Snow and Ice Data Center, University of Colorado Boulder, Boulder, CO, United States
NOAA/NWS Climate Prediction Center, College Park, MD, United States
Tahoe Environmental Research Center, University of California, Davis, CA, United States
NOAA/OAR Atlantic Oceanographic and Meteorological Laboratory, Miami, FL, United States
Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland
GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany
Cooperative Institute for Climate and Satellites, North Carolina State University, Asheville, NC, United States
Universities Space Research Association, NASA Goddard Space Flight Center, Greenbelt, MD, United States
Scripps Institution of Oceanography, University of California, San Diego, CA, United States
Turkish State Meteorological Service, Kalaba, Ankara, Turkey
National Institute for Space Research, São Jose dos Compos, SP, Brazil
Department of Earth and Atmospheric Sciences, University of Alberta, Edmonton, AB, Canada
Meteorological Service, Jamaica, Kingston, Jamaica
NOAA/NESDIS National Centers for Environmental Information, Asheville, NC, United States
University of New Hampshire, Durham, New Hampshire, Shirshov Institute of Oceanology, Moscow, Russian Federation
Department of Geography, George Washington University, Washington, DC, United States
University of California, Santa Barbara, CA, United States
Science Application International Corporation, Beltsville, MD, United States
Division of Meteorology, Department of Water Resources, Banjul, Gambia
European Centre for Medium-Range Weather Forecasts, Reading, United Kingdom
Institute for Marine and Atmospheric Research Utrecht, Utrecht University, Utrecht, Netherlands
Geological Survey of Canada, Natural Resources Canada, Ottawa, ON, Canada
Meteorological Service, Jamaica, Kingston, Jamaica
India Meteorological Department, Jaipur, India
NASA Langley Research Center, Hampton, VA, United States
Institute of Arctic and Alpine Research, University of Colorado Boulder, Boulder, CO, United States
German Weather Service (DWD), Hohenpeissenberg, Germany
Servicio Meteorológico Nacional, Buenos Aires, Argentina
Deutscher Wetterdienst, Offenbach, Germany
Department of Physics, The University of the West Indies, Jamaica
Department of Physics, The University of the West Indies, Jamaica
Universities Space Research Association, NASA Goddard Space Flight Center, Greenbelt, MD, United States
Department of Geography, George Washington University, Washington, DC, United States
Science Systems and Applications, Inc., Hampton, VA, United States
CSIR Southern Ocean Carbon & Climate Observatory, Stellenbosch, South Africa
NOAA/NOS Center for Operational Oceanographic Products and Services, Silver Spring, MD, United States
Scripps Institution of Oceanography, University of California, San Diego, CA, United States
Grenada Airports Authority, St. George’s, Grenada
University of Alberta, Edmonton, AB, Canada
Department of Physics, The University of the West Indies, Jamaica
Lamont–Doherty Earth Observatory, Columbia University Palisades, New York, United States
NASA Goddard Institute of Space Studies, New York, NY, United States
Research Institute for Limnology, University of Innsbruck, Mondsee, Austria
NOAA/NWS, Alaska Region, Fairbanks, AK, United States
Joint Institute for Marine and Atmospheric Research, University of Hawaii, Honolulu, HI, United States
Department of Geography, University of Ottawa, Ottawa, ON, Canada
Yale University, New Haven, CT, United States
Laboratory of Systems, Technological Research Institute, Universidad de Santiago de Compostela, Santiago de Compostela, Spain
Bureau of Meteorology, Melbourne, VIC, Australia
Laboratory for Climatology and Remote Sensing, Philipps-Universität, Marburg, Germany
NOAA/NMFS Northwest Fisheries Science Center, Seattle, WA, United States
Arctic and Antarctic Research Institute, St. Petersburg, Russian Federation
Bureau of Meteorology, Melbourne, VIC, Australia
Caribbean Institute for Meteorology and Hydrology, Bridgetown, Barbados
Aerospace Engineering Sciences, University of Colorado Boulder, Boulder, CO, United States
Geological Survey of Denmark and Greenland, Copenhagen, Denmark
Institute for Marine and Atmospheric Research Utrecht, Utrecht University, Utrecht, Netherlands
Royal Netherlands Meteorological Institute (KNMI), DeBilt, Netherlands
Transmissivity, and VanderSat, Noordwijk, Netherlands
Royal Netherlands Meteorological Institute (KNMI), De Bilt, Netherlands
Faculty of Earth and Life Sciences, VU University Amsterdam, Netherlands
Caribbean Institute for Meteorology and Hydrology, Bridgetown, Barbados
University of California, Irvine, CA, United States
National Institute of Water and Atmospheric Research, Ltd, Hamilton, New Zealand
Water Quality and Spatial Science Section, WaterNSW, Penrith, NSW, Australia
Environment and Climate Change Canada, Toronto, ON, Canada
NOAA/OAR Atlantic Oceanographic and Meteorological Laboratory, Cooperative Institute for Marine and Atmospheric Science, Miami, FL, United States
NOAA/NESDIS National Centers for Environmental Information, Asheville, NC, United States
Department of Geodesy and Geoinformation, Vienna University of Technology, Vienna, Austria
Department of Earth Sciences, University of Gothenburg, Göteborg, Sweden
Department of Physics and Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, Boulder, CO, United States
International Arctic Research Center, University of Alaska Fairbanks, Fairbanks, AK, United States
NOAA/OAR Atlantic Oceanographic and Meteorological Laboratory, Miami, FL, United States
State University of New York, Albany, NY, United States
Department of Geography and Anthropology, Louisiana State University, Baton Rouge, LA, United States
Joint Institute for the Study of the Atmosphere and Ocean, University of Washington, Seattle, WA, United States
Byrd Polar and Climate Research Center, The Ohio State University, Columbus, OH, United States
NOAA/OAR Atlantic Oceanographic and Meteorological Laboratory, Miami, FL, United States
Tahoe Environmental Research Center, University of California, Davis, CA, United States
University of Bremen, Bremen, Germany
Woods Hole Oceanographic Institution, Woods Hole, MA, United States
Department of Limnology, Department of Ecology and Genetics, Uppsala University, Uppsala, Sweden
Environment and Climate Change Canada, Toronto, ON, Canada
CSIRO Oceans and Atmosphere, Hobart, TAS, Australia
Science Systems and Applications, Inc., Hampton, VA, United States
INNOVIM, NOAA/NWS National Centers for Environmental Prediction, Climate Prediction Center, College Park, MD, United States
Met Office Hadley Centre, Exeter, United Kingdom
National Institute of Water and Atmospheric Research, Ltd, Wellington, New Zealand
St. Lucia Meteorological Service, Saint Lucia
Alaska Division of Geological and Geophysical Surveys, Fairbanks, AK, United States
NASA Langley Research Center, Hampton, VA, United States
Department of Civil and Environmental Engineering, Princeton University, Princeton, NJ, United States
Department of Meteorology, University of Reading, Reading, United Kingdom
School of Geographical Sciences, University of Bristol, Bristol, United Kingdom
NOAA/NWS National Centers for Environmental Prediction, Climate Prediction Center, College Park, MD, United States
Japan Meteorological Agency, Tokyo, Japan
Korea Meteorological Administration, South Korea
ERT, Inc., NOAA/NESDIS National Centers for Environmental Information, Asheville, NC, United States
Independent Researcher, Long Beach, CA, United States
Woods Hole Oceanographic Institution, Woods Hole, MA, United States
Maldives Meteorological Service, Maldives
Centro Internacional para la Investigación del Fenómeno El Niño, Guayaquil, Ecuador
Beijing Climate Center, Beijing, China
University of Illinois at Urbana– Champaign, Urbana, IL, United States
Cold and Arid Regions Environmental and Engineering Research Institute, Lanzhou, China
Goddard Earth Sciences Technology and Research, Morgan State University, Baltimore, MD, United States
NASA Goddard Space Flight Center, Greenbelt, MD, United States
Lead Graphics Production, NOAA/NESDIS National Centers for Environmental Information, Asheville, NC, United States
Bulletin of the American Meteorological Society, Boston, MA, United States
Cooperative Institute for Climate and Satellites–NC, North Carolina State University, Asheville, NC, United States
TeleSolv Consulting, NOAA/NESDIS National Centers for Environmental Information, Asheville, NC, United States
LAC Group, NOAA/ NESDIS National Centers for Environmental Information, Asheville, NC, United States
NOAA/NESDIS National Centers for Environmental Information, Asheville, NC, United States
Graphics Support, Riverside Technology, Inc., NOAA/NESDIS National Centers for Environmental Information, Stennis Space Center, Mississippi, United States
Cooperative Institute for Climate and Satellites–NC, North Carolina State University, Asheville, NC, United States
TeleSolv Consulting, NOAA/NESDIS National Centers for Environmental Information, Asheville, NC, United States
NOAA/NESDIS National Centers for Environmental Information, Asheville, NC, United States
STG, Inc., NOAA/ NESDIS National Centers for Environmental Information, Asheville, NC, United States
Palabras clave:Agriculture; Atmospheric temperature; Carbon dioxide; Carbon monoxide; Digital storage; Drought; Earth atmosphere; Fisheries; Greenhouse gases; Groundwater; Hurricanes; Nickel; Nitrogen oxides; Oceanography; Ozone; Ozone layer; Precipitation (meteorology); Rain; Sea ice; Sea level; Snow; Soil moisture; Storms; Submarine geophysics; Surface measurement; Surface properties; Surface waters; Tropics; Water conservation; Agricultural productions; Global surface temperature; Indian summer monsoon rainfall; Intra-annual variability; Land surface temperature; Pre-industrial conditions; Precipitation variability; Sea surface temperature (SST); Ice
Año:2016
Volumen:97
Número:8
Página de inicio:S1
Página de fin:S275
DOI: http://dx.doi.org/10.1175/2016BAMSStateoftheClimate.1
Título revista:Bulletin of the American Meteorological Society
Título revista abreviado:Bull. Am. Meteorol. Soc.
ISSN:00030007
CODEN:BAMIA
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00030007_v97_n8_pS1_Multitudinario

Referencias:

  • Aagaard, K., Carmack, E.C., The role of sea ice and other fresh water in the Arctic circulation (1989) J. Geophys. Res, 94, pp. 1485-14498
  • Ackerman, S.A., Holz, R.E., Frey, R., Eloranta, E.W., Maddux, B.C., McGill, M., Cloud Detection with MODIS. Part II: Validation (2008) J. Atmos. Oceanic Technol., 25, pp. 1073-1086
  • Adler, R.F., The version 2 Global Precipitation Climatology Project (GPCP) monthly precipitation analysis (1979-present) (2003) J. Hydrometeor., 4, pp. 1147-1167
  • Ahlstrøm, A.P., A new programme for monitoring the mass loss of the Greenland ice sheet (2008) Geol. Surv. Denmark Greenl. Bull., 15, pp. 61-64
  • Aiyyer, A., Molinari, J., MJO and tropical cyclogenesis in the Gulf of Mexico and eastern Pacific: Case study and idealized numerical modeling (2008) J. Atmos. Sci., 65, pp. 2691-2704
  • Albergel, C., Skill and global trend analysis of soil moisture from reanalyses and microwave remote sensing (2013) J. Hydrometeor., 14, pp. 1259-1277
  • Allan, R.J., D’Arrigo, R.D., Persistent ENSO sequences: How unusual was the 1990-1995 El Niño (1999) Holocene, 9, pp. 101-118
  • Allan, R.J., Ansell, T., A new globally complete monthly historical gridded mean sea level pressure dataset (HadSLP2): 1850-2004 (2006) J. Climate, 19, pp. 5816-5842
  • Allan, R.J., Beard, G., Close, A., Herczeg, A.L., Jones, P.D., Simpson, H.J., Mean sea level pressure indices of the El Niño-Southern Oscillation: Relevance to stream discharge in southeastern Australia (1996) CSIRO Division of Water Resources Rep, 96 (1), p. 23
  • Allan, R.J., Reason, C.J.C., Lindesay, J.A., Ansell, T.J., Protracted ENSO episodes and their impacts in the Indian Ocean region (2003) Deep-Sea Res., 2 (50), pp. 2331-2347
  • Allen, R.J., Norris, J.R., Kovilakam, M., Influence of anthropogenic aerosols and the Pacific decadal oscillation on tropical belt width (2014) Nat. Geosci, 7, pp. 270-274
  • Amador, J.A., A climatic feature of the tropical Americas: The trade wind easterly jet (1998) Top. Meteor. Oceanogr, 5, pp. 91-102
  • Amador, J.A., Alfaro, E.J., Lizano, O.G., Magaña, V.O., Atmospheric forcing of the eastern tropical Pacific: A review (2006) Progr. Oceanogr, 69, pp. 101-142
  • Amador, J.A., Alfaro, E.J., Hidalgo, H.G., Calderón, B., Central America [in “State of the Climate 2010”] (2011) Bull. Amer. Meteor. Soc., 92 (6), pp. S182-S183
  • Adaptation Actions for a Changing Arctic—Status report (2015) Arctic Monitoring and Assessment Programme, , https://oaarchive.arctic-council.org/handle/11374/1439
  • Andela, N., Van Der Werf, G.R., Recent trends in African fires driven by cropland expansion and El Niño to La Niña transition (2014) Nat. Climate Change, 4, pp. 791-795
  • Anderson, M.C., Norman, J.M., Diak, G.R., Kustas, W.P., Mecikalski, J.R., A two-source time-integrated model for estimating surface fluxes using thermal infrared remote sensing (1997) Remote Sens. Environ, 60, pp. 195-216
  • Anderson, M.C., Mapping daily evapotranspiration at field to continental scales using geostationary and polar orbiting satellite imagery (2011) Hydrol. Earth Syst. Sci, 15, pp. 223-239
  • Antonov, J.I., Salinity. Vol. 2, World Ocean Atlas 2009 (2010) NOAA Atlas NESDIS, 69, p. 184. , http://www.nodc.noaa.gov/OC5/WOA09/pr_woa09.html
  • Aoki, S., Coherent sea level response to the Antarctic Oscillation. Geophys. Res (2002) Lett., 29, p. 1950
  • Arguez, A., Applequist, S., Understanding the statistical uncertainty of 2014’s designation as the warmest year on record [in “State of the Climate in 2014”] (2015) Bull. Amer. Meteor. Soc., 96 (7), pp. S11-S12
  • Arguez, A., Karl, T.R., Squires, M.F., Vose, R.S., Uncertainty in annual rankings from NOAA’s global temperature time series (2013) Geophys. Res. Lett, 40, pp. 5965-5969
  • Arkin, P.A., The relationship between interannual variability in the 200 mb tropical wind field and the Southern Oscillation (1982) Mon. Wea. Rev, 110, pp. 1393-1404
  • Armstrong, R.L., Knowles, K.W., Brodzik, M.J., Hardman, M.A., (1994) DMSP SSM/I-SSMIS Pathfinder Daily Ease-Grid Brightness Temperatures, Version 2. Southern Hemisphere Data, National Snow and Ice Data Center, , http://nsidc.org/data/docs/daac/nsidc0032_ssmi_ease_tbs.gd.html.], (updated annually), accessed
  • Aschmann, J., Burrows, J.P., Gebhardt, C., Rozanov, A., Hommel, R., Weber, M., Thompson, A.M., On the hiatus in the acceleration of tropical upwelling since the beginning of the 21st century (2014) Atmos. Chem. Phys, 14, pp. 12803-12814
  • Ashok, K., Behera, S.K., Rao, S.A., Weng, H., Yamagata, T., El Niño Modoki and its possible teleconnection (2007) J. Geophys. Res., 112
  • Azorin-Molina, C., Homogenization and assessment of observed near-surface wind speed trends over Spain and Portugal, 1961-2011 (2014) J. Climate, 27, pp. 3692-3712
  • Azorin-Molina, C., Guijarro-Pastor, J.A., McVicar, T.R., Vicente-Serrano, S.M., Jerez, S., Espírito-Santo, F., Trends of daily peak wind gusts in Spain and Portugal, 1961-2014 (2016) J. Geophys. Res., 121, pp. 1059-1078
  • Bakker, D.C.E., An update to the Surface Ocean CO2 Atlas (SOCAT version 2) (2014) Earth Syst. Sci. Data, 6, pp. 69-90
  • Balks, M., Seybold, K., Gugliemin, M., Thermal snapshot of McMurdo Dry Valley, continental Antarctica (2016) Proc. 11Th Int. Conf. on Permafrost (ICOP), Potsdam, Germany, , Alfred Wegener Institute, in press
  • Banzon, V.F., Reynolds, R.W., Use of WindSat to extend a microwave-based daily optimum interpolation sea surface temperature time series (2013) J. Climate, 26, pp. 2557-2562
  • Baringer, M.O., Meridional overturning circulation and heat transport observations in the Atlantic [in “State of the Climate in 2012”] (2013) Bull. Amer. Meteor. Soc., 94 (8), pp. S65-S68
  • Baringer, M.O., Johns, W.E., Hobbs, W.R., Garzoli, S., Dong, S., Willis, J., Meridional oceanic heat transport in the Atlantic Ocean [in “State of the Climate in 2014”] (2015) Bull. Amer. Meteor. Soc., 96 (7), pp. S81-S82
  • Baringer, M.O., Meridional overturning circulation observations in the North Atlantic Ocean [in “State of the Climate in 2014”] (2015) Bull. Amer. Meteor. Soc., 96 (7), pp. S78-S80
  • Barnston, A., (2015) Why are There So Many ENSO Indexes, instead of Just One?, , https://www.climate.gov/news-features/blogs/enso/why-are-there-so-many-enso-indexes-instead-just-one
  • Barrett, J.E., Virginia, R.A., Wall, D.H., Doran, P.T., Fountain, A.G., Welch, K.A., Lyons, W.B., Persistent effects of a discrete warming event on a polar desert ecosystem (2008) Global Change Biol., 14, pp. 2249-2261
  • Bastos, A., Running, S.W., Gouveia, C., Trigo, R.M., The global NPP dependence on ENSO: La Niña and the extraordinary year of 2011 (2013) J. Geophys. Res. Biogeosci., 118, pp. 1247-1255
  • Bauer-Marschallinger, B., Dorigo, W.A., Wagner, W., Van Dijk, A.I.J.M., How oceanic oscillation drives soil moisture variations over mainland Australia: An analysis of 32 years of satellite observations (2013) J. Climate, 26, pp. 10159-10173
  • Baxter, S., Weaver, S., Gottschalck, J., Xue, Y., Pentad evolution of wintertime impacts of the Madden-Julian Oscillation over the contiguous United States (2014) J. Climate, 27, pp. 7356-7367
  • Beal, L.M., Hormann, V., Lumpkin, R., Foltz, G.R., The response of the surface circulation of the Arabian Sea to monsoonal forcing (2013) J. Phys. Oceanogr., 43, pp. 2008-2022
  • Becker, A., Finger, P., Meyer-Christoffer, A., Rudolf, B., Schamm, K., Schneider, U., Ziese, M., A description of the global land-surface precipitation data products of the Global Precipitation Climatology Centre with sample applications including centennial (Trend) analysis from 1901-present (2013) Earth Syst. Sci. Data, 5, pp. 71-99
  • Behrenfeld, M.J., Climate-driven trends in contemporary ocean productivity (2006) Nature, 444, pp. 752-755
  • Behrenfeld, M.J., Revaluating ocean warming impacts on global phytoplankton (2016) Nat. Climate Change, 6, pp. 323-330
  • Behringer, D.W., Ji, M., Leetmaa, A., An improved coupled model for ENSO prediction and implications for ocean initialization. Part I: The ocean data assimilation system (1998) Mon. Wea. Rev, 126, pp. 1013-1021
  • Bell, G.D., Halpert, M.S., Climate assessment for 1997 (1998) Bull. Amer. Meteor. Soc., 79, pp. S1-S51
  • Bell, G.D., Chelliah, M., Leading tropical modes associated with interannual and multi-decadal fluctuations in North Atlantic hurricane activity (2006) J. Climate, 19, pp. 590-612
  • Bell, G.D., The 1999 North Atlantic and eastern North Pacific hurricane season [in “Climate Assessment for 1999”] (2000) Bull. Amer. Meteor. Soc., 81 (6), pp. S19-S22
  • Bell, G.D., Tropical cyclones; Atlantic basin [in “State of the Climate in 2010”] (2011) Bull. Amer. Meteor. Soc., 92 (7), pp. S115-S121
  • Bell, G.D., Tropical cyclones; Atlantic basin [in “State of the Climate in 2011”] (2012) Bull. Amer. Meteor. Soc., 93 (7), pp. S99-S105
  • Bell, G.D., Tropical cyclones; Atlantic basin [in “State of the Climate in 2013”] (2014) Bull. Amer. Meteor. Soc., 95 (7), pp. S86-S90
  • Bell, G.D., The 2014 North Atlantic hurricane season: A climate perspective [in “State of the Climate in 2014”] (2015) Bull. Amer. Meteor. Soc., 96 (7), pp. S101-S107
  • Benedetti, A., Aerosol analysis and forecast in the European Centre for Medium-Range Weather Forecasts Integrated Forecast System: 2. Data assimilation (2009) J. Geophys. Res., 114
  • Beniston, M., The 2003 heat wave in Europe: A shape of things to come? An analysis based on Swiss climatological data and model simulations (2004) Geophys. Res. Lett, 31
  • Berg, R., Hurricane Joaquin (AL112015) (2016) National Hurricane Center Tropical Cyclone Report, , http://www.nhc.noaa.gov/data/tcr/AL112015_Joaquin.pdf
  • Bernhard, G., Comparison of OMI UV observations with ground-based measurements at high northern latitudes. Atmos (2015) Chem. Phys., 15, pp. 7391-7412
  • Berrisford, P., Tobin, I., Dunn, R.J.H., Vautard, R., McVicar, T.R., Land surface winds [in “State of the Climate in 2014”] (2015) Bull. Amer. Meteor. Soc., 96 (7), pp. S33-S34
  • Berry, D.I., Kent, E.C., A new air-sea interaction gridded dataset from ICOADS with uncertainty estimates (2009) Bull. Amer. Meteor. Soc., 90, pp. 645-656
  • Berry, D.I., Kent, E.C., Air-sea fluxes from ICOADS: The construction of a new gridded dataset with uncertainty estimates (2011) Int. J. Climatol., 31, pp. 987-1001
  • Bestelmeyer, B.T., Analysis of abrupt transitions in ecological systems (2011) Ecosphere, 2, pp. 1-26
  • Bhartia, P.K., Wellemeyer, C.W., (2002) TOMS-V8 Total O3 Algorithm. OMI Algorithm Theoretical Basis Document, pp. 15-31. , Vol II, NASA Goddard Space Flight Center
  • Bichet, A., Wild, M., Folini, D., Schär, C., Causes for decadal variations of wind speed over land: Sensitivity studies with a global climate model (2012) Geophys. Res. Lett, 39
  • Billheimer, S., Talley, L.D., Near cessation of Eighteen Degree Water renewal in the western North Atlantic in the warm winter of 2011-2012 (2013) J. Geophys. Res. Oceans, 118, pp. 6838-6853
  • Biskaborn, B.K., Lanckman, J.-P., Lantuit, H., Elger, K., Streletskiy, D.A., Cable, W.L., Romanovsky, V.E., The new database of the Global Terrestrial Network for Permafrost (GTN-P) (2015) Earth Syst. Sci. Data, 7, pp. 245-259
  • Bjerknes, J., Atmospheric teleconnections from the equatorial Pacific (1969) Mon. Wea. Rev, 97, pp. 163-172
  • Blake, E., Tropical Cyclones of the Eastern North Pacific Basin, 1949-2006 (2009) Historical Climatology Series 6-5, p. 162. , NOAA/National Climatic Data Center
  • Bliss, A., Hock, R., Radić, V., Global response of glacier runoff to twenty-first century climate change (2014) J. Geophys. Res. Earth Surf., 119, pp. 717-730
  • Boden, T.A., Marland, G., Andres, R.J., Global, regional, and national fossil-fuel CO2 emissions. Carbon Dioxide Information Analysis Center (2015) Oak Ridge National Laboratory
  • Bodhaine, B.A., Mendonca, B.G., Harris, J.M., Miller, J.M., Seasonal variations in aerosols and atmospheric transmission at Mauna Loa Observatory (1981) J. Geophys. Res., 86 (C6), pp. 7395-7398
  • Boeckli, L., Brenning, A., Gruber, S., Noetzli, J., Permafrost distribution in the European Alps: Calculation and evaluation of an index map and summary statistics (2012) Cryosphere, 6, pp. 807-820
  • Boening, C., Willis, J.K., Landerer, F.W., Nerem, R.S., Fasullo, J., The 2011 La Niña: So strong, the oceans fell (2012) Geophys. Res. Lett, 39
  • Boitsov, V.D., Karsakov, A.L., Trofimov, A.G., Atlantic water temperature and climate in the Barents Sea, 2000-2009 (2012) ICES J. Mar. Sci, 69, pp. 833-840
  • Bojinski, S., Verstraete, M., Peterson, T.C., Richter, C., Simmons, A., Zemp, M., The concept of essential climate variables in support of climate research, applications, and policy (2014) Bull. Amer. Meteor. Soc., 95, pp. 1431-1443
  • Bo, M., Annual climate report 2015 (2016) Bureau of Meteorology Australia, , http://www.bom.gov.au/climate/current/annual/aus/2015/
  • Bond, N.A., Cronin, M.F., Freeland, H., Mantua, N., Causes and impacts of the 2014 warm anomaly in the NE Pacific (2015) Geophys. Res. Lett, 42, pp. 3414-3420
  • Bonjean, F., Lagerloef, G., Diagnostic model and analysis of the surface currents in the tropical Pacific Ocean (2002) J. Phys. Oceanogr., 32, pp. 2938-2954
  • Bosilovich, M.G., (2015) MERRA-2: Initial Evaluation of the Climate, 43, p. 136. , http://gmao.gsfc.nasa.gov/reanalysis/MERRA-2/docs/, NASA/TM-2015-104606
  • Boucher, O., (2013) Clouds and Aerosols. Climate Change 2013: The Physical Science
  • Basis, T.F.S., , pp. 573-657. , Cambridge University Press; Bourassa, A.E., Degenstein, D.A., Randel, W.J., Zawodny, J.M., Kyrölä, E., McLinden, C.A., Sioris, C.E., Roth, C.Z., Trends in stratospheric ozone derived from merged SAGE II and Odin-OSIRIS satellite observations. Atmos (2014) Chem. Phys., 14, pp. 6983-6994
  • Box, J.E., Hansen, K., Survey of Greenland glacier area changes (2015) PROMICE Newsletter, 8, pp. 1-2. , http://promice.org/Newsletter_08.pdf, Geological Survey of Denmark and Greenland, Copenhagen, Denmark
  • Box, J.E., Fettweis, X., Stroeve, J.C., Tedesco, M., Hall, D.K., Steffen, K., Greenland ice sheet albedo feedback: Thermodynamics and atmospheric drivers (2012) Cryosphere, 6, pp. 821-839
  • Boyd, P.W., Ellwood, M.J., The biogeochemical cycle of iron in the ocean. Nat (2010) Geosci., 3, pp. 675-682
  • Boyer, T.P., Levitus, S., Antonov, J.I., Reagan, J.R., Schmid, C., Locarnini, R., Subsurface salinity [in “State of the Climate in 2011”] (2012) Bull. Amer. Meteor. Soc., 93 (7), pp. S72-S75
  • Boyer, T.P., (2013) World Ocean Database 2013, 72, p. 209. , S. Levitus, Ed., NOAA Atlas NESDIS
  • Brasnett, B., A global analysis of snow depth for numerical weather prediction (1999) J. Appl. Meteor., 38, pp. 726-740
  • Bromwich, D.H., Wang, S.-H., Net precipitation (P − E) [in “State of the Climate in 2013”] (2014) Bull. Amer. Meteor. Soc., 95 (7), pp. S147-S149
  • Bromwich, D.H., Wang, S.-H., Net precipitation (P − E) [in “State of the Climate in 2014”] (2015) Bull. Amer. Meteor. Soc., 96 (7), pp. S153-S159
  • Bromwich, D.H., Monaghan, A.J., Guo, Z., Modeling the ENSO modulation of Antarctic climate in the late 1990s with Polar MM5 (2004) J. Climate, 17, pp. 109-132
  • Bromwich, D.H., Fogt, R.L., Hodges, K.E., Walsh, J.E., A tropospheric assessment of the ERA-40, NCEP, and JRA-25 global reanalyses in the polar regions (2007) J. Geophys. Res., 112
  • Bromwich, D.H., Nicolas, J.P., Monaghan, A.J., An assessment of precipitation changes over Antarctica and the Southern Ocean since 1989 in contemporary global reanalyses (2011) J. Climate, 24, pp. 4189-4209
  • Brown, J., Hinkel, K., Nelson, F., The Circumpolar Active Layer Monitoring (CALM) program: Research designs and initial results (2000) Polar Geogr., 24, pp. 166-258
  • Butchart, N., Remsberg, E.E., The area of the stratospheric polar vortex as a diagnostic for tracer transport on an isentropic surface (1986) J. Atmos. Sci., 43, pp. 1319-1339
  • Callaghan, T., The changing face of Arctic snow cover: A synthesis of observed and projected changes (2011) Ambio, 40, pp. 17-31
  • Camargo, S.J., Sobel, A.H., Western North Pacific tropical cyclone intensity and ENSO (2005) J. Climate, 18, pp. 2996-3006
  • Camargo, S.J., Emanuel, K.A., Sobel, A.H., Use of a genesis potential index to diagnose ENSO effects on tropical cyclone genesis (2007) J. Climate, 20, pp. 4819-4834
  • Camargo, S.J., Wheeler, M.C., Sobel, A.H., Diagnosis of the MJO modulation of tropical cyclogenesis using an empirical index (2009) J. Atmos. Sci., 66, pp. 3061-3074
  • Cappelen, J., Greenland—DMI Historical Climate Data Collection 1784-2014 (2015) Danish Meteorological Institute Tech. Rep, p. 97. , www.dmi.dk/fileadmin/user_upload/Rapporter/TR/2015/tr15-04.pdf, 15-04
  • Carpenter, L.J., Ozone-depleting substances (ODSs) and other gases of interest to the Montreal Protocol. Scientific Assessment of Ozone Depletion: 2014, Global Ozone Research and Monitoring Project Rep. 55 (2014) World Meteorological Organization, 1.1-1, p. 101
  • Carrer, D., Ceamanos, X., Six, B., Roujean, J.-L., AERUS-GEO: A newly available satellite-derived aerosol optical depth product over Europe and Africa. Geophys. Res (2014) Lett., 41, pp. 7731-7738
  • Carton, J.A., Chepurin, G.A., Reagan, J., Häkkinen, S., Interannual to decadal variability of Atlantic Water in the Nordic and adjacent seas (2011) J. Geophys. Res., 116
  • Carton, J.A., Cunningham, A., Frajka-Williams, E., Kwon, Y.-O., Marshall, D., Msadek, R., The Atlantic overturning circulation: More evidence of variability and links to climate (2014) Bull. Amer. Meteor. Soc, 95, pp. ES163-ES166
  • Carturan, L., Cazorzi, F., De Blasi, F., Dalla Fontana, G., Air temperature variability over three glaciers in the Ortles-Cevedale (Italian Alps) effects of glacier fragmentation, comparison of calculation methods, and impacts on mass balance modeling (2015) Cryosphere, 9, pp. 1129-1146
  • Cassou, C., Intraseasonal interaction between the Madden Julian Oscillation and the North Atlantic Oscillation (2008) Nature, 455, pp. 523-527
  • Cavalieri, D.J., Parkinson, C.L., Gloersen, P., Zwally, H., 1996 (Updated yearly): Sea ice concentrations from Nimbus-7 SMMR and DMSP SSM/I-SSMIS passive microwave data, version 1 [1981-2011] (2016) National Snow and Ice Data Center Distributed Active Archive Center, , accessed
  • Cavicchia, L., Von Storch, H., Gualdi, S., S. Mediterranean tropical-like cyclones in present and future climate (2014) J. Climate, 27, pp. 7493-7501
  • Chandra, S., Ziemke, J.R., Min, W., Read, W.G., Effects of 1997-1998 El Niño on tropospheric ozone and water vapor (1998) Geophys. Res. Lett, 25, pp. 3867-3870
  • Chandra, S., Ziemke, J.R., Duncan, B.N., Diehl, T.L., Livesey, N., Froidevaux, L., Effects of the 2006 El Niño on tropospheric ozone and carbon monoxide: Implications for dynamics and biomass burning (2009) Atmos. Chem. Phys, 9, pp. 4239-4249
  • Chehade, W., Weber, M., Burrows, J.P., Total ozone trends and variability during 1979-2012 from merged data sets of various satellites (2014) Atmos. Chem. Phys, 14, pp. 7059-7074
  • Chelton, D.B., Davis, R.E., Monthly mean sea-level variability along the West Coast of North America (1982) J. Phys. Oceanogr., 12, pp. 757-784
  • Chen, Y., Morton, D.C., Jin, Y., Gollatz, G.J., Kasibhatla, P.S., Van Der Werf, G.R., Defries, R.S., Randerson, J.T., Long-term trends and interannual variability of forest, savanna and agricultural fires in South America (2013) Carbon Manage., 4, pp. 617-638
  • Chepurin, G.A., Carton, J.A., Subarctic and Arctic sea surface temperature and its relation to ocean heat content 1982-2010 (2012) J. Geophys. Res., 117
  • Chia, H.H., Ropelewski, C.F., The interannual variability in the genesis location of tropical cyclones in the northwest Pacific (2002) J. Climate, 15, pp. 2934-2944
  • Chiou, E.W., Comparison of profile total ozone from SBUV (V8.6) with GOME-type and ground-based total ozone for a 16-year period (1996 to 2011) (2014) Atmos. Meas. Tech, 7, pp. 1681-1692
  • Christiansen, H.H., The thermal state of permafrost in the Nordic area during the International Polar Year 2007-2009 (2010) Permafr. Periglac. Process, 21, pp. 156-181
  • Christiansen, J.S., Mecklenburg, C.W., Karamushko, O.V., Arctic marine fishes and fisheries in light of global change (2014) Global Change Biol., 20, pp. 352-359
  • Christy, J., Lower tropospheric temperature [in “State of the Climate in 2013”] (2014) Bull. Amer. Meteor. Soc., 95 (7), pp. S10-S11
  • Christy, J., Lower tropospheric temperature [in “State of the Climate in 2014”] (2015) Bull. Amer. Meteor. Soc., 96 (7), pp. S9-S10
  • Christy, J., Spencer, R.W., Norris, W.B., Braswell, W.D., Parker, D.E., Error estimates of version 5.0 of MSU-AMSU bulk atmospheric temperatures (2003) J. Atmos. Oceanic Technol., 20, pp. 613-629
  • Chrysanthou, A., Van Der Schrier, G., Van Den Besselaar, E.J.M., Klein Tank, A.M.G., Brandsma, T., The effects of urbanization on the rise of the European temperature since 1960 (2014) Geophys. Res. Lett, 41 (21), pp. 7716-7722
  • Chu, J.H., Sampson, C.R., Levine, A.S., Fukada, E., The Joint Typhoon Warning Center tropical cyclone best-tracks, 1945-2000 (2002) Naval Research Laboratory, , http://www.usno.navy.mil/NOOC/nmfc-ph/RSS/jtwc/best_tracks/TC_bt_report.html, Ref. NRL/MR/7540-02-16
  • Chung, E.-S., Soden, B.J., John, V.O., Intercalibrating microwave satellite observations for monitoring long-term variations in upper-and midtropospheric water vapor (2013) J. Atmos. Oceanic Technol., 30, pp. 2303-2319
  • Chung, E.-S., Soden, B.J., Huang, X., Shi, L., John, V.O., An assessment of the consistency between satellite measurements of upper tropospheric water vapour, revised (2016) J. Geophys. Res. Atmos., 121, pp. 2874-2887
  • Ciais, P., (2013) Carbon and Other Biogeochemical Cycles. Climate Change 2013: The Physical, pp. 465-570. , Science Basis, T. F. Stocker, et al. Eds., Cambridge University Press
  • Coelho, C.A.S., Cardoso, D.H.F., Firpo, M.A.F., Precipitation diagnostics of an exceptionally dry event in São Paulo, Brazil (2016) Theor. Appl. Climatol
  • Coelho, C.A.S., The 2014 southeast Brazil austral summer drought: Regional scale mechanisms and teleconnections (2016) Climate Dyn, 46, pp. 3737-3752
  • Coldewey-Egbers, M., Loyola, D., Braesicke, P., Dameris, M., Van Roozendael, M., Lerot, C., Zimmer, W., A new health check of the ozone layer at global and regional scales (2014) Geophys. Res. Lett, 41, pp. 4363-4372
  • Coldewey-Egbers, M., The GOME-type Total Ozone Essential Climate Variable (GTO-ECV) data record from the ESA Climate Change Initiative (2015) Atmos. Meas. Tech, 8, pp. 3923-3940
  • Cooper, O.R., Ziemke, J.R., Tropospheric ozone [in “State of the Climate in 2012”] (2013) Bull. Amer. Meteor. Soc., 94 (8), pp. S38-S39
  • Cooper, O.R., Ziemke, J.R., Tropospheric ozone [in “State of the Climate in 2013”] (2014) Bull. Amer. Meteor. Soc., 95 (7), p. 42
  • Cooper, O.R., Ziemke, J.R., Tropospheric ozone [in “State of the Climate in 2014”] (2015) Bull. Amer. Meteor. Soc., 96 (7), pp. S48-S49
  • Cooper, O.R., Global distribution and trends of tropospheric ozone: An observation-based review. Elementa Sci (2014) Anthropocene, 2
  • Cross, J.N., Annual sea-air CO2 fluxes in the Bering Sea: Insights from new autumn and winter observations of a seasonally ice-covered continental shelf (2014) J. Geophys. Res. Oceans, 119, pp. 6692-6708
  • Curtis, S., Adler, R., ENSO indexes based on patterns of satellite-derived precipitation (2000) J. Climate, 13, pp. 2786-2793
  • Dai, A., Recent climatology, variability, and trends in global surface humidity (2006) J. Climate, 19, pp. 3589-3606
  • Dai, A., Increasing drought under global warming in observations and models. Nat (2013) Climate Change, 3, pp. 52-58
  • Dalpadado, P., Ingvaldsen, R.B., Stige, L.C., Bogstad, B., Knutsen, T., Ottersen, G., Ellertsen, B., Climate effects on Barents Sea ecosystem dynamics (2012) ICES J. Mar. Sci, 69, pp. 1303-1316
  • Dalpadado, P., Productivity in the Barents Sea—Response to recent climate variability (2014) Plos One, 9
  • Daniel, J.S., Solomon, S., Albritton, D.L., On the evaluation of halocarbon radiative forcing and global warming potentials (1995) J. Geophys. Res., 100, pp. 1271-1285
  • Davis, S.M., Hurst, D.F., Rosenlof, K.H., Stratospheric water vapor [in “State of the Climate in 2014”] (2015) Bull. Amer. Meteor. Soc., 96 (7), pp. S46-S48
  • De Jeu, R., Dorigo, W., Wagner, W., Liu, Y., Soil moisture [in “State of the Climate in 2010”] (2011) Bull. Amer. Meteor. Soc., 92 (6), pp. S52-S53
  • De Jeu, R., Dorigo, W., Parinussa, R.M., Wagner, W., Chung, D., Soil moisture [in “State of the Climate in 2011”] (2012) Bull. Amer. Meteor. Soc., 93 (7), pp. S30-S34
  • De Jeu, R., Dorigo, W., Parinussa, R.M., Wagner, W., Liu, Y.Y., Chung, D., Fernández-Prieto, D., Building a climate record of soil moisture from historical satellite observations [in “State of the Climate in 2011”] (2012) Bull. Amer. Meteor. Soc., 93 (7), pp. S32-S33
  • De Laat, A.T.J., Van Der, R.J., Van Weele, M., Tracing the second stage of ozone recovery in the Antarctic ozone-hole with a “big data” approach to multivariate regressions (2015) Atmos. Chem. Phys., 15, pp. 79-97
  • De Lima, M.I., Santo, F.E., Ramos, A.M., De Lima, J.L.M.P., Recent changes in daily precipitation and surface air temperature extremes in mainland Portugal, in the period 1941-2007 (2013) Atmos. Res, 127, pp. 195-209
  • De Pablo, M.A., Ramos, M., Molina, M., Thermal characterization of the active layer at the Limnopolar Lake CALM-S site on Byers Peninsula (Livingston Island), Antarctica (2014) Solid Earth, 5, pp. 721-739
  • De Ronde, C.E.J., Discovery of active hydrothermal venting in Lake Taupo, New Zealand (2002) J. Volcanol. Geotherm., 115, pp. 257-275
  • Dee, D.P., The ERA-Interim reanalysis: Configuration and performance of the data assimilation system (2011) Quart. J. Roy. Meteor. Soc., 137, pp. 553-597
  • Deeter, M.N., Validation of MOPITT Version 5 thermal-infrared, near-infrared, and multispectral carbon monoxide profile retrievals for 2000-2011 (2013) J. Geophys. Res., 118, pp. 6710-6725
  • Deser, M., Alexander, A., Xie, S.P., Phillips, A.S., Sea surface temperature variability: Patterns and mechanisms (2010) Annu. Rev. Mar. Sci., 2, pp. 115-143
  • Devries, T., The oceanic anthropogenic CO2 sink: Storage, air-sea fluxes, and transports over the industrial era. Global Biogeochem (2014) Cycles, 28, pp. 631-647
  • Dewitte, S., Crommelynck, D., Joukof, A., Total solar irradiance observations from DIARAD/VIRGO (2004) J. Geophys. Res., 109
  • Di Girolamo, L., Menzies, A., Zhao, G., Mueller, K., Moroney, C., Diner, D.J., Multi-angle imaging spectroradiometer level 3 cloud fraction by altitude algorithm theoretical basis document. JPL Publ. D-62358 (2010) Jet Propulsion Laboratory, p. 23
  • Diamond, H.J., Tropics [in “State of the Climate in 2012”] (2013) Bull. Amer. Meteor. Soc, 94 (8), pp. S79-S110
  • Diamond, H.J., Tropics [in “State of the Climate in 2013”] (2014) Bull. Amer. Meteor. Soc, 95 (8), pp. S81-S114
  • Diamond, H.J., Tropics [in “State of the Climate in 2014”] (2015) Bull. Amer. Meteor. Soc, 96 (7), pp. S91-S126
  • Diamond, H.J., Lorrey, A.M., Knapp, K.R., Levinson, D.H., Development of an enhanced tropical cyclone tracks database for the southwest Pacific from 1840 to 2011 (2012) Int. J. Climatol., 32, pp. 2240-2250
  • Dickson, R., Lazier, J., Meincke, J., Rhines, P., Swift, J., Long-term coordinated changes in the convective activity of the North Atlantic (1996) Prog. Oceanogr, 38, pp. 241-295
  • Dlugokencky, E.J., Nisbet, E.G., Fisher, R., Lowry, D., Global atmospheric methane: Budget, changes and dangers (2011) Philos. Trans. Roy. Soc. London, 369A, pp. 2058-2072
  • Dohan, K., Goni, G., Lumpkin, R., Surface currents [in “State of the Climate in 2014”] (2015) Bull. Amer. Meteor. Soc, 96 (7), pp. S64-S66, S68
  • Doherty, R.M., Stevenson, D.S., Johnson, C.E., Collins, W.J., Sanderson, M.G., Tropospheric ozone and El Niño-Southern Oscillation: Influence of atmospheric dynamics, biomass burning emissions, and future climate change (2006) J. Geophys. Res., 111
  • Dokulil, M.T., Herzig, A., Somogyi, B., Vörös, L., Donabaum, K., May, L., Nõges, T., Winter conditions in European shallow lakes: A comparative synopsis (2014) Est. J. Ecol, 63, pp. 111-129
  • Domingues, C.M., Church, J.A., White, N.J., Gleckler, P.J., Wijffels, S.E., Barker, P.M., Dunn, J.R., Improved estimates of upper-ocean warming and multi-decadal sea-level rise (2008) Nature, 453, pp. 1090-1093
  • Domingues, R., Upper ocean response to Hurricane Gonzalo (2014): Salinity effects revealed by targeted and sustained underwater glider observations (2015) Geophys. Res. Lett, 42, pp. 7131-7138
  • Donat, M.G., Alexander, L.V., Yang, H., Durre, I., Vose, R., Caesar, J., Global land-based datasets for monitoring climatic extremes (2013) Bull. Amer. Meteor. Soc., 94, pp. 997-1006
  • Doney, S.C., Climate change impacts on marine ecosystems (2012) Annu. Rev. Mar. Sci., 4, pp. 11-37
  • Dong, S., Garzoli, S.L., Baringer, M.O., Meinen, C.S., Goni, G.J., The Atlantic meridional overturning circulation and its northward heat transport in the South Atlantic (2009) Geophys. Res. Lett, 36
  • Dong, S., Goni, G., Bringas, F., Temporal variability of the meridional overturning circulation in the South Atlantic between 20°S and 35°S (2015) Geophys. Res. Lett, 42, pp. 7655-7662
  • Dorigo, W., De Jeu, R., Chung, D., Parinussa, R., Liu, Y., Wagner, W., Fernández-Prieto, D., Evaluating global trends (1988-2010) in harmonized multi-satellite surface soil moisture (2012) Geophys. Res. Lett, 39
  • Dorigo, W., Soil moisture [in “State of the Climate in 2013”] (2014) Bull. Amer. Meteor. Soc., 95 (7), pp. S25-S26
  • Dorigo, W., Reimer, C., Chung, D., Parinussa, R.M., Melzer, T., Wagner, W., De Jeu, R.A.M., Kidd, R., Soil moisture [in “State of the Climate in 2014”] (2015) Bull. Amer. Meteor. Soc., 96 (7), pp. S28-S29
  • Dorigo, W., Evaluation of the ESA CCI soil moisture product using ground-based observations (2015) Remote Sens. Environ, 162, pp. 380-395
  • Dorigo, W., De Jeu, R., Satellite soil moisture for advancing our understanding of Earth system processes and climate change (2016) Int. J. Appl. Earth Obs. Geoinf., 48, pp. 1-4
  • Douville, H., Ribes, A., Decharme, B., Alkama, R., Sheffield, J., Anthropogenic influence on multidecadal changes in reconstructed global evapotranspiration. Nat (2013) Climate Change, 3, pp. 59-62
  • Drozdov, D., Monitoring of permafrost in Russia and the international GTN-P project (2015) Proc. 68Th Canadian Geotechnical Conf, , (GEOQuébec 2015), Québec, Canada, GEOQuébec
  • Duchesne, C., Smith, S.L., Ednie, M., Bonnaventure, P.P., Active layer variability and change in the Mackenzie Valley, Northwest Territories (2015) Proc. 68Th Canadian Geotechnical Conf. and Seventh Canadian Conf. on Permafrost, , (GEOQuébec 2015), Québec, Canada, GEOQuébec, Paper 117
  • Duchez, A., A new index for the Atlantic meridional overturning circulation at 26°N (2014) J. Climate, 27, pp. 6439-6455
  • Ducklow, H., West Antarctic Peninsula: An ice-dependent coastal marine ecosystem in transition (2013) Oceanography, 26, pp. 190-203
  • Dunn, R.J.H., Willett, K.M., Thorne, P.W., Woolley, E.V., Durre, I., Dai, A., Parker, D.E., Vose, R.S., HadISD: A quality-controlled global synoptic report database for selected variables at long-term stations from 1973-2011 (2012) Climate Past, 8, pp. 1649-1679
  • Dunn, R.J.H., Donat, M.G., Peterson, T., Temperature extreme indices [in “State of the Climate in 2014”] (2015) Bull. Amer. Meteor. Soc., 96 (7), pp. S15-S16
  • Durack, P.J., Wijffels, S.E., Gleckler, P.J., Long-term sea-level change revisited: The role of salinity (2014) Environ. Res. Lett, 9
  • Dutton, E.G., A coherence between the QBO and the amplitude of the Mauna Loa atmospheric transmission annual cycle (1992) Int. J. Climatol., 12, pp. 383-396
  • Dutton, E.G., Bodhaine, B.A., Solar irradiance anomalies caused by clear-sky transmission variations above Mauna Loa: 1958-1999 (2001) J. Climate, 14, pp. 3255-3262
  • Dutton, E.G., Deluisi, J.J., Austring, A.P., Interpretation of Mauna Loa atmospheric transmission relative to aerosols, using photometric precipitable water amounts (1985) J. Atmos. Chem., 3, pp. 53-68
  • Dvortsov, V., Solomon, S., Response of the stratospheric temperatures and ozone to past and future increases in stratospheric humidity (2001) J. Geophys. Res., 106, pp. 7505-7514
  • Ebita, A., The Japanese 55-year Reanalysis “JRA-55”: An interim report (2011) SOLA, 7, pp. 149-152
  • Ednie, M., Smith, S.L., Permafrost temperature data 2008-2014 from community based monitoring sites in Nunavut (2015) Geological Survey of Canada Open File, p. 7784
  • Edson, J., On the exchange of momentum over the open ocean (2013) J. Phys. Oceanogr., 43, pp. 1589-1610
  • Ellis, H.T., Pueschel, R.F., Solar radiation: Absence of air pollution trends at Mauna Loa (1971) Science, 172, pp. 845-846
  • Emanuel, K.A., The maximum intensity of hurricanes (1988) J. Atmos. Sci., 45, pp. 1143-1155
  • Emanuel, K.A., Sensitivity of tropical cyclones to surface exchange coefficients and a revised steady-state model incorporating eye dynamics (1995) J. Atmos. Sci., 52, pp. 3969-3976
  • Emanuel, K.A., Nolan, D.S., Tropical cyclone activity and the global climate system (2004) Proc. 26Th Conf. on Hurricanes and Tropical Meteorology, Miami, FL, Amer. Meteor. Soc., 10A, p. 2. , https://ams.confex.com/ams/26HURR/techprogram/paper_75463.htm
  • Enfield, D.B., Allen, J.S., On the structure and dynamics of monthly mean sea level anomalies along the Pacific coast of North and South America (1980) J. Phys. Oceanogr., 10, pp. 557-578
  • Enfield, D.B., Mestas-Nuñez, A.M., Multiscale variabilities in global sea surface temperatures and their relationships with tropospheric climate patterns (1999) J. Climate, 12, pp. 2719-2733
  • Enfield, D.B., Mestas-Nuñez, A.M., Trimble, P.J., The Atlantic multidecadal oscillation and its relationship to rainfall and river flows in the continental US (2001) Geophys. Res. Lett, 28, pp. 2077-2080
  • England, M.H., Recent intensification of wind-driven circulation in the Pacific and the ongoing warming hiatus (2014) Nat. Climate Change, 4, pp. 222-227
  • Esaias, W.E., An overview of MODIS capabilities for ocean science observations (1998) IEEE Trans. Geosci. Remote Sens., 36, pp. 1250-1265
  • Estilow, T., The climate data guide: Snow cover extent (Northern Hemisphere) climate data record, by Rutgers (2013) Data Accessed, p. 2015. , https://climatedataguide.ucar.edu/climate-data/snow-cover-extent-northern-hemisphere-climate-data-record-rutgers
  • Evans, W., Sea-air CO2 exchange in the western Arctic coastal ocean. Global Biogeochem (2015) Cycles, 29, pp. 1190-1209
  • Falkowski, P.G., Barber, R.T., Smetacek, V., Biogeochemical controls and feedbacks on ocean primary production (1998) Science, 281, pp. 200-206
  • Farbrot, H., Isaksen, K., Etzelmüller, B., Gisnås, K., Ground thermal regime and permafrost distribution under a changing climate in northern Norway (2013) Permafrost Periglacial Process., 24, pp. 20-38
  • Fasullo, J.T., Boening, C., Landerer, F.W., Nerem, R.S., Australia’s unique influence on global sea level in 2010-2011 (2013) Geophys. Res. Lett, 40, pp. 4368-4373
  • Fausto, R.S., Ablation observations for 2008-2011 from the Programme for Monitoring of the Greenland Ice Sheet (PROMICE) (2012) Geol. Surv. Denmark Greenl. Bull., 26, pp. 73-76
  • Fay, F.H., Ecology and biology of the Pacific walrus, Odobenus rosmarus divergens Illiger (1982) North Amer. Fauna, 74, pp. 1-279
  • Fay, F.H., Kelly, B.P., Sease, J.L., Managing the exploitation of Pacific walruses: A tragedy of delayed response and poor communication (1989) Mar. Mamm. Sci, 5, pp. 1-16
  • Fekete, B.M., Global Climate] River discharge [in “State of the Climate in 2012” (2013) Bull. Amer. Meteor. Soc, 94 (8), pp. S22-S23
  • Fekete, B.M., Looser, U., Robarts, R.D., Rationale for monitoring discharge on the ground (2012) J. Hydrometeor., 13, pp. 1977-1986
  • Feng, W., Zhong, M., Lemoine, J.-M., Biancale, R., Hsu, H.-T., Xia, J., Evaluation of groundwater depletion in North China using the Gravity Recovery and Climate Experiment (GRACE) data and ground-based measurements (2013) Water Resour. Res, 49, pp. 2110-2118
  • Fennig, K., Andersson, A., Bakan, S., Klepp, C.-P., Schröder, M., Hamburg Ocean Atmosphere Parameters and Fluxes from Satellite Data-HOAPS 3.2-Monthly means/6-hourly composites (2012) Satellite Application Facility on Climate Monitoring
  • Field, C.B., Behrenfeld, M.J., Randerson, J.T., Falkowski, P., Primary production of the biosphere: Integrating terrestrial and oceanic components (1998) Science, 281, pp. 237-240
  • Field, R.D., Wang, Y., Roswintiarti, O., A drought-based predictor of recent haze events in western Indonesia (2004) Atmos. Environ, 38, pp. 1869-1878
  • Field, R.D., Van Der Werf, G.R., Shen, S.S.P., Human amplification of drought-induced biomass burning in Indonesia since 1960 (2009) Nat. Geosci, 2, pp. 185-188
  • Fioletov, V.E., Bodeker, G.E., Miller, A.J., McPeters, R.D., Stolarski, R., Global and zonal total ozone variations estimated from ground-based and satellite measurements: 1964-2000 (2002) J. Geophys. Res., 107, p. 4647
  • Fioletov, V.E., The performance of the ground-based total ozone network assessed using satellite data (2008) J. Geophys. Res., 113
  • Fischbach, A.S., Monson, D.H., Jay, C.V., Enumeration of Pacific walrus carcasses on beaches of the Chukchi Sea in Alaska following a mortality event, September 2009 (2009) U.S. Geological Survey Open-File Rep. 2009-1291, p. 10. , http://pubs.usgs.gov/of/2009/1291/
  • Fisher, J.B., Tu, K.P., Baldocchi, D.D., Global estimates of the land-atmosphere water flux based on monthly AVHRR and ISLSCP-II data, validated at 16 FLUXNET sites (2008) Remote Sens. Environ, 112, pp. 901-919
  • Fishman, J., Watson, C.E., Larsen, J.C., Logan, J.A., Distribution of tropospheric ozone determined from satellite data (1990) J. Geophys. Res, 95, pp. 3599-3617
  • Flemming, J., Inness, A., Carbon monoxide [in “State of the Climate in 2014”] (2015) Bull. Amer. Meteor. Soc., 96 (7), pp. S49-S52
  • Flemming, J., Tropospheric chemistry in the Integrated Forecasting System of ECMWF (2015) Geosci. Model Dev, 8, pp. 975-1003
  • Fofonoff, N.P., Lewis, E.L., A practical salinity scale (1979) J. Oceanogr. Soc. Japan, 35, pp. 63-64
  • Fogt, R.L., Bromwich, D.H., Hines, K.M., Understanding the SAM influence on the South Pacific ENSO teleconnection (2011) Climate Dyn., 36, pp. 1555-1576
  • Folland, C.K., Knight, J., Linderholm, H.W., Fereday, D., Ineson, S., Hurrell, J.W., The summer North Atlantic Oscillation: Past, present and future (2009) J. Climate, 22, pp. 1082-1103
  • Font, J., SMOS first data analysis for sea surface salinity determination (2013) Int. J. Remote Sens., 34, pp. 3654-3670
  • Foreman, C.M., Wolf, C.F., Priscu, J.C., Impact of episodic warming events (2004) Aquat. Geochem, 10, pp. 239-268
  • Fossheim, M., Primicerio, R., Johannesen, E., Ingvaldsen, R.B., Aschan, M.M., Dolgov, A.V., Recent warming leads to a rapid borealization of fish communities in the Arctic (2015) Nat. Climate Change, 5, pp. 673-677
  • Fountain, A.G., Dana, G.L., Lewis, K.J., Vaughn, B.H., McKnight, D.M., (1998) Glaciers of the Mcmurdo Dry Valleys, Southern Victoria Land, Antarctica, pp. 65-75. , Ecosystem Dynamics in a Polar Desert: The McMurdo Dry Valleys, Antarctica. J. C. Priscu, Ed., Antarctic Research Series, Vol. 72, Amer. Geophys. Union
  • Fountain, A.G., Campbell, J.L., Schuur, E.A.G., Stammerjohn, S.E., Williams, M.W., Ducklow, H.W., The disappearing cryosphere: Impacts and ecosystem responses to rapid cryosphere loss (2012) Bioscience, 62, pp. 405-415
  • Frajka-Williams, E., Estimating the Atlantic overturning at 26°N using satellite altimetry and cable measurements (2015) Geophys. Res. Lett, 42, pp. 3458-3464
  • Frank, W.M., Roundy, P.E., The role of tropical waves in tropical cyclogenesis (2006) Mon. Wea. Rev, 134, pp. 2397-2417
  • Frankignoul, C., Hasselmann, K., Stochastic climate models, Part II: Application to sea-surface temperature anomalies and thermocline variability (1977) Tellus, 29A, pp. 289-305
  • Franz, B.A., Behrenfeld, M.J., Siegel, D.A., Werdell, P.J., Phytoplankton [in “State of the Climate in 2014”] (2015) Bull. Amer. Meteor. Soc, 96, pp. S85-S87
  • Fraser, W.R., Hofmann, E.E., A predator’s perspective on causal links between climate change, physical forcing and ecosystem response (2003) Mar. Ecol. Prog. Ser., 265, pp. 1-15
  • Fraser, W.R., Patterson-Fraser, D.L., Ribic, C.A., Schofield, O., Ducklow, H., A nonmarine source of variability in Adélie penguin demography (2013) Oceanography, 26, pp. 207-209
  • Freckman, D.W., Virginia, R.A., Low-diversity Antarctic soil nematode communities: Distribution and response to disturbance (1997) Ecology, 78, pp. 363-369
  • Free, M., Seidel, D.J., Angell, J.K., Lanzante, J.R., Durre, I., Peterson, T.C., Radiosonde Atmospheric Temperature Products for Assessing Climate (RATPAC): A new dataset of large-area anomaly time series (2005) J. Geophys. Res., 110
  • Friis, K., Körtzinger, A., Pätsch, J., Wallace, D., On the temporal increase of anthropogenic CO2 in the subpolar North Atlantic (2005) Deep-Sea Res, 1 (52), pp. 681-698
  • Frith, S.M., Kramarova, N.A., Stolarski, R.S., McPeters, R.D., Bhartia, P.K., Labow, G.J., Recent changes in total column ozone based on the SBUV version 8.6 Merged Ozone Data Set (2014) J. Geophys. Res. Atmos., 119, pp. 9735-9751
  • Froidevaux, L., Global Ozone Chemistry and Related Trace Gas Data Records for the Stratosphere (GOZCARDS): Methodology and sample results with a focus on HCl, H2O, and O3 (2015) Atmos. Chem. Phys, 15, pp. 10471-10507
  • Fung, I., John, J., Lerner, J., Matthews, E., Prather, M., Steele, L.P., Fraser, P.J., Three-dimensional model synthesis of the global methane cycle (1991) J. Geophys. Res, 96, pp. 13033-13065
  • Gardner, A.S., Sharply increased mass loss from glaciers and ice caps in the Canadian Arctic Archipelago (2011) Nature, 473, pp. 357-360
  • Gardner, A.S., A reconciled estimate of glacier contributions to sea level rise: 2003 to 2009 (2013) Science, 340, pp. 852-857
  • Garzoli, S.L., Baringer, M.O., Dong, S., Perez, R.C., Yao, Q., South Atlantic meridional fluxes (2013) Deep-Sea Res, 1 (71), pp. 21-32
  • Gergis, J., Fowler, A.M., A history of ENSO events since A.D. 1525: Implications for future climate change (2009) Climatic Change, 92, pp. 343-387
  • Ghilain, N., Arboleda, A., Gellens-Meulenberghs, F., Evapotranspiration modelling at large scale using near-real time MSG SEVIRI derived data (2011) Hydrol. Earth Syst. Sci, 15, pp. 771-786
  • Gobron, N., Robustelli, M., Monitoring the state of the global terrestrial surfaces (2013) Proc. 2013 ESA Living Planet Symp, , Edinburgh, United Kingdom, European Space Agency, SP-722
  • Gobron, N., Belward, A.S., Pinty, B., Knorr, W., Monitoring biosphere vegetation 1998-2009 (2010) Geophys. Res. Lett, 37
  • Goddard, P., Yin, J., Griffies, S.M., Zhang, S., An extreme event of sea-level rise along the northeast coast of North America in 2009-2010 (2015) Nat. Commun, 6, p. 6346
  • Goldenberg, S.B., Shapiro, L.J., Physical mechanisms for the association of El Niño and West African rainfall with Atlantic major hurricane activity (1996) J. Climate, 9, pp. 1169-1187
  • Goldenberg, S.B., Landsea, C.W., Mestas-Nuñez, A.M., Gray, W.M., The recent increase in Atlantic hurricane activity: Causes and implications (2001) Science, 293, pp. 474-479
  • Gong, T., Feldstein, S.B., Luo, D., The impact of ENSO on wave breaking and southern annular mode events (2010) J. Atmos. Sci., 67, pp. 2854-2870
  • Gong, T., Feldstein, S.B., Luo, D., A simple GCM study on the relationship between ENSO and the southern annular mode (2013) J. Atmos. Sci., 70, pp. 1821-1832
  • Goni, G.J., Trinanes, J.A., Ocean thermal structure monitoring could aid in the intensity forecast of tropical cyclones. Eos (2003) Trans. Amer. Geophys. Union, 84, pp. 573-578
  • Goni, G.J., Knaff, J.A., Tropical cyclone heat potential [in “State of the Climate in 2008”] (2009) Bull. Amer. Meteor. Soc., 90 (8), pp. S54-S56
  • Goni, G.J., Kamholz, S., Garzoli, S., Olson, D., Dynamics of the Brazil-Malvinas confluence based on inverted echo sounders and altimetry (1996) J. Geophys. Res, 101 (C7), pp. 16273-16289
  • Goni, G.J., Applications of satellite-derived ocean measurements to tropical cyclone intensity forecasting (2009) Oceanography, 22, pp. 190-197
  • Goni, G.J., Bringas, F., Dinezio, P.N., Observed low frequency variability of the Brazil Current front (2011) J. Geophys. Res., 116
  • Goni, G.J., Knaff, J.A., Lin, I.-I., Tropical cyclone heat potential [in “State of the Climate in 2013”] (2015) Bull. Amer. Meteor. Soc., 96 (7), pp. S121-S122
  • Gozzo, L.F., Da Rocha, R.P., Rebotia, M.S., Sugahara, S., Subtropical cyclones over the southwestern South Atlantic: Climatological aspects and case study (2014) J. Climate, 27, pp. 8543-8562
  • Granier, C., Evolution of anthropogenic and biomass burning emissions of air pollutants at global and regional scales during the 1980-2010 period (2011) Climatic Change, 109, pp. 163-190
  • Gray, W.M., Global view of the origin of tropical disturbances and storms (1968) Mon. Wea. Rev, 96, pp. 669-700
  • Grebmeier, J.M., A major ecosystem shift in the northern Bering Sea (2006) Science, 311, pp. 1461-1464
  • Grebmeier, J.M., Moore, S.E., Overland, J.E., Frey, K.E., Gradinger, R., Biological response to recent Pacific Arctic sea ice retreats. Eos (2010) Trans. Amer. Geophys. Union, 91, pp. 161-162
  • Guard, C.P., Lander, M.A., Northwest Pacific, Micronesia [in “State of the Climate in 2011”] (2012) Bull. Amer. Meteor. Soc., 93, pp. S215-S218
  • Gugliemin, M., Worland, M.R., Cannone, N., Spatial and temporal variability of ground surface temperature and active layer thickness at the margin of maritime Antarctica, Signy Island (2012) Geomorphology, 155, pp. 20-33
  • Gugliemin, M., Dalle Fratte, M., Cannone, N., Permafrost warming and vegetation changes in continental Antarctica (2014) Environ. Res. Lett, 9
  • Guhathakurta, P., Rajeevan, M., Sikka, D.R., Tyagi, A., Observed changes in southwest monsoon rainfall over India during 1901-2011 (2015) Int. J. Climatol., 35, pp. 1881-1898
  • Guo, Y., Jiang, X., Waliser, D.E., Modulation of the convectively coupled Kelvin waves over South America and the tropical Atlantic Ocean in association with the Madden-Julian oscillation (2014) J. Atmos. Sci., 71, pp. 1371-1388
  • Guttman, N.B., Comparing the Palmer Drought Index and the Standardized Precipitation Index (1998) J. Amer. Water Res. Assoc., 34, pp. 113-121
  • Hagos, S.M., Cook, K.H., Ocean warming and late-twentieth-century Sahel drought and recovery (2008) J. Climate, 21, pp. 3797-3814
  • Haimberger, L., Upper air wind speed [in “State of the Climate in 2014”] (2015) Bull. Amer. Meteor. Soc., 96 (7), pp. S35-S37
  • Haimberger, L., Tavolato, C., Sperka, S., Homogenization of the global radiosonde temperature dataset through combined comparison with reanalysis background series and neighboring stations (2012) J. Climate, 25, pp. 8108-8131
  • Hansen, J., Ruedy, R., Sato, M., Lo, K., Global surface temperature change (2010) Rev. Geophys, 48
  • Hardy, A., (1967) Great Waters. Collins, p. 542
  • Harris, I., Jones, P.D., Osborn, T.J., Lister, D.H., Updated high-resolution grids of monthly climatic observations—The CRU TS3.10 dataset (2014) Int. J. Climatol., 34, pp. 623-642
  • Harris, N.R.P., Wuebbles, D.J., Scenarios and information for policymakers. Scientific Assessment of Ozone Depletion: 2014, Global Ozone Research and Monitoring Project Rep. 55 (2014) World Meteorological Organization, , http://www.esrl.noaa.gov/csd/assessments/ozone/2014/chapters/2014OzoneAssessment.pdf, 5.1-5.58
  • Harris, N.R.P., Past changes in the vertical distribution of ozone—Part 3: Analysis and interpretation of trends (2015) Atmos. Chem. Phys, 15, pp. 9965-9982
  • Hart, R.E., A cyclone phase space derived from thermal wind and thermal asymmetry (2003) Mon. Wea. Rev, 131, pp. 585-616
  • Hartmann, D.L., (2013) Observations: Atmosphere and Surface, pp. 159-254. , Climate Change 2013: The Physical Science Basis, T. F. Stocker et al., Eds., Cambridge University Press
  • Hawkings, J.R., Ice sheets as a significant source of highly reactive nanoparticulate iron to the oceans (2014) Nat. Commun, 5, p. 3929
  • Hayes, M.J., Svoboda, M.D., Wilhite, D.A., Varnyarkho, O.V., Monitoring the 1996 drought using the Standardized Precipitation Index (1999) Bull. Amer. Meteor. Soc., 80, pp. 429-438
  • Heidinger, A.K., Foster, M.J., Walther, A., Zhao, X., The Pathfinder Atmospheres-Extended AVHRR climate dataset (2014) Bull. Amer. Meteor. Soc., 95, pp. 909-922
  • Helfrich, S., McNamara, D., Ramsay, B., Baldwin, T., Kasheta, T., Enhancements to, and forthcoming developments in the Interactive Multisensor Snow and Ice Mapping System (IMS) (2007) Hydrol. Processes, 21, pp. 1576-1586
  • Hendon, H., Zhang, C., Glick, J., Interannual variation of the Madden-Julian oscillation during austral summer (1999) J. Climate, 12, pp. 2538-2550
  • Hess, P.G., Zbinden, R., Stratospheric impact on tropospheric ozone variability and trends: 1990-2009 (2013) Atmos. Chem. Phys, 13, pp. 649-674
  • Hills, S., Gilbert, J.R., Detecting Pacific walrus population trends with aerial surveys (1994) Transactions of the 59Th North American Wilderness and Natural Resources Conference, pp. 201-210. , Wildlife management Institute
  • Hirschi, M., Mueller, B., Dorigo, W.A., Seneviratne, S.I., Using remotely sensed soil moisture for land-atmosphere coupling diagnostics: The role of surface vs. Root-zone soil moisture variability (2014) Remote Sens. Environ, 154, pp. 246-252
  • Ho, D.T., Wanninkhof, R., Air-sea gas exchange in the North Atlantic: 3He/SF6 Experiment during GasEx-98 (2016) Tellus, 68B, p. 30198
  • Ho, S.P., Zhou, X., Kuo, Y.H., Hunt, D., Wang, J.H., Global evaluation of radiosonde water vapor systematic biases using GPS radio occultation from COSMIC and ECMWF analysis (2010) Remote Sens., 2, pp. 1320-1330
  • Hobbs, W., Willis, J.K., Midlatitude North Atlantic heat transport: A time series based on satellite and drifter data (2012) J. Geophys. Res., 17
  • Hoegh-Guldberg, O., Bruno, J.F., The impact of climate change on the world’s marine ecosystems (2010) Science, 328, pp. 1523-1528
  • Hofmann, D.J., Montzka, S.A., Recovery of the ozone layer (2009) Eos, Trans. Amer. Geophys. Union, 90, pp. 1-2
  • Hofmann, D.J., Butler, J.H., Dlugokencky, E.J., Elkins, J.W., Masarie, K., Montzka, S.A., Tans, P., The role of carbon dioxide in climate forcing from 1979 to 2004: Introduction of the Annual Greenhouse Gas Index (2006) Tellus, 58B, pp. 614-619
  • Hogg, A.M., Meredith, M.P., Chambers, D.P., Abrahamsen, E.P., Hughes, C.W., Morrison, A.K., Recent trends in the Southern Ocean eddy field (2015) J. Geophys. Res. Oceans, 120, pp. 257-267
  • Holland, P.R., The seasonality of Antarctic sea ice trends (2014) Geophys. Res. Lett, 41, pp. 4230-4237
  • Hollowed, A.B., Planque, B., Loeng, H., Potential movement of fish and shellfish stocks from the sub-Arctic to the Arctic Ocean (2013) Fish. Oceanogr, 22, pp. 355-370
  • Holmes, R.M., Climate change impacts on the hydrology and biogeochemistry of Arctic Rivers (2013) Global Impacts of Climate Change on Inland Waters, pp. 3-26. , C. R. Goldman, M. Kumagai, and R. D. Robarts, Eds., Wiley
  • Hu, C., Lee, Z., Franz, B.A., Chlorophyll-a algorithms for oligotrophic oceans: A novel approach based on three-band reflectance difference (2012) J. Geophys. Res., 117
  • Huang, B., Extended reconstructed sea surface temperature version 4 (ERSST. V4). Part I: Upgrade and intercomparison (2015) J. Climate, 28, pp. 911-930
  • Huang, C.-Y., Teng, W.-H., Ho, S.-P., Kuo, Y.-H., Global variation of COSMIC precipitable water over land: Comparisons with ground-based GPS measurements and NCEP reanalyses (2013) Geophys. Res. Lett, 40, pp. 5327-5331
  • Huffman, G.J., Bolvin, D.T., Adler, R.F., (2012) GPCP Version 2.2 SG Combined Precipitation Data Set (Last Updated, p. 2012. , https://www.ncdc.noaa.gov/wdc/wdcamet-ncdc.html, World Data Center for Meteorology (Asheville), NCDC
  • Hughes, C.W., Woodworth, P.L., Meredith, M.P., Stepanov, V., Whitworth, T., Pyne, A., Coherence of Antarctic sea levels, Southern Hemisphere annular mode, and flow through Drake Passage (2003) Geophys. Res. Lett, 30, p. 1464
  • Hughes, C.W., Williams, J., Coward, A.C., De Cuevas, B.A., Antarctic circumpolar transport and the southern mode: A model investigation of interannul to decadal timescales (2014) Ocean Sci., 10, pp. 215-225
  • Huijnen, V., Fire carbon emissions over maritime Southeast Asia in 2015 largest since 1997 (2016) Sci. Rep, 6, p. 26886
  • Huss, M., Bauder, A., Funk, M., Homogenization of long-term mass-balance time series (2009) Ann. Glaciol., 50, pp. 198-206
  • Iacono, M., Azorin-Molina, C., (2014) Long-Term Declining Trends in Historical Wind Measurements at the Blue Hill Meteorological Observatory, 1885-2013, , 2014 Fall Meeting, San Francisco, CA, American Geophysical Union, Abstract A23C-3241
  • Inness, A., The MACC reanalysis: An 8 yr data set of atmospheric composition. Atmos (2013) Chem. Phys., 13, pp. 4073-4109
  • Inness, A., Data assimilation of satellite-retrieved ozone, carbon monoxide and nitrogen dioxide with ECMWF’s Composition-IFS (2015) Atmos. Chem. Phys, 15, pp. 5275-5303
  • Inness, A., Benedetti, A., Flemming, J., Huijnen, V., Kaiser, J.W., Parrington, M., Remy, S., The ENSO signal in atmospheric composition fields: Emission-driven versus dynamically induced changes (2015) Atmos. Chem. Phys, 15, pp. 9083-9097
  • Inoue, J., Hori, M.E., Arctic cyclogenesis at the marginal ice zone: A contributory mechanism for the temperature amplification? (2011) Geophys. Res. Lett, 38
  • (2014) Summary for Policymakers. Climate Change 2014: Impacts, Adaptation, and Vulnerability, pp. 1-32. , C. B. Field, et al., Eds., Cambridge University Press
  • Isaksen, K., Degrading mountain permafrost in southern Norway: Spatial and temporal variability of mean ground temperatures, 1999-2009 (2011) Permafr. Periglac. Process, 22, pp. 361-377
  • Ishihara, K., Calculation of global surface temperature anomalies with COBE-SST (In Japanese) (2006) Sokko-Jiho [Weather Service Bulletin], 73, pp. S19-S25. , (special issue)
  • Ishii, M., Kimoto, M., Reevaluation of historical ocean heat content variations with time-varying XBT and MBT depth bias corrections (2009) J. Oceanogr., 65, pp. 287-299
  • Jacob, T., Wahr, J., Pfeffer, W.T., Swenson, S., Recent contributions of glaciers and ice caps to sea level rise (2012) Nature, 482, pp. 514-518
  • Jacobs, S.S., Giulivi, C.F., Large multidecadal salinity trends near the Pacific-Antarctic continental margin (2010) J. Climate, 23, pp. 4508-4524
  • Janicot, S., Harzallah, A., Fontaine, B., Moron, V., West African monsoon dynamics and eastern equatorial Atlantic and Pacific SST anomalies (1970-1988) (1998) J. Climate, 11, pp. 1874-1882
  • Janowiak, J., Xie, P., CAMS-OPI: A global satellite-rain gauge merged product for real-time precipitation monitoring applications (1999) J. Climate, 12, pp. 3335-3342
  • Jay, C.V., Marcot, B.G., Douglas, D.C., Projected status of the Pacific walrus (Odobenus rosmarus divergens) in the twenty-first century (2011) Polar Biol., 34, pp. 1065-1084
  • Jensen, T., Box, J.E., Hvidberg, C., A sensitivity study of yearly Greenland ice sheet marine terminating outlet glacier changes: 1999-2013 (2016) J. Glaciol., 62, pp. 72-81
  • Jin, X., Yu, L., Assessing high-resolution analysis of surface heat fluxes in the Gulf Stream region (2013) J. Geophys. Res. Oceans, 118, pp. 5353-5375
  • Jin, X., Yu, L., Jackson, D.L., Wick, G.A., An improved near-surface specific humidity and air temperature climatology for the SSM/I satellite period (2015) J. Atmos. Oceanic Technol., 32, pp. 412-433
  • Johannessen, O.M., Miles, M.W., Critical vulnerabilities of marine and sea ice-based ecosystems in the high Arctic (2011) Reg. Environ. Change, 11, pp. S239-S248
  • Johnson, G.C., Quantifying Antarctic Bottom Water and North Atlantic Deep Water volumes (2008) J. Geophys. Res., 113
  • Johnson, G.C., Lyman, J.M., Sea surface salinity [in “State of the Climate in 2011”] (2012) Bull. Amer. Meteor. Soc, 93 (7), pp. S68-S69, S72
  • Johnson, G.C., Schmidtko, S., Lyman, J.M., Relative contributions of temperature and salinity to seasonal mixed layer density changes and horizontal density gradients (2012) J. Geophys. Res., 117
  • Johnson, G.C., Lyman, J.M., Willis, J.K., Boyer, T., Antonov, J., Good, S.A., Domingues, C.M., Bindoff, N., Ocean heat content [in “State of the Climate in 2013”] (2014) Bull. Amer. Meteor. Soc., 95 (7), pp. S54-S57
  • Johnson, G.C., McTaggart, K.E., Wanninkhof, R., Antarctic Bottom Water temperature changes in the western South Atlantic from 1989 to 2014 (2014) J. Geophys. Res. Oceans, 119, pp. 8567-8577
  • Johnson, G.C., Ocean heat content [in “State of the Climate in 2014”] (2015) Bull. Amer. Meteor. Soc, 96 (7), pp. S64-S66, S68
  • Johnson, G.C., Lyman, J.M., Lagerloef, G.S.E., Kao, H.-Y., Sea surface salinity [in “State of the Climate in 2014”] (2015) Bull. Amer. Meteor. Soc., 96 (7), pp. S71-S74
  • Jones, P.D., Lister, D.H., Osborn, T.J., Harpham, C., Salmon, M., Morice, C.P., Hemispheric and large-scale land surface air temperature variations: An extensive revision and an update to 2010 (2012) J. Geophys. Res., 117
  • Josey, S.A., Grist, J., Kieke, D., Yashayaev, I., Yu, L., Extraordinary ocean cooling and new dense water formation in the North Atlantic [in “State of the Climate in 2014”] (2015) Bull. Amer. Meteor. Soc., 96 (7), p. 67
  • Joyce, R.J., Janowiak, J.E., Arkin, P.A., Xie, P., CMORPH: A method that produces global precipitation estimates from passive microwave and infrared data at high spatial and temporal resolution (2004) J. Hydrometeor., 5, pp. 487-503
  • Joyce, T.M., New perspectives on eighteen-degree water formation in the North Atlantic (2012) J. Oceanogr., 68, pp. 45-52
  • Joyce, T.M., Deser, C., Spall, M.A., The relation between decadal variability of subtropical mode water and the North Atlantic Oscillation (2000) J. Climate, 13, pp. 2550-2569
  • Joyce, T.M., Thomas, L.N., Bahr, F.B., Wintertime observations of subtropical mode water formation within the Gulf Stream (2009) Geophys. Res. Lett, 36
  • Joyce, T.M., Thomas, L.N., Dewar, W.K., Girton, J.B., Eighteen degree water formation within the Gulf Stream during CLIMODE (2013) Deep-Sea Res, 2 (91), pp. 1-10
  • Jullion, L., Naveira-Garabato, A.C., Meredith, M.P., Holland, P.R., Courtois, P., King, B.A., Decadal freshening of the Antarctic Bottom Water exported from the Weddell Sea (2013) J. Climate, 26, pp. 8111-8125
  • Jung, M., Recent decline in the global land evapotranspiration trend due to limited moisture supply (2010) Nature, 467, pp. 951-954
  • Kaiser, J.W., Biomass burning emissions estimated with a global fire assimilation system based on observed fire radiative power (2012) Biogeosciences, 9, pp. 527-554
  • Kaiser, J.W., Benedetti, A., Chevallier, F., Flemming, J.A., Inness, A., Peuch, Y.-H., [Global Climate] Sidebar 2.3: Climate monitoring meets air quality forecasting in CAMS [in “State of the Climate in 2014”] (2015) Bull. Amer. Meteor. Soc, 96 (7), pp. S50-S51
  • Kalnay, E., The NCEP/NCAR 40-Year Reanalysis Project (1996) Bull. Amer. Meteor. Soc., 77, pp. 437-471
  • Kanamitsu, M., Ebisuzaki, W., Woollen, J., Yang, S.-K., Hnilo, J.J., Fiorino, M., Potter, G.L., NCEP-DOE AMIP-II Reanalysis (R-2) (2002) Bull. Amer. Meteor. Soc., 83, pp. 1631-1643
  • Kang, S., Ahn, J.-B., Global energy and water balances in the latest reanalyses. Asia-Pac (2015) J. Atmos. Sci., 51, pp. 293-302
  • Kaplan, A., Sidebar 1.1: Patterns and indices of climate variability [in “State of the Climate in 2010”] (2011) Bull. Amer. Meteor. Soc., 92 (6), pp. S20-S25
  • Karl, T.R., Possible artifacts of data biases in the recent global surface warming hiatus (2015) Science, 348, pp. 1469-1472
  • Karlsson, K.-G., CLARA-A1: A cloud, albedo, and radiation dataset from 28 yr of global AVHRR data (2013) Atmos. Chem. Phys, 13, pp. 5351-5367
  • Karoly, D.J., Southern Hemisphere circulation features associated with El Niño-Southern Oscillation events (1989) J. Climate, 2, pp. 1239-1252
  • Kato, S., Loeb, N.G., Rose, F.G., Doelling, D.R., Rutan, D.A., Caldwell, T.E., Yu, L., Weller, R.A., Surface irradiances consistent with CERES-derived top-of-atmosphere shortwave and longwave irradiances (2013) J. Climate, 26, pp. 2719-2740
  • Katsumata, K., Hakano, H., Kumamoto, Y., Dissolved oxygen change and freshening of Antarctic Bottom water along 62S in the Australian-Antarctic Basin between 1995/1996 and 2012/2013 (2015) Deep-Sea Res, 2 (114), pp. 27-38
  • Kayano, M., Kousky, V., Intra-seasonal (30-60 day) variability in the global tropics: Principal modes and their evolution (1999) Tellus, 51A, pp. 373-386
  • Kelly, P.S., Lwiza, K.M.M., Cowen, R.K., Goni, G.J., Low-salinity pools at Barbados, West Indies: Their origin, frequency, and variability (2000) J. Geophys. Res, 105, pp. 19699-19708
  • Kennedy, J.J., A review of uncertainty in in situ measurements and data sets of sea surface temperature (2014) Rev. Geophys., 52, pp. 1-32
  • Kennedy, J.J., How do we know the world has warmed? [in “State of the Climate in 2009”] (2010) Bull. Amer. Meteor. Soc., 91 (6), pp. S26-S27
  • Kennedy, J.J., Rayner, N.A., Smith, R.O., Parker, D.E., Saunby, M., Reassessing biases and other uncertainties in sea-surface temperature observations since 1850: 1. Measurement and sampling errors (2011) J. Geophys. Res., 116
  • Kennedy, J.J., Rayner, N.A., Smith, R.O., Parker, D.E., Saunby, M., Reassessing biases and other uncertainties in sea-surface temperature observations since 1850: 2. Biases and homogenisation (2011) J. Geophys. Res., 116
  • Kent, E.C., Berry, D.I., Prytherch, J., Roberts, J.B., A comparison of global marine surface specific humidity datasets from in situ observations and atmospheric reanalysis (2014) Int. J. Climatol., 34, pp. 355-376
  • Khatiwala, S., Global ocean storage of anthropogenic carbon (2013) Biogeosciences, 10, pp. 2169-2191
  • Kiladis, G.N., Weickmann, K., Circulation anomalies associated with tropical convection during northern winter (1992) Mon. Wea. Rev, 120, pp. 1900-1923
  • Kiladis, G.N., Straub, K.H., Haertel, P.T., Zonal and vertical structure of the Madden-Julian oscillation (2005) J. Atmos. Sci., 62, pp. 2790-2809
  • Kiladis, G.N., Wheeler, M.C., Haertel, P.T., Straub, K.H., Roundy, P.E., Convectively coupled equatorial waves (2009) Rev. Geophys, 47
  • Kim, H., Oki, T., River discharge [in “State of the Climate in 2014”] (2015) Bull. Amer. Meteor. Soc, 96 (7), pp. S26-S27
  • Kim, H., Yeh, P.J., Oki, T., Kanae, S., Role of rivers in the seasonal variations of terrestrial water storage over global basins (2009) Geophys. Res. Lett., 36
  • Kim, J., Paik, K., Recent recovery of surface wind speed after decadal decrease: A focus on South Korea (2015) Climate Dyn., 45, pp. 1699-1712
  • Kimberlain, T.B., Blake, E.S., Cangialosi, J.P., Hurricane Patricia (EP202015) (2016) National Hurricane Center Tropical Cyclone Report, p. 32. , http://www.nhc.noaa.gov/data/tcr/EP202015_Patricia.pdf
  • Kimura, N., Wakatsuchi, M., Large-scale processes governing the seasonal variability of the Antarctic sea ice (2011) Tellus, 63A, pp. 828-840
  • Kirschke, S., Three decades of global methane sources and sinks. Nat (2013) Geosci., 6, pp. 813-823
  • Kjesbu, O.S., Bogstad, B., Devine, J.A., Gjøsæter, H., Howell, D., Ingvaldsen, R.B., Nash, R.D.M., Skjæraasen, J.E., Synergies between climate and management for Atlantic cod fisheries at high latitudes (2014) Proc. Natl. Acad. Sci. USA, 111, pp. 3478-3483
  • Klotzbach, P.J., Landsea, C.W., Extremely intense hurricanes: Revisiting Webster et al. (2005) after 10 years (2015) J. Climate, 28, pp. 7621-7629. , 10.1175/JCLI-D-15-0188.1
  • Knaff, J.A., Zehr, R.M., Reexamination of tropical cyclone wind-pressure relationships (2007) Wea. Forecasting, 22, pp. 71-88
  • Knapp, K.R., Kruk, M.C., Levinson, D.H., Diamond, H.J., Neumann, C.J., The International Best Track Archive for Climate Stewardship (IBTrACS): Unifying tropical cyclone data (2010) Bull. Amer. Meteor. Soc., 91, pp. 363-376
  • Knapp, K.R., Knaff, J.A., Sampson, C.R., Riggio, G.M., Schnapp, A.D., A pressure-based analysis of the historical western North Pacific tropical cyclone intensity record (2013) Mon. Wea. Rev, 141, pp. 2611-2631
  • Knudsen, E.M., Orsolini, Y.J., Furevik, T., Hodges, K.I., Observed anomalous atmospheric patterns in summers of unusual Arctic sea ice melt (2015) J. Geophys. Res. Atmos., 120, pp. 2595-2611
  • Knutson, T., Weickmann, K., 30-60 day atmospheric oscillations: Composite life cycles of convection and circulation anomalies (1987) Mon. Wea. Rev, 115, pp. 1407-1436
  • Ko, M.K.W., Recommended values for steady-state atmospheric lifetimes and their uncertainties (2013) SPARC Report on the Lifetimes of Stratospheric Ozone-Depleting Substances, Their Replacements, and Related Species, SPARC, , Rep. 6, WCRP-15/2013, 6-1-6-21
  • Kobayashi, S., The JRA-55 Reanalysis: General specifications and basic characteristics (2015) J. Meteor. Soc. Japan, 93, pp. 5-48
  • Kobayashi, S., (2016) The Climate Data Guide: JRA-55, , https://climatedataguide.ucar.edu/climate-data/jra-55
  • Kopp, G., Lean, J.L., A new, lower value of total solar irradiance: Evidence and climate significance (2011) Geophys. Res. Lett, 38
  • Kortsch, S., Primicerio, R., Fossheim, M., Dolgov, A.V., Aschan, M., Climate change alters the structure of Arctic marine food webs due to poleward shifts of boreal generalists (2015) Proc. Roy. Soc, 282B
  • Kossin, J.P., Vimont, D.J., A more general framework for understanding Atlantic hurricane variability and trends (2007) Bull. Amer. Meteor. Soc., 88, pp. 1767-1781
  • Kouketsu, S., Murata, A.M., Detecting decadal scale increases in anthropogenic CO2 in the ocean (2014) Geophys. Res. Lett, 41, pp. 4594-4600
  • Koumoutsaris, S., Bey, I., Generoso, S., Thouret, V., Influence of El Niño-Southern Oscillation on the interannual variability of tropospheric ozone in the northern midlatitudes (2008) J. Geophys. Res., 113
  • Kousky, V., Kayano, M., Principal modes of outgoing longwave radiation and 250-mb circulation for the South American sector (1994) J. Climate, 7, pp. 1131-1143
  • Kovacs, K.M., Global threats to pinnipeds (2012) Mar. Mamm. Sci, 28, pp. 414-436
  • Kovacs, K.M., Aars, J., Lydersen, C., Walruses recovering after 60+ years of protection at Svalbard, Norway (2014) Polar Res., 33, p. 26034
  • Kratz, D.P., Stackhouse, P.W., Jr., Gupta, S.K., Wilber, A.C., Sawaengphokhai, P., McGarragh, G.R., The Fast Longwave and Shortwave Flux (FLASHFlux) data product: Single scanner footprint fluxes (2014) J. Appl. Meteor. Climatol., 53, pp. 1059-1079
  • Krishnamurti, T.N., Subrahmanyam, D., The 30-50 day mode at 850 mb during MONEX (1982) J. Atmos. Sci., 39, pp. 2088-2095
  • Kug, J.-S., Jeong, J.-H., Jang, Y.-S., Kim, B.-M., Folland, C.K., Min, S.-K., Son, S.-W., Two distinct influences of Arctic warming on cold winters over North America and East Asia (2015) Nat. Geosci, 8, pp. 759-762
  • Kuhlbrodt, T., Griesel, A., Montoya, M., Levermann, A., Hofmann, M., Rahmstorf, S., On the driving processes of the Atlantic meridional overturning circulation (2007) Rev. Geophys, 45
  • Kumar, A., Jha, B., Wang, H., Attribution of SST variability in global oceans and the role of ENSO (2014) Climate Dyn., 43, pp. 209-220
  • Kuttippurath, J., Bodeker, G.E., Roscoe, H.K., Nair, P.J., A cautionary note on the use of EESC-based regression analysis for ozone trend studies (2015) Geophys. Res. Lett, 42, pp. 162-168
  • Kwok, R., Rothrock, D.A., Decline in Arctic sea ice thickness from submarine and ICESat records: 1958-2008 (2009) Geophys. Res. Lett, 36
  • Kwok, R., Cunningham, G.F., Variability of Arctic sea ice thickness and volume from CryoSat-2 (2015) Philos. Trans. Royal Soc. London, 373A, p. 2045
  • L’Heureux, M.L., Thompson, D.W.J., Observed relationships between the El Niño/Southern Oscillation and the extratropical zonal-mean circulation (2006) J. Climate, 19, pp. 276-287
  • Laidre, K.L., Arctic marine mammal population status, sea ice habitat loss, and conservation recommendations for the 21st century (2015) Conserv. Biol, 29, pp. 724-737
  • Landschützer, P., The reinvigoration of the Southern Ocean carbon sink (2015) Science, 349, pp. 1221-1224
  • Landsea, C.W., Franklin, J.L., Atlantic Hurricane Database Uncertainty and Presentation of a New Database Format (2013) Mon. Wea. Rev, 141, pp. 3576-3592
  • Lau, W.K., Waliser, D.E., (2012) Intraseasonal Variability in the Atmosphere-Ocean Climate System, p. 642. , Springer
  • Laxon, S.W., CryoSat estimates of Arctic sea ice thickness and volume (2013) Geophys. Res. Lett, 40, pp. 732-737
  • Laybourn-Parry, J., James, M.R., McKnight, D.M., Priscu, J., Spaulding, S.A., Shiel, R., The microbial plankton of Lake Fryxell, southern Victoria Land, Antarctica during the summers of 1992 and 1994 (1997) Polar Biol, 17, pp. 54-61
  • Le Quéré, C., Saturation of the Southern Ocean CO2 sink due to recent climate change (2007) Science, 316, pp. 1735-1738
  • Le Quéré, C., Global carbon budget 2015 (2015) Earth Syst. Sci. Data, 7, pp. 349-396
  • Le Vine, D.M., Dinnat, E.P., Lagerloef, G.S.E., De Matthaeis, P., Abraham, S., Utku, C., Kao, H., Aquarius: Status and recent results (2014) Radio Sci., 49, pp. 709-720
  • Lee, H.-T., Climate Algorithm Theoretical Basis Document (C-ATBD): Outgoing Longwave Radiation (OLR)-Daily (2014) NOAA’s Climate Data Record (CDR) Program, p. 46. , http://www1.ncdc.noaa.gov/pub/data/sds/cdr/CDRs/Outgoing%20Longwave%20Radiation%20-%20Daily/AlgorithmDescription.pdf, CDRP-ATBD-0526
  • Lee, H.-T., NOAA climate data record (CDR) of monthly outgoing longwave radiation (OLR), version 2.2-1 (dates Feb 2000-Dec 2015) (2011) NOAA National Climatic Data Center, , data accessed 5 Feb
  • Lenaerts, J.T.M., Van Den Broeke, M.R., Modeling drifting snow in Antarctica with a regional climate model: 2. Results (2012) J. Geophys. Res., 117
  • Lentini, C., Goni, G.J., Olson, D., Investigation of Brazil Current rings in the conf luence region (2006) J. Geophys. Res., 111
  • Leung, F.-Y.T., Logan, J.A., Park, R., Hyer, E., Kasischke, E., Streets, D., Yurganov, L., Impacts of enhanced biomass burning in the boreal forests in 1998 on tropospheric chemistry and the sensitivity of model results to the injection height of emissions (2007) J. Geophys. Res., 112
  • Levelt, P.F., The Ozone Monitoring Instrument (2006) IEEE Trans. Geosci. Remote Sens., 44 (5), pp. 1093-1101
  • Levitus, S., World Ocean heat content and thermosteric sea level change (0-2000 m), 1955-2010 (2012) Geophys. Res. Lett, 39
  • Li, R., Temporal and spatial variations of the active layer along the Qinghai-Tibet Highway in a permafrost region (2012) Chin. Sci. Bull, 57, pp. 4609-4616
  • Lin, H., Brunet, G., Derome, J., An observed connection between the North Atlantic Oscillation and the Madden-Julian oscillation (2009) J. Climate, 22, pp. 364-380
  • Lin, I.-I., Wu, C.-C., Pun, I.-F., Ko, D.-S., Upper-ocean thermal structure and the western North Pacific category 5 typhoons. Part I: Ocean features and the category 5 typhoons’ intensification (2008) Mon. Wea. Rev, 136, pp. 3288-3306
  • Lin, I.-I., An ocean coupling potential intensity index for tropical cyclones (2013) Geophys. Res. Lett, 40, pp. 1878-1882
  • Lin, I.-I., Pun, I.-F., Lien, C.-C., Category-6 supertyphoon Haiyan in global warming hiatus: Contribution from subsurface ocean warming Geophys. Res. Lett, 41, pp. 8547-8553
  • Lin, M., Horowitz, L.W., Oltmans, S.J., Fiore, A.M., Fan, S., Tropospheric ozone trends at Mauna Loa Observatory tied to decadal climate variability (2014) Nat. Geosci, 7, pp. 136-143
  • Liu, H., Wang, L., Jezek, K., Wavelet-based edge detection approach to derivation of snow-melt onset, end and duration from satellite passive microwave measurements (2005) Int. J. Remote Sens., 26, pp. 4639-4660
  • Liu, H., Wang, L., Jezek, K., Spatiotemporal variations of snowmelt in Antarctica derived from satellite scanning multichannel microwave radiometer and Special Sensor Microwave Imager data (1978-2004) (2006) J. Geophys. Res., 111
  • Liu, Y.Y., Dorigo, W.A., Parinussa, R.M., De Jeu, R.A.M., Wagner, W., McCabe, M.F., Evans, J.P., Van Dijk, A.I.J.M., Trend-preserving blending of passive and active microwave soil moisture retrievals (2012) Remote Sens. Environ, 123, pp. 280-297
  • Locarnini, R.A., (2013) Temperature, 1, p. 40. , https://www.nodc.noaa.gov/OC5/woa13/, World Ocean Atlas 2013, NOAA Atlas NESDIS
  • Loeb, N.G., Wielicki, B.A., Doelling, D.R., Smith, G.L., Keyes, D.F., Kato, S., Manalo-Smith, N., Wong, T., Toward optimal closure of the Earth’s top-of-atmosphere radiation budget (2009) J. Climate, 22, pp. 748-766
  • Loeb, N.G., Kato, S., Su, W., Wong, T., Rose, F., Doelling, D.R., Norris, J., Advances in understanding top-of-atmosphere radiation variability from satellite observations (2012) Surv. Geophys, 33, pp. 359-385
  • Loew, A., Stacke, T., Dorigo, W., De Jeu, R., Hagemann, S., Potential and limitations of multidecadal satellite soil moisture observations for selected climate model evaluation studies (2013) Hydrol. Earth Syst. Sci, 17, pp. 3523-3542
  • Long, C.S., Christy, J.R., Lower stratospheric temperature [in “State of the Climate in 2014”] (2015) Bull. Amer. Meteor. Soc, 96 (7), pp. S14-S15
  • Lozier, M.S., Dave, A.C., Palter, J.B., Gerber, L.M., Barber, R.T., On the relationship between stratification and primary productivity in the North Atlantic (2011) Geophys. Res. Lett, 38
  • Lumpkin, R., Garzoli, S., Interannual to decadal changes in the western South Atlantic’s surface circulation (2010) J. Geophys. Res., 116
  • Lumpkin, R., Goni, G., Dohan, K., Surface currents [in “State of the Climate in 2010”] (2011) Bull. Amer. Meteor. Soc., 92 (6), pp. S92-S95
  • Lumpkin, R., Goni, G., Dohan, K., Surface currents [in “State of the Climate in 2013”] (2014) Bull. Amer. Meteor. Soc., 95 (7), pp. S65-S67
  • Luo, J.-J., [Tropics] Indian Ocean dipole [in “State of the Climate in 2012”] (2013) Bull. Amer. Meteor. Soc, 94, pp. S105-S108
  • Luo, J.-J., Zhang, R., Behera, S.K., Masumoto, Y., Jin, F.-F., Lukas, R., Yamagata, T., Interaction between El Niño and extreme Indian Ocean dipole (2010) J. Climate, 23, pp. 726-742
  • Luo, J.-J., Sasaki, W., Masumoto, Y., Indian Ocean warming modulates Pacific climate change (2012) Proc. Natl. Acad. Sci. USA, 109, pp. 18701-18706
  • Luthcke, S.B., Sabaka, T.J., Loomis, B.D., Arendt, A.A., McCarthy, J.J., Camp, J., Antarctica, Greenland and Gulf of Alaska land-ice evolution from an iterated GRACE global mascon solution (2013) J. Glaciol., 59, pp. 613-631
  • Lyman, J.M., Johnson, G.C., Estimating global ocean heat content changes in the upper 1800 m since 1950 and the influence of climatology choice (2014) J. Climate, 27, pp. 1945-1957
  • Madden, R., Julian, P., Detection of a 40-50 day oscillation in the zonal wind in the tropical Pacific (1971) J. Atmos. Sci., 28, pp. 702-708
  • Madden, R., Julian, P., Description of global-scale circulation cells in the tropics with a 40-50 day period (1972) J. Atmos. Sci., 29, pp. 1109-1123
  • Madden, R., Julian, P., Observations of the 40-50-day tropical oscillation: A review (1994) Mon. Wea. Rev, 122, pp. 814-837
  • Mainelli, M., Demaria, M., Shay, L., Goni, G., Application of oceanic heat content estimation to operational forecasting of recent Atlantic category 5 hurricanes. Wea (2008) Forecasting, 23, pp. 3-16
  • Makshtas, A.P., Bolshakova, I.I., Gun, R.M., Jukova, O.L., Ivanov, N.E., Shutilin, S.V., (2011) Climate of the Hydrometeorological Observatory Tiksi Region (In Russian), pp. 49-74. , Meteorological and Geophysical Investigations, Paulsen
  • Maloney, E.D., Hartmann, D.L., The Madden-Julian oscillation, barotropic dynamics, and North Pacific tropical cyclone formation. Part I: Observations (2001) J. Atmos. Sci., 58, pp. 2545-2558
  • Manney, G.L., Unprecedented Arctic ozone loss in 2011 (2011) Nature, 478, pp. 469-475
  • Manney, G.L., A minor sudden stratospheric warming with a major impact: Transport and polar processing in the 2014/2015 Arctic winter (2015) Geophys. Res. Lett, 42, pp. 7808-7816
  • Mantua, N.J., Hare, S.R., Zhang, Y., Wallace, J.M., Francis, R.C., A Pacific interdecadal climate oscillation with impacts on salmon production (1997) Bull. Amer. Meteor. Soc., 78, pp. 1069-1079
  • Marengo, J.A., Alves, L.M., Soares, W.R., Rodriguez, D.A., Camargo, H., Paredes Riveros, M., Diaz Pabló, A., Two contrasting seasonal extremes in tropical South America in 2012: Flood in Amazonia and drought in northeast Brazil (2013) J. Climate, 26, pp. 9137-9154
  • Marlier, M.E., El Niño and health risks from landscape fire emissions in Southeast Asia (2013) Nat. Climate Change, 3, pp. 131-136
  • Marshall, G.J., Trends in the southern annular mode from observations and reanalyses (2003) J. Climate, 16, pp. 4134-4143
  • Martin, R.V., Sauvage, B., Folkins, I., Sioris, C.E., Boone, C., Bernath, P., Ziemke, J., Space-based constraints on the production of nitric oxide by lightning (2007) J. Geophys. Res., 112
  • Marzeion, B., Jarosch, A.H., Hofer, M., Past and future sea-level change from the surface mass balance of glaciers (2012) Cryosphere, 6, pp. 1295-1322
  • Maslanik, J., Stroeve, J., (1999) Near-Real-Time DMSP SSM/I-SSMIS Daily Polar Gridded Sea Ice Concentrations, , http://nsidc.org/data/docs/daac/nsidc0081_ssmi_nrt_seaice.gd.html, [data from 1 Jan 2015 to 15 Feb 2016]. National Snow and Ice Data Center, data accessed 2016
  • Maslanik, J., Stroeve, J., Fowler, C., Emery, W., Distribution and trends in Arctic sea ice age through spring 2011 (2011) Geophys. Res. Lett, 38
  • Massom, R.A., Extreme anomalous atmospheric circulation in the West Antarctic Peninsula region in austral spring and summer 2001/02, and its profound impact on sea ice and biota (2006) J. Climate, 19, pp. 3544-3571
  • Matear, R.J., McNeil, B.I., Decadal accumulation of anthropogenic CO2 in the Southern Ocean: A comparison of CFC-age derived estimates to multiple-linear regression estimates (2003) Global Biogeochem. Cycles, 17, p. 1113
  • Mayer, M., Trenberth, K.E., Haimberger, L., Fasullo, J.T., The response of tropical atmospheric energy budgets to ENSO (2013) J. Climate, 26, pp. 4710-4724
  • Mayer, M., Haimberger, L., Balmaseda, M.A., On the energy exchange between tropical ocean basins related to ENSO (2014) J. Climate, 27, pp. 6393-6403
  • McCabe, M.F., Ershadi, A., Jiménez, C., Miralles, D.G., Michel, D., Wood, E.F., The GEWEX LandFlux project: Evaluation of model evaporation using tower-based and globally gridded forcing data (2016) Geosci. Model Dev, 9, pp. 283-305
  • McCarthy, G.D., Haigh, I.D., Hirschi, J.J., Grist, J.P., Smeed, D.A., Ocean impact on decadal Atlantic climate variability revealed by sea-level observations (2015) Nature, 521, pp. 508-510
  • McClain, C.R., A decade of satellite ocean color observations (2009) Annu. Rev. Mar. Sci., 1, pp. 19-42
  • McClelland, J.W., Déry, S.J., Peterson, B.J., Holmes, R.M., Wood, E.F., A pan-Arctic evaluation of changes in river discharge during the latter half of the 20th century (2006) Geophys. Res. Lett, 33
  • McClelland, J.W., Holmes, R.M., Dunton, K.H., Macdonald, R., The Arctic Ocean estuary (2012) Estuaries Coasts, 35, pp. 353-368
  • McKee, T.B., Doesken, N.J., Kleist, J., The relationship of drought frequency and duration to time scales (1993) Eighth Conf. on Applied Climatology, pp. 179-184. , Anaheim, CA. Amer. Meteor. Soc
  • McKee, T.B., Doesken, N.J., Kleist, J., Drought monitoring with multiple time scales (1995) Ninth Conf. on Applied Climatology, pp. 233-236. , Dallas, TX, Amer. Meteor. Soc
  • McKnight, D.M., Alger, A., Tate, C.M., Shupe, G., Spaulding, S.A., (1998) Longitudinal Patterns in Algal Abundance and Species Distribution in Meltwater Streams in Taylor Valley, , southern Victoria Land, Antarctica. Ecosystem Dynamics in a Polar Desert: The McMurdo Dry Valleys, Antarctica. J. C. Priscu, Ed., Antarctic Research Series, Vol. 72, Amer. Geophys. Union, 109-127
  • McKnight, D.M., Niyogi, D.K., Alger, A.S., Bomblies, A., Conovitz, P.A., Tate, C.M., Dry valley streams in Antarctica: Ecosystems waiting for water (1999) Bioscience, 49, pp. 985-995
  • McPeters, R.D., Bhartia, P.K., Haffner, D., Labow, G.J., Flynn, L., The version 8.6 SBUV ozone data record: An overview (2013) J. Geophys. Res. Atmos., 118, pp. 8032-8039
  • McTaggart-Cowan, R., Bosart, L.F., Davis, C.A., Atallah, E.H., Gyakum, J.R., Emanuel, K.A., Analysis of Hurricane Catarina (2006) Mon. Wea. Rev, 134, pp. 3029-3053
  • McVicar, T.R., Körner, C., On the use of elevation, altitude, and height in the ecological and climatological literature (2013) Oecologia, 171, pp. 335-337
  • McVicar, T.R., Van Niel, T.G., Li, L.T., Roderick, M.L., Rayner, D.P., Ricciardulli, L., Donohue, R.J., Wind speed climatology and trends for Australia, 1975-2006: Capturing the stilling phenomenon and comparison with near-surface reanalysis output (2008) Geophys. Res. Lett, 35
  • McVicar, T.R., Global review and synthesis of trends in observed terrestrial near-surface wind speeds: Implications for evaporation (2012) J. Hydrol., 416, pp. 182-205
  • Mears, C.A., Wentz, F.J., Construction of the RSS V3.2 lower-tropospheric temperature records from the MSU and AMSU microwave sounders (2009) J. Atmos. Oceanic Technol., 26, pp. 1492-1509
  • Mears, C.A., Wentz, F.J., Sensitivity of satellite-derived tropospheric temperature trends to the diurnal cycle adjustment (2016) J. Climate, 29, pp. 3629-3646
  • Meehl, G.A., Hu, A., Arblaster, J.M., Fasullo, J., Trenberth, K.E., Externally forced and internally generated decadal climate variability associated with the interdecadal Pacific Oscillation (2013) J. Climate, 26, pp. 7298-7310
  • Menemenlis, D., Heimbach, P., Hill, C., Lee, T., Nguyen, A., Schodlok, M., Zhang, H., ECCO2: High-resolution global ocean and sea ice data synthesis (2008) Mercator Ocean Quarterly Newsletter, 31, pp. 13-21. , Mercator Ocean, Agne, France
  • Menne, M.J., Durre, I., Vose, R.S., Gleason, B.E., Houston, T.G., An overview of the Global Historical Climatology Network-daily database (2012) J. Atmos. Oceanic Technol., 29, pp. 897-910
  • Menzel, W.P., Frey, R.A., Borbas, E.E., Bearson, N., Baum, B., Chen, R., Cao, C., Recalibrating HIRS sensors to produce a 30 year record of radiance measurements (2014) Proc. EUMETSAT Meteorological Satellite Conf, , Geneva, Switzerland, EUMETSAT
  • Meredith, M.P., Jullion, L., Brown, P.J., Naveira-Garabato, A.C., Couldrey, M.P., Dense waters of the Weddell and Scotia Seas: Recent changes in properties and circulation (2014) Philos. Trans. Roy. Soc. London, 372A
  • Merrifield, M.A., Thompson, P.R., Lander, M., Multidecadal sea level anomalies and trends in the western tropical Pacific (2012) Geophys. Res. Lett, 39
  • Michel, D., The WACMOS-ET project—Part 1: Tower-scale evaluation of four remote sensing-based evapotranspiration algorithms (2016) Hydrol. Earth Syst. Sci, 20, pp. 803-822
  • Miller, B.R., HFC-23 (CHF3) emission trend response to HCFC-22 (CHClF2) production and recent HFC-23 emission abatement measures (2010) Atmos. Chem. Phys, 10, pp. 7875-7890
  • Minnis, P., Cloud detection in nonpolar regions for CERES using TRMM VIRS and Terra and Aqua MODIS data (2008) IEEE Trans. Geosci. Remote Sens., 46, pp. 3857-3884
  • Minnis, P., (2015) Long-Term Cloud Property Datasets from MODIS and AVHRR Using the CERES Cloud Algorithm. Proc, p. 2015. , EUMETSAT Meteorological Satellite Conf., Toulouse, France, EUMETSAT
  • Miralles, D.G., Holmes, T.R.H., De Jeu, R.A.M., Gash, J.H., Meesters, A.G.C.A., Dolman, A.J., Global land-surface evaporation estimated from satellite-based observations (2011) Hydrol. Earth Syst. Sci, 15, pp. 453-469
  • Miralles, D.G., El Niño-La Niña cycle and recent trends in continental evaporation (2014) Nat. Climate Change, 4, pp. 122-126
  • Miralles, D.G., El Niño-La Niña cycle and recent trends in continental evaporation (2014) Nat. Clim. Change, 4, pp. 122-126
  • Miralles, D.G., El Niño-La Niña cycle and recent trends in continental evaporation (2014) Nature Climate Change, 4, pp. 122-126
  • Miralles, D.G., The WACMOS-ET project—Part 2: Evaluation of global terrestrial evaporation data sets (2016) Hydrol. Earth Syst. Sci, 20, pp. 823-842
  • Mo, K.C., The association between intraseasonal oscillations and tropical storms in the Atlantic basin (2000) Mon. Wea. Rev, 128, pp. 4097-4107
  • Mo, K.C., Ghil, M., Statistics and dynamics of persistent anomalies (1987) J. Atmos. Sci., 44, pp. 877-902
  • Mo, K.C., Kousky, V.E., Further analysis of the relationship between circulation anomaly patterns and tropical convection (1993) J. Geophys. Res., 98 (D3), pp. 5103-5113
  • Montes-Hugo, M., Doney, S.C., Ducklow, H.W., Fraser, W., Martinson, D., Stammerjohn, S.E., Schofield, O., Recent changes in phytoplankton communities associated with rapid regional climate change along the Western Antarctic Peninsula (2009) Science, 323, pp. 1470-1473
  • Montzka, S.A., Recent trends in global emissions of hydrochlorofluorocarbons and hydrofluorocarbons: Reflecting on the 2007 adjustments to the Montreal Protocol (2015) J. Phys. Chem., 119A, pp. 4439-4449
  • Morice, C.P., Kennedy, J.J., Rayner, N.A., Jones, P.D., Quantifying uncertainties in global and regional temperature change using an ensemble of observational estimates: The HadCRUT4 dataset (2012) J. Geophys. Res., 117
  • Moscatello, A., Miglietta, M.M., Rotunno, R., Numerical analysis of a Mediterranean “hurricane” over southeastern Italy (2008) Mon. Wea. Rev, 136, pp. 4373-4397
  • Mote, T.L., Greenland surface melt trends 1973-2007: Evidence of a large increase in 2007 (2007) Geophys. Res. Lett, 34
  • Mu, Q., Heinsch, F.A., Zhao, M., Running, S.W., Development of a global evapotranspiration algorithm based on MODIS and global meteorology data (2007) Remote Sens. Environ, 111, pp. 519-536
  • Mueller, B., Benchmark products for land evapotranspiration: LandFlux-EVAL multi-dataset synthesis (2013) Hydrol. Earth Syst. Sci, 17, pp. 3707-3720
  • Mueter, F.J., Litzow, M.A., Sea ice retreat alters the biogeography of the Bering Sea continental shelf (2008) Ecol. Appl, 18, pp. 309-320
  • Mühle, J., Perfluorocarbons in the global atmosphere: Tetrafluoromethane, hexafluoroethane, and octafluoropropane (2010) Atmos. Chem. Phys, 10, pp. 5145-5164
  • Mullan, A.B., Intertropical convergence zones (2014) Bull. Amer. Meteor. Soc, 95 (7), pp. S103-S104. , [in “State of the Climate in 2013”]
  • Müller, R., Grooß, J.-U., Lemmen, C., Heinze, D., Dameris, M., Bodeker, G., Simple measures of ozone depletion in the polar stratosphere (2008) Atmos. Chem. Phys, 8, pp. 251-264
  • Münnich, M., Neelin, J.D., Seasonal influence of ENSO on the Atlantic ITCZ and equatorial South America (2005) Geophys. Res. Lett, 32
  • Munro, D.R., Lovenduski, N.S., Takahashi, T., Stephens, B.B., Newberger, T., Sweeney, C., Recent evidence for a strengthening CO2 sink in the Southern Ocean from carbonate system measurements in the Drake Passage (2002-2015) (2015) Geophys. Res. Lett, 42, pp. 7623-7630
  • Murata, A., Kumamoto, Y., Watanabe, S., Fukasawa, M., Decadal increases of anthropogenic CO2 in the South Pacific subtropical ocean along 32°S (2007) J. Geophys. Res., 112
  • Murata, A., Kumamoto, Y., Sasaki, K., Watanabe, S., Fukasawa, M., Decadal increases of anthropogenic CO2 in the subtropical South Atlantic Ocean along 30°S (2008) J. Geophys. Res., 113
  • Murata, A., Kumamoto, Y., Sasaki, K., Watanabe, S., Fukasawa, M., Decadal increases of anthropogenic CO2 along 149°E in the western North Pacific (2009) J. Geophys. Res., 114
  • Murata, A., Kumamoto, Y., Sasaki, K., Watanabe, S., Fukasawa, M., Decadal increases in anthropogenic CO2 along 20°S in the South Indian Ocean (2010) J. Geophys. Res., 115
  • Murphy, B.F., Ribbe, J., Variability of southeast Queensland rainfall and climate indices (2004) Int. J. Climatol., 24, pp. 703-721
  • Murray, L.T., Logan, J.A., Jacob, D.J., Interannual variability in tropical tropospheric ozone and OH: The role of lightning (2013) J. Geophys. Res. Atmos, 118, pp. 11468-11480
  • Myhre, G., (2013) Anthropogenic and Natural Radiative Forcing. Climate Change 2013: The Physical Science Basis, pp. 659-740. , T. F. Stocker et al., Eds., Cambridge University Press
  • Nair, P.J., Subtropical and midlatitude ozone trends in the stratosphere: Implications for recovery (2015) J. Geophys. Res. Atmos., 120, pp. 7247-7257
  • Nakazawa, T., Hoshino, S., Intercomparison of Dvorak parameters in the tropical cyclone datasets over the western North Pacific (2009) SOLA, 5, pp. 33-36
  • Nelson, N.B., Siegel, D.A., Global distribution and dynamics of chromophoric dissolved organic matter (2013) Annu. Rev. Mar. Sci., 5, pp. 447-476
  • Nemani, R.R., Running, S.W., Estimation of regional surface resistance to evapotranspiration from NDVI and thermal-IR AVHRR data (1989) J. Appl. Meteor., 28, pp. 276-284
  • Newman, P.A., Daniel, J.S., Waugh, D.W., Nash, E.R., A new formulation of equivalent effective stratospheric chlorine (EESC) (2007) Atmos. Chem. Phys, 7, pp. 4537-4552
  • Nghiem, S.V., Hall, D.K., Mote, T.L., Tedesco, M., Albert, M.R., Keegan, K., Shuman, C.A., Neumann, G., The extreme melt across the Greenland ice sheet in 2012 (2012) Geophys. Res. Lett, 39
  • Multivariate ENSO Index (MEI) (2016) NOAA Earth System Research Laboratory, , http://www.esrl.noaa.gov/psd/enso/mei/
  • Nobre, C.A., Marengo, J.A., Seluchi, M.E., Cuartas, L.A., Alvess, L.M., Some characteristics and impacts of the drought and water crisis in southeastern Brazil during 2014 and 2015 (2016) J. Water Resour. Prot., 8, pp. 252-262
  • Nobre, P., Shukla, J., Variations of sea surface temperature, wind stress and rainfall over the tropical Atlantic and South America (1996) J. Climate, 9, pp. 2464-2479
  • Nordli, Ö., Przybylak, R., Ogilvie, A.E.J., Isaksen, K., Long-term temperature trends and variability on Spitsbergen: The extended Svalbard Airport temperature series, 1898-2012 (2014) Polar Res, 33
  • O’Reilly, C.M., Rapid and highly variable warming of lake surface waters around the globe (2015) Geophys. Res. Lett, 42, pp. 10771-10781
  • Olsen, A., Magnitude and origin of the anthropogenic CO2 increase and 13C Suess effect in the Nordic seas since 1981 (2006) Global Biogeochem. Cycles, 20
  • Onogi, K., The JRA-25 Reanalysis (2007) J. Meteor. Soc. Japan, 85, pp. 369-432
  • Orsi, A., Whitworth, T., III, Nowlin, W., Jr., On the meridional extent and fronts of the Antarctic Circumpolar Current (1995) Deep-Sea Res, 2 (42), pp. 641-673
  • Ostrovsky, I., Rimmer, A., Yacobi, Y.Z., Nishri, A., Sukenik, A., Hadas, O., Zohary, T., Long-term changes in the Lake Kinneret ecosystem: The effects of climate change and anthropogenic factors (2013) Climatic Change and Global Warming of Inland Waters: Impacts and Mitigation for Ecosystems and Societies, pp. 271-293. , C. R. Goldman, M. Kumagai, and R. D. Robarts, Eds., Wiley
  • Otto, F.E.L., Factors other than climate change, main drivers of 2014/15 water shortage in southeast Brazil [in “Explaining Extreme Events from a Climate Perspective”] (2015) Bull. Amer. Meteor. Soc., 96 (12), pp. S35-S40
  • Oudrari, H., McIntire, J., Xiong, X., Butler, J., Lee, S., Lei, N., Schwarting, T., Sun, J., Prelaunch radiometric characterization and calibration of the S-NPP VIIRS Sensor (2015) IEEE Trans. Geosci. Remote Sens., 53, pp. 2195-2210
  • Overeem, I., Syvitski, J.P.M., Shifting discharge peaks in Arctic rivers, 1977-2007 (2010) Geogr. Ann, 92A, pp. 285-296
  • Overland, J., Hanna, E., Hanssen-Bauer, I., Kim, S.-J., Walsh, J., Wang, M., Bhatt, U.S., Air temperature [in “State of the Climate in 2014”] (2015) Bull. Amer. Meteor. Soc., 96 (7), pp. S128-S129
  • Overland, J.E., The case for global warming in the Arctic (2009) Influence of Climate Change on the Changing Arctic and Sub-Arctic Conditions, pp. 13-23. , J. C. J. Nihoul and A. G. Kostianoy, Eds., Springer
  • Overland, J.E., Wood, K.R., Wang, M., Warm Arctic-cold continents: Impacts of the newly open Arctic Sea (2011) Polar Res., 30, p. 15787
  • Palmer, M.D., Haines, K., Tett, S.F.B., Ansell, T.J., Isolating the signal of ocean global warming (2007) Geophys. Res. Lett, 34
  • Palmer, W.C., Meteorological drought. Weather Bureau Research Paper 45, U.S (1965) Department of Commerce, p. 58
  • Panda, D.K., Wahr, J., Spatiotemporal evolution of water storage changes in India from the updated GRACE-derived gravity records (2016) Water Resour. Res, 52, pp. 135-149
  • Pantillon, F.P., Chaboureau, J.P., Mascart, P.J., Lac, C., Predictability of a Mediterranean tropical-like storm downstream of the extratropical transition of Hurricane Helene (2006) (2013) Mon. Wea. Rev, 141, pp. 1943-1962
  • Parinussa, R.M., De Jeu, R., Wagner, W., Dorigo, W., Fang, F., Teng, W., Liu, Y.Y., [Global Climate] Soil moisture [in “State of the Climate in 2012”] (2013) Bull. Amer. Meteor. Soc, 94, pp. S24-S25
  • Park, G.-H., Variability of global net sea-air CO2 fluxes over the last three decades using empirical relationships (2010) Tellus, 62B, pp. 352-368
  • Park, S., Trends and seasonal cycles in the isotopic composition of nitrous oxide since 1940 (2012) Nat. Geosci, 5, pp. 261-265
  • Parker, D.E., Legg, T.P., Folland, C.K., A new daily central England temperature series, 1772-1991 (1992) Int. J. Climatol., 12, pp. 317-342
  • Parrish, D.D., Long-term changes in lower tropospheric baseline ozone concentrations: Comparing chemistry-climate models and observations at northern midlatitudes (2014) J. Geophys. Res. Atmos., 119, pp. 5719-5736
  • Paulik, C., Dorigo, W., Wagner, W., Kidd, R., Validation of the ASCAT Soil Water Index using in situ data from the International Soil Moisture Network (2014) Int. J. Appl. Earth Obs. Geoinfo., 30, pp. 1-8
  • Pawson, S., Update on global ozone: Past, present, and future. Scientific Assessment of Ozone Depletion: 2014, Global Ozone Research and Monitoring Project Rep. 55 (2014) World Meteorological Organization, pp. 1-2. , http://www.esrl.noaa.gov/csd/assessments/ozone/2014/chapters/2014OzoneAssessment.pdf
  • Pelto, M., Forecasting temperate alpine glacier survival from accumulation zone observations (2010) Cryosphere, 4, pp. 67-75
  • Peng, T.-H., Wanninkhof, R., Increase in anthropogenic CO2 in the Atlantic Ocean in the last two decades (2010) Deep-Sea Res, 1 (57), pp. 755-770
  • Peng, T.-H., Wanninkhof, R., Bullister, J.L., Feely, R.A., Takahashi, T., Quantification of decadal anthropogenic CO2 uptake in the ocean based on dissolved inorganic carbon measurements (1998) Nature, 396, pp. 560-563
  • Peng, T.-H., Wanninkhof, R., Feely, R.A., Increase of anthropogenic CO2 in the Pacific Ocean over the last two decades (2003) Deep-Sea Res, 2 (50), pp. 3065-3082
  • Perez, R.C., Measuring the Atlantic meridional overturning circulation (2015) Mar. Technol. Soc. J., 49, pp. 167-177
  • (2013) Permafrost in Switzerland 2008/2009 and 2009/2010, p. 80. , http://www.permos.ch/publications.html, Glaciological Report (Permafrost) No. 10/11 of the Cryospheric Commission of the Swiss Academy of Sciences, J. Noetzli, Ed
  • Peterson, B.J., Holmes, R.M., McClelland, J.W., Vorosmarty, C.J., Lammers, R.B., Shiklomanov, A.I., Shiklomanov, I.A., Rahmstorf, S., Increasing river discharge to the Arctic Ocean (2002) Science, 298, pp. 2171-2173
  • Peterson, T.C., Vose, R.S., An overview of the Global Historical Climatology Network temperature database (1997) Bull. Amer. Meteor. Soc., 78, pp. 2837-2849
  • Petrie, R.E., Shaffrey, L.C., Sutton, R.T., Atmospheric impact of Arctic sea ice loss in a coupled ocean-atmosphere simulation (2015) J. Climate, 28, pp. 9606-9622
  • Petty, A.A., Holland, P.R., Feltham, D.L., Sea ice and the ocean mixed layer over the Antarctic shelf seas (2014) Cryosphere, 8, pp. 761-783
  • Pfeffer, W.T., The Randolph Glacier Inventory: A globally complete inventory of glaciers (2014) J. Glaciol., 60, pp. 537-552
  • Pinty, B., Land surface albedo [in “State of the Climate in 2011”] (2012) Bull. Amer. Meteor. Soc., 93 (7), pp. S52-S53
  • Pinty, B., Exploiting the MODIS albedos with the Two-stream Inversion Package (JRC-TIP): 1. Effective leaf area index, vegetation, and soil properties (2011) J. Geophys. Res., 116
  • Pinty, B., Andredakis, I., Clerici, M., Kaminski, T., Taberner, M., Verstraete, M.M., Gobron, N., Widlowski, J.-L., Fractions of transmitted and absorbed fluxes in the Vegetation and Soil layers (2011) J. Geophys. Res., 116
  • Pithan, F., Mauritsen, T., Arctic amplification dominated by temperature feedbacks in contemporary climate models (2014) Nat. Geosci, 7, pp. 181-184
  • Pitts, M.C., Poole, L.R., Thomason, L.W., CALIPSO polar stratospheric cloud observations: Second-generation detection algorithm and composition discrimination (2009) Atmos. Chem. Phys, 9, pp. 7577-7589
  • Po-Chedley, S., Thorsen, T.J., Fu, Q., Removing diurnal cycle contamination in satellite-derived tropospheric temperatures: Understanding tropical tropospheric trend discrepancies (2015) J. Climate, 28, pp. 2274-2290
  • Price, J.C., Estimation of regional scale evapotranspiration through analysis of satellite thermal-infrared data (1982) IEEE Trans. Geosci. Remote Sens., 3, pp. 286-292
  • Pryor, S.C., Wind speed trends over the contiguous United States (2009) J. Geophys. Res., 114
  • Pun, I.-F., Lin, I.-I., Lo, M.-H., Recent increase in high tropical cyclone heat potential area in the western North Pacific Ocean (2013) Geophys. Res. Lett, 40, pp. 4680-4684
  • Purkey, S.G., Johnson, G.C., Warming of global abyssal and deep Southern Ocean waters between the 1990s and 2000s: Contributions to global heat and sea level rise budgets (2010) J. Climate, 23, pp. 6336-6351
  • Purkey, S.G., Johnson, G.C., Global contraction of Antarctic Bottom Water between the 1980s and 2000s (2012) J. Climate, 25, pp. 5830-5844
  • Purkey, S.G., Johnson, G.C., Antarctic Bottom Water warming and freshening: Contributions to sea level rise, ocean freshwater budgets, and global heat gain (2013) J. Climate, 26, pp. 6105-6122
  • Quay, P., Sonnerup, R., Stutsman, J., Maurer, J., Körtzinger, A., Padin, X.A., Robinson, C., Anthropogenic CO2 accumulation rates in the North Atlantic Ocean from changes in the 13C/12C of dissolved inorganic carbon (2007) Global Biogeochem. Cycles, 21
  • Raga, G.B., Bracamontes-Ceballos, B., Farfán, L., Romero-Centeno, R., Landfalling tropical cyclones on the Pacific coast of Mexico: 1850-2010 (2013) Atmósfera, 26, pp. 209-220
  • Rahmstorf, S., Box, J.E., Feulner, G., Mann, M.E., Robinson, A., Rutherford, S., Schaernicht, E.J., Exceptional twentieth-century slowdown in Atlantic Ocean overturning circulation. Nat (2015) Climate Change, 5, pp. 475-480
  • Ramella-Pralungo, L.R., Haimberger, L., Stickler, A., Brönnimann, S., A global radiosonde and tracked balloon archive on 16 pressure levels (GRASP) back to 1905. Part 1: Merging and interpolation to 00:00 and 12:00 GMT (2014) Earth Syst. Sci. Data, 6, pp. 185-200
  • Rand, K.M., Logerwell, E.A., The first demersal trawl survey of benthic fish and invertebrates in the Beaufort Sea since the late 1970s (2011) Polar Biol., 34, pp. 475-488
  • Randel, W.J., Wu, F., Isolation of the ozone QBO in SAGE II data by singular-value decomposition (1996) J. Atmos. Sci., 53, pp. 2546-2559
  • Rasmusson, E.M., Carpenter, T.H., Variations in tropical sea surface temperature and surface wind fields associated with the Southern Oscillation/El Nino (1982) Mon. Wea. Rev, 110, pp. 354-384
  • Rasmusson, E.M., Wallace, J.M., Meteorological aspects of the El Niño/Southern Oscillation (1983) Science, 222, pp. 1195-1202
  • Ravishankara, A.R., Daniel, J.S., Portmann, R.W., Nitrous oxide (N2O): The dominant ozone-depleting substance emitted in the 21st century (2009) Science, 326, pp. 123-125
  • Rawlins, M.A., Analysis of the Arctic system freshwater cycle intensification: Observations and expectations (2010) J. Climate, 23, pp. 5715-5737
  • Rayner, N.A., Parker, D.E., Horton, E.B., Folland, C.K., Alexander, L.V., Rowell, D.P., Kent, E.C., Kaplan, A., Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century (2003) J. Geophys. Res., 108, p. 4407
  • Reichle, R.H., Liu, Q., Observation-corrected precipitation estimates in GEOS-5 (2014) NASA/TM-2014-104606, 35, p. 18. , http://gmao.gsfc.nasa.gov/pubs/tm/docs/Reichle734.pdf
  • Reid, P., Stammerjohn, S., Massom, R., Scambos, T., Lieser, J., The record 2013 Southern Hemisphere sea-ice extent maximum (2015) Ann. Glaciol., 56, pp. 99-106
  • Remer, L.A., The MODIS aerosol algorithm, products and validation (2005) J. Atmos. Sci., 62, pp. 947-973
  • Remy, S., Kaiser, J.W., Daily global fire radiative power fields estimation from one or two MODIS instruments (2014) Atmos. Chem. Phys, 14, pp. 13377-13390
  • Renaud, P.E., Berge, J., Varpe, Ø., Lønne, O.J., Nahrgang, J., Ottesen, C., Hallanger, I., Is the poleward expansion by Atlantic cod and haddock threatening native polar cod, Boreogadus saida? (2012) Polar Biol., 35, pp. 401-412
  • Reynolds, R.W., Rayner, N.A., Smith, T.M., Stokes, D.C., Wang, W., An improved in situ and satellite SST analysis for climate (2002) J. Climate, 15, pp. 1609-1625
  • Reynolds, R.W., Smith, T.M., Liu, C., Chelton, D.B., Casey, K.S., Schlax, M.G., Daily high-resolution-blended analyses for sea surface temperature (2007) J. Climate, 20, pp. 5473-5496
  • Rhein, M., (2013) Observations: Ocean, pp. 255-316. , T. F. Stocker et al., Eds., Cambridge University Press
  • Riddle, E., Stoner, M., Johnson, N., L’Heureux, M., Collins, D., Feldstein, S., The impact of the MJO on clusters of wintertime circulation anomalies over the North American region (2013) Climate Dyn., 40, pp. 1749-1766
  • Ridley, D.A., Total volcanic stratospheric aerosol optical depths and implications for global climate change (2014) Geophys. Res. Lett, 41, pp. 7763-7769
  • Riffler, M., Lieberherr, G., Wunderle, S., Lake surface water temperatures of European Alpine lakes (1989-2013) based on the Advanced Very High Resolution Radiometer (AVHRR) 1 km data set (2015) Earth Syst. Sci. Data, 7, pp. 1-17
  • Rignot, E., Jacobs, S., Mouginot, J., Scheuchl, B., Ice-shelf melting around Antarctica (2013) Science, 341, pp. 266-270
  • Rimmer, A., Gal, G., Opher, T., Lechinsky, Y., Yacobi, Y.Z., Mechanisms of long-term variations of the thermal structure in a warm lake (2011) Limnol. Oceanogr, 56, pp. 974-988
  • Riser, S.C., Fifteen years of ocean observations with the global Argo array (2016) Nat. Climate Change, 6, pp. 145-153
  • Rodell, M., Famiglietti, J.S., An analysis of terrestrial water storage variations in Illinois with implications for the Gravity Recovery and Climate Experiment (GRACE) (2001) Water Resour. Res, 37, pp. 1327-1339
  • Rodell, M., Velicogna, I., Famiglietti, J.S., Satellite-based estimates of groundwater depletion in India (2009) Nature, 460, pp. 999-1002
  • Rödenbeck, C., Data-based estimates of the ocean carbon sink variability—First results of the Surface Ocean pCO2 Mapping Intercomparison (SOCOM) (2015) Biogeosciences, 12, pp. 7251-7278
  • Roderick, M.L., Rotstayn, L.D., Farquhar, G.D., Hobbins, M.T., On the attribution of changing pan evaporation (2007) Geophys. Res. Lett, 34
  • Roemmich, D., Gilson, J., The 2004-2008 mean and annual cycle of temperature, salinity, and steric height in the global ocean from the Argo Program (2009) Prog. Oceanogr, 82, pp. 81-100
  • Roemmich, D., Gilson, J., The global ocean imprint of ENSO (2011) Geophys. Res. Let T, 38
  • Roemmich, D., Gilson, J., Davis, R., Sutton, P., Wijffels, S., Riser, S., Decadal spinup of the South Pacific subtropical gyre (2007) J. Phys. Oceanogr., 37, pp. 162-173
  • Roemmich, D., Church, J., Gilson, J., Monselesan, D., Sutton, P., Wijffels, S., Unabated planetary warming and its ocean structure since 2006 (2015) Nat. Climate Change, 5, pp. 240-245
  • Rohde, R., A new estimate of the average Earth surface land temperature spanning 1753 to 2011 (2013) Geoinfor. Geostat. Overview, 1 (1)
  • Romanovsky, V.E., Cable, W.L., Kholodov, A.L., Changes in permafrost and active-layer temperatures along an Alaskan permafrost-ecological transect (2015) Proc. 68Th Canadian Geotechnical Conf. and Seventh Canadian Conf. on Permafrost (GEOQuébec 2015), , Québec, Canada, GEOQuébec 2015, Paper 479
  • Ropelewski, C.F., Halpert, M.S., Global and regional scale precipitation patterns associated with the El Niño/Southern Oscillation (1987) Mon. Wea. Rev, 115, pp. 1606-1626
  • Roundy, P.E., The spectrum of convectively coupled Kelvin waves and the Madden-Julian oscillation in regions of low-level easterly and westerly background flow (2012) J. Atmos. Sci., 69, pp. 2107-2111
  • Roundy, P.E., Observed structure of convectively coupled waves as a function of equivalent depth: Kelvin waves and the Madden-Julian oscillation (2012) J. Atmos. Sci., 69, pp. 2097-2106
  • Ryan, S., The wind field around Mauna Loa derived from surface and balloon observations (1997) J. Geophys. Res, 102 (D9), pp. 10711-10725
  • Rydbeck, A.V., Maloney, E.D., Energetics of east Pacific easterly waves during intraseasonal events (2014) J. Climate, 27, pp. 7603-7621
  • Saba, G.K., Winter and spring controls of the summer marine food web in the Western Antarctic Peninsula (2014) Nat. Commun, 5, p. 4318
  • Saba, V.S., Enhanced warming of the Northwest Atlantic Ocean under climate change (2016) J. Geophys. Res. Oceans, 121, pp. 118-132
  • Sabine, C.L., Tanhua, T., Estimation of anthropogenic CO2 inventories in the ocean (2010) Annu. Rev. Mar. Sci., 2, pp. 175-198
  • Sabine, C.L., Feely, R.A., Millero, F.J., Dickson, A.G., Langdon, C., Mecking, S., Greeley, D., Decadal changes in Pacific carbon (2008) J. Geophys. Res., 113
  • Saha, S., The NCEP Climate Forecast System Reanalysis (2010) Bull. Amer. Meteor. Soc., 91, pp. 1015-1057
  • Saha, S., (2010) NCEP Climate Forecast System Reanalysis (CFSR) Selected Hourly Time-Series Products, , January 1979 to December 2010
  • (2016) Research Data Archive at the National Center for Atmospheric Research, Computational and Information Systems Laboratory, , data accessed January
  • Sailley, S.F., Ducklow, H.W., Moeller, H.V., Fraser, W.R., Schofield, O.M., Steinberg, D.K., Garzio, L.M., Doney, S.C., Carbon fluxes and pelagic ecosystem dynamics near two western Antarctic Peninsula Adélie penguin colonies: An inverse model approach (2013) Mar. Ecol. Prog. Ser., 492, pp. 253-272
  • Sallée, J.B., Speer, K., Morrow, R., Southern Ocean fronts and their variability to climate modes (2008) J. Climate, 21, pp. 3020-3039
  • Sauvage, B., Martin, R.V., Van Donkelaar, A., Ziemke, J.R., Quantification of the factors controlling tropical tropospheric ozone and the South Atlantic maximum (2007) J. Geophys. Res., 112
  • Schaaf, C.B., First operational BRDF, albedo nadir ref lectance products from MODIS. Remote Sens (2002) Environ., 83, pp. 135-148
  • Schanze, J.J., Schmitt, R.W., Yu, L.L., The global oceanic freshwater cycle: A state-of-the-art quantification (2010) J. Mar. Res., 68, pp. 569-595
  • Schauffler, S.M., Chlorine budget and partitioning during the Stratospheric Aerosol and Gas Experiment (SAGE) III Ozone Loss and Validation Experiment (SOLVE) (2003) J. Geophys. Res., 108, p. 4173
  • Schmidt, G., (2016) 2015 temperatures, , www.realclimate.org/index.php/archives/2016/01/2015-temperatures/, RealClimate.org. Accessed April
  • Schneider, U., Becker, A., Finger, P., Meyer-Christoffer, A., Ziese, M., (2015) GPCC Monitoring Product: Near Real-Time Monthly Land-Surface Precipitation from Rain-Gauges Based on SYNOP and CLIMAT Data
  • Schreck, C.J., Kelvin waves and tropical cyclogenesis: A global survey (2015) Mon. Wea. Rev, 143, pp. 3996-4011
  • Schreck, C.J., Molinari, J., Tropical cyclogenesis associated with Kelvin waves and the Madden-Julian oscillation (2011) Mon. Wea. Rev, 139, pp. 2723-2734
  • Schreck, C.J., Molinari, J., Aiyyer, A., A global view of equatorial waves and tropical cyclogenesis (2012) Mon. Wea. Rev, 140, pp. 774-788
  • Schreck, C.J., Cordeira, J.M., Margolin, D., Which MJO events affect North American temperatures? (2013) Mon. Wea. Rev, 141, pp. 3840-3850
  • Schreck, C.J., Knapp, K.R., Kossin, J.P., The impact of best track discrepancies on global tropical cyclone climatologies using IBTrACS (2014) Mon. Wea. Rev, 142, pp. 3881-3899
  • Send, U., Lankhorst, M., Kanzow, T., Observation of decadal change in the Atlantic meridional overturning circulation using 10 years of continuous transport data (2011) Geophys. Res. Lett, 38
  • Serreze, M., Barry, R., Processes and impacts of Arctic amplification: A research synthesis (2011) Global Planet. Change, 77, pp. 85-96
  • Shadwick, E.H., Glacier tongue calving reduced dense water formation and enhanced carbon uptake (2013) Geophys. Res. Lett, 40, pp. 904-909
  • Shay, L.K., Goni, G.J., Black, P.G., Effects of a warm oceanic feature on Hurricane Opal (2000) Mon. Wea. Rev, 128, pp. 1366-1383
  • Sheffield, J., Wood, E.F., Roderick, M.L., Little change in global drought over the past 60 years (2012) Nature, 491, pp. 435-438
  • Shepherd, T.G., Reconciliation of halogen-induced ozone loss with the total-column ozone record (2014) Nat. Geosci, 7, pp. 443-449
  • Sherwood, S.C., Nishant, N., Atmospheric changes through 2012 as shown by iteratively homogenised radiosonde temperature and wind data (IUKv2). Environ. Res (2015) Lett., 10
  • Shi, L., Bates, J.J., Three decades of intersatellite-calibrated High-Resolution Infrared Radiation Sounder upper tropospheric water vapor (2011) J. Geophys. Res., 116
  • Shiklomanov, A.I., Lammers, R.B., Record Russian river discharge in 2007 and the limits of analysis (2009) Environ. Res. Lett, 4
  • Shiklomanov, N.I., Streletskiy, D.A., Nelson, F.E., Northern Hemisphere component of the global Circumpolar Active Layer Monitoring (CALM) program (2012) Proc. 10Th Int. Conf. on Permafrost, 1, pp. 377-382. , Salekhard, Russia
  • Shimada, K., Aoki, S., Ohshima, K.I., Rintoul, S.R., Influence of Ross Sea Bottom Water changes on the warming and freshening of the Antarctic Bottom Water in the Australian-Antarctic Basin (2012) Ocean Sci., 8, pp. 419-432
  • Siegel, D.A., Maritorena, S., Nelson, N.B., Behrenfeld, M.J., McClain, C.R., Colored dissolved organic matter and its influence on the satellite-based characterization of the ocean biosphere (2005) Geophys. Res. Lett, 32
  • Siegel, D.A., Regional to global assessments of phytoplankton dynamics from the SeaWiFS mission (2013) Remote Sens. Environ, 135, pp. 77-91
  • Simmons, A.J., Poli, P., Arctic warming in ERA-Interim and other analyses (2014) Quart. J. Roy. Meteor. Soc., 141B, pp. 1147-1162
  • Simmons, A.J., Willett, K.M., Jones, P.D., Thorne, P.W., Dee, D., Low-frequency variations in surface atmospheric humidity, temperature and precipitation: Inferences from reanalyses and monthly gridded observational datasets (2010) J. Geophys. Res., 115
  • Singh, O.P., Ali Khan, T.M., Rahman, S., Changes in the frequency of tropical cyclones over the North Indian Ocean (2000) Meteor. Atmos. Phys, 75, pp. 11-20
  • Skliris, N., Marsh, R., Josey, S.A., Good, S.A., Liu, C., Allan, R.P., Salinity changes in the World Ocean since 1950 in relation to changing surface freshwater flux (2014) Climate Dyn., 43, pp. 709-736
  • Slade, S.A., Maloney, E.D., An intraseasonal prediction model of Atlantic and East Pacific tropical cyclone genesis (2013) Mon. Wea. Rev, 141, pp. 1925-1942
  • Smeed, D.A., Observed decline of the Atlantic meridional overturning circulation 2004-2012 (2014) Ocean Sci, 10, pp. 29-38
  • Smeed, D.A., McCarthy, G.D., Rayner, D., Moat, B.I., Johns, W.E., Baringer, M.O., Meinen, C.S., Atlantic meridional overturning circulation observed by the RAPID-MOCHA-WBTS (RAPID-Meridional Overturning Circulation and Heatflux Array-Western Boundary Time Series) array at 26°N from 2004 to 2014 (2015) British Oceanographic Data Centre-Natural Environment Research Council
  • Smith, R.C., Stammerjohn, S.E., Baker, K.S., Surface air temperature variations in the western Antarctic peninsula region. Foundations for Ecological Research West of the Antarctic Peninsula (1996) Amer. Geophys. Union, pp. 105-121. , R. M. Ross, E. E. Hofmann, and L. B. Quetin, Eds
  • Smith, S., Brown, J., Assessment of the status of the development of the standards for the Terrestrial Essential Climate Variables (T7): Permafrost and seasonally frozen ground (2009) Global Terrestrial Observing System Rep, 62, p. 24. , www.fao.org/gtos/doc/ecvs/t07/t07.pdf
  • Smith, S.L., Lewkowicz, A.G., Duchesne, C., Ednie, M., Variability and change in permafrost thermal state in northern Canada (2015) Proc. 68Th Canadian Geotechnical Conf. and Seventh Canadian Conf. on Permafrost (GEOQuébec 2015), , Québec. GEOQuébec 2015, Paper 237
  • Smith, T.M., Reynolds, R.W., A high-resolution global sea surface temperature climatology for the 1961-90 base period (1998) J. Climate, 11, pp. 3320-3323
  • Smith, T.M., Reynolds, R.W., Peterson, T.C., Lawrimore, J., Improvements to NOAA’s historical merged land-ocean surface temperature analysis (1880-2006) (2008) J. Climate, 21, pp. 2283-2296
  • Sobel, A.H., Kim, D., The MJO-Kelvin wave transition (2012) Geophys. Res. Lett, 39
  • Solomon, S., Rosenlof, K.H., Portmann, R.W., Daniel, J.S., Davis, S.M., Sanford, T.J., Plattner, G.-K., Contributions of stratospheric water vapor to decadal changes in the rate of global warming (2010) Science, 327, pp. 1219-1223
  • Solomon, S., Daniel, J.S., Neely, R.R., III, Vernier, J.-P., Dutton, E.G., Thomason, L.W., The persistently variable “background” stratospheric aerosol layer and global climate change (2011) Science, 333, pp. 866-870
  • Song, J.-J., Wang, Y., Wu, L., Trend discrepancies among three best track data sets of western North Pacific tropical cyclones (2010) J. Geophys. Res., 115
  • Spencer, R.W., Christy, J.R., Braswell, W.D., Version 6.0 of the UAH temperature dataset released: New LT trend = +0.11 C/decade (2016) Accessed May, p. 2016. , http://www.drroyspencer.com/2015/04/version-6-0-of-the-uah-temperature-dataset-released-new-lt-trend-0-11-cdecade/
  • Sprintall, J., Gordon, A.L., Koch-Larrouy, A., Lee, T., Potemra, J.T., Pujiana, K., Wijffels, S.E., The Indonesian seas and their role in the coupled ocean-climate system (2014) Nat. Geosci, 7, pp. 487-492
  • Srokosz, M.A., Bryden, H.L., Observing the Atlantic meridional overturning circulation yields a decade of inevitable surprises (2015) Science, 348
  • Srokosz, M.A., Baringer, M., Bryden, H., Cunningham, S., Delworth, T., Lozier, S., Marotzke, J., Sutton, R., Past, present and future change in the Atlantic meridional overturning circulation (2012) Bull. Amer. Meteor. Soc., 93, pp. 1663-1676
  • Stackhouse, P.W., Jr., Kratz, D.P., McGarragh, G.R., Gupta, S.K., Geier, E.B., Fast Longwave and Shortwave Radiative Flux (FLASHFlux) products from CERES and MODIS measurements (2006) Proc. 12Th Conf. Atmospheric Radiation, , https://ams.confex.com/ams/Madison2006/techprogram/paper_113479.htm, Madison, WI, Amer. Meteor. Soc., P1.10
  • Stammerjohn, S., Massom, R., Rind, D., Martinson, D., Regions of rapid sea ice change: An inter-hemispheric seasonal comparison (2012) Geophys. Res. Lett, 39
  • Stammerjohn, S.E., Martinson, D.G., Smith, R.C., Yuan, X., Rind, D., Trends in Antarctic annual sea ice retreat and advance and their relation to El Niño-Southern Oscillation and southern annular mode variability (2008) J. Geophys. Res, 113
  • Steinberg, D.K., Long-term (1993-2013) changes in macrozooplankton off the Western Antarctic Peninsula (2015) Deep-Sea Res, 1 (101), pp. 54-70
  • Steinbrecht, W., Köhler, U., Claude, H., Weber, M., Burrows, J.P., Vander, R.J., Very high ozone columns at northern mid-latitudes in 2010 (2011) Geophys. Res. Lett, 38
  • Strahan, S.E., Douglass, A.R., Newman, P.A., Steenrod, S.D., Inorganic chlorine variability in the Antarctic vortex and implications for ozone recovery (2014) J. Geophys. Res. Atmos, 119, pp. 14098-14109
  • Strahan, S.E., Oman, L.D., Douglass, A.R., Coy, L., Modulation of Antarctic vortex composition by the quasi-biennial oscillation (2015) Geophys. Res. Lett, 42, pp. 4216-4223
  • Straneo, F., Heimbach, P., North Atlantic warming and the retreat of Greenland’s outlet glaciers (2013) Nature, 504, pp. 36-43
  • Straub, K.H., Kiladis, G.N., Observations of a convectively coupled Kelvin wave in the eastern Pacific ITCZ (2002) J. Atmos. Sci., 59, pp. 30-53
  • Straub, K.H., Kiladis, G.N., Ciesielski, P.E., The role of equatorial waves in the onset of the South China Sea summer monsoon and the demise of El Niño during 1998 (2006) Dyn. Atmos. Oceans, 42, pp. 216-238
  • Su, Z., The Surface Energy Balance System (SEBS) for estimation of turbulent heat fluxes (2002) Hydrol. Earth Syst. Sci, 6, pp. 85-100
  • Sudo, K., Takahashi, M., Simulation of tropospheric ozone changes during 1997-1998 El Niño: Meteorological impact on tropospheric photochemistry (2001) Geophys. Res. Lett, 28, pp. 4091-4094
  • Sun, W., Hess, P., Tian, B., The response of the equatorial tropospheric ozone to the Madden-Julian oscillation in TES satellite observations and CAM-chem model simulation (2014) Atmos. Chem. Phys, 14, pp. 11775-11790
  • Sutton, R.T., Dong, B., Atlantic Ocean influence on a shift in European climate in the 1990s (2012) Nat. Geosci, 5, pp. 788-792
  • Tacconi, L., (2003) Fires in Indonesia: Causes, Costs and Policy Implications, p. 24. , CIFOR Occasional Paper 38, CIFOR, Bogor, Indonesia
  • Talley, L., Changes in ocean heat, carbon content, and ventilation: A review of the first decade of GO-SHIP Global Repeat Hydrography (2016) Annu. Rev. Mar. Sci., 8, pp. 185-215
  • Talley, L.D., North Atlantic circulation and variability, reviewed for the CNLS conference (1996) Physica D, 98, pp. 625-646
  • Talley, L.D., Raymer, M., Eighteen degree water variability (1982) J. Mar. Res., 40, pp. 757-775
  • Talley, L.D., Changes in ocean heat, carbon content, and ventilation: A review of the first decade of GO-SHIP Global Repeat Hydrography (2016) Annu. Rev. Mar. Sci., 8, pp. 185-215
  • Tamura, T., Williams, G.D., Fraser, A.D., Ohshima, K.I., Potential regime shift in decreased sea ice production after the Mertz Glacier calving (2012) Nat. Commun, 3, p. 826
  • Tanhua, T., Körtzinger, A., Friis, K., Waugh, D.W., Wallace, D.W.R., An estimate of anthropogenic CO2 inventory from decadal changes in oceanic carbon content (2007) Proc. Natl. Acad. Sci. USA, 104, pp. 3037-3042
  • Tanskanen, A., Arola, A., Kujanpää, J., Use of the moving time-window technique to determine surface albedo from the TOMS reflectivity data (2003) Ultraviolet Ground-And Space-Based Measurements, Models, and Effects II, W, 4896, pp. 239-250. , Gao et al. Eds., International Society for Optical Engineering (SPIE Proceedings
  • Tapley, B.D., Bettadpur, S., Ries, J.C., Thompson, P.F., Watkins, M.M., GRACE measurements of mass variability in the Earth system (2004) Science, 305, pp. 503-505
  • Taylor, R.L., Udevitz, M.S., Demography of the Pacific walrus (Odobenus rosmarus divergens): 1974-2006 (2015) Mar. Mamm. Sci, 31, pp. 231-254
  • Tedesco, M., Snowmelt detection over the Greenland ice sheet from SSM/I brightness temperature daily variations (2007) Geophys. Res. Lett, 34
  • Tedesco, M., Assessment and development of snowmelt retrieval algorithms over Antarctica from K-band spaceborne brightness temperature (1979-2008) (2009) Remote Sens. Environ, 113, pp. 979-997
  • Tedesco, M., Monaghan, A.J., An updated Antarctic melt record through 2009 and its linkages to high-latitude and tropical climate variability (2009) Geophys. Res. Lett, 36
  • Tedesco, M., Fettweis, X., Van Den Broeke, M.R., Van De Wal, R.S.W., Smeets, C.J.P.P., Van De Berg, W.J., Serreze, M.C., Box, J.E., The role of albedo and accumulation in the 2010 melting record in Greenland (2011) Environ. Res. Lett, 6
  • Tedesco, M., Fettweis, X., Mote, T., Wahr, J., Alexander, P., Box, J., Wouters, B., Evidence and analysis of 2012 Greenland records from spaceborne observations, a regional climate model and reanalysis data (2013) Cryosphere, 7, pp. 615-630
  • Tedesco, M., (2015) Greenland Ice Sheet. Arctic Report Card, , http://www.arctic.noaa.gov/report14/greenland_ice:sheet.html.], Update for, NOAA
  • Tegtmeier, S., Rex, M., Wohltmann, I., Krüger, K., Relative importance of dynamical and chemical contributions to Arctic wintertime ozone (2008) Geophys. Res. Lett, 35
  • Teng, W.-H., Huang, C.-Y., Ho, S.-P., Kuo, Y.-H., Zhou, X.-J., Characteristics of global precipitable water in ENSO events revealed by COSMIC measurements (2013) J. Geophys. Res. Atmos., 118, pp. 8411-8425
  • Teuling, A.J., Van Loon, A.F., Seneviratne, S.I., Lehner, I., Aubinet, M., Heinesch, B., Bernhofer, C., Spank, U., Evapotranspiration amplifies European summer drought (2013) Geophys. Res. Lett, 40, pp. 2071-2075
  • Thomas, L.N., Taylor, J.R., Ferrari, R., Joyce, T.M., Symmetric instability in the Gulf Stream (2013) Deep-Sea Res, 2 (91), pp. 96-110
  • Timmermans, M.-L., Proshutinsky, A., Sea surface temperature [in “State of the Climate in 2014”] (2015) Bull. Amer. Meteor. Soc., 96 (7), pp. S147-S148
  • Tréguer, P., Jacques, G., Dynamics of nutrients and phytoplankton and fluxes of carbon, nitrogen and silicon in the Antarctic Ocean (1992) Polar Biol., 12, pp. 149-162
  • Trenberth, K.E., Signal versus noise in the Southern Oscillation (1984) Mon. Wea. Rev, 112, pp. 326-332
  • Trenberth, K.E., (2007) Observations: Surface and Atmospheric Climate Change. Climate Change 2007: The Physical Science Basis, pp. 385-432. , S. Solomon et al. Eds., Cambridge University Press
  • Trepte, Q.Z., Minnis, P., Trepte, C.R., Sun-Mack, S., Brown, R., Improved cloud detection in CERES edition 3 algorithm and comparison with the CALIPSO vertical feature mask (2010) Proc. 13Th Conf. on Atmospheric Radiation and Cloud Physics, , Portland, OR, Amer. Meteor. Soc., JP1.32
  • Troccoli, A., Muller, K., Coppin, P., Davy, R., Russell, C., Hirsch, A.L., Long-term wind speed trends over Australia (2012) J. Climate, 25, pp. 170-183
  • Troup, A.J., The “southern oscillation.” Quart (1965) J. Roy. Meteor. Soc., 91, pp. 490-506
  • Tschudi, M., Fowler, C., Maslanik, J.A., EASE-Grid Sea Ice Age, version 3 (2015) NASA National Snow and Ice Data Center Distributed Active Archive Center
  • Tschudi, M.A., Fowler, C., Maslanik, J.A., Stroeve, J.A., Tracking the movement and changing surface characteristics of Arctic sea ice (2010) IEEE J. Selected Topics Earth Obs. Remote Sens., 3, pp. 536-540
  • Turner, J., The El Niño-Southern Oscillation and Antarctica (2004) Int. J. Climatol., 24, pp. 1-31
  • Udevitz, M.S., Taylor, R.L., Garlich-Miller, J.L., Quakenbush, L.T., Snyder, J.A., Potential population level effects of increased haulout-related mortality of Pacific walrus calves (2013) Polar Biol., 36, pp. 291-298
  • Ugolini, F.C., Bockheim, J.G., Antarctic soils and soil formation in a changing environment: A review (2008) Geoderma, 144, pp. 1-8
  • Usup, A., Hashimoto, Y., Takahashi, H., Hayasaka, H., Combustion and thermal characteristics of peat fire in tropical peatland in Central Kalimantan, Indonesia (2004) Tropics, 14, pp. 1-19
  • Van Aken, H.M., De Jong, M.F., Yashayaev, I., Decadal and multi-decadal variability of Labrador Sea Water in the north-western North Atlantic Ocean derived from tracer distributions: Heat budget, ventilation, and advection (2011) Deep-Sea Res, 1 (58), pp. 505-523
  • Van As, D., Programme for Monitoring of the Greenland Ice Sheet (PROMICE): First temperature and ablation records (2011) Geol. Surv. Denmark Greenl. Bull., 23, pp. 73-76
  • Van De Wal, R.S.W., Greuell, W., Van Den Broeke, M.R., Reijmer, C.H., Oerlemans, J., Surface mass-balance observations and automatic weather station data along a transect near Kangerlussuaq, West Greenland (2005) Ann. Glaciol., 42, pp. 311-316
  • Van De Wal, R.S.W., Boot, W., Smeets, C.J.P.P., Snellen, H., Van Den Broeke, M.R., Oerlemans, J., Twenty-one years of mass balance observations along the K-transect, West Greenland (2012) Earth Syst. Sci. Data, 4, pp. 31-35
  • Van Der, A.R.J., Allaart, M.A.F., Eskes, H.J., Extended and refined multi sensor reanalysis of total ozone for the period 1970-2012 (2015) Atmos. Meas. Tech, 8, pp. 3021-3035
  • Van Der Schrier, G., Barichivich, J., Briffa, K.R., Jones, P.D., A scPDSI-based global dataset of dry and wet spells for 1901-2009 (2013) J. Geophys. Res. Atmos., 118, pp. 4025-4048
  • Van Der Schrier, G., Van Den Besselaar, E.J.M., Klein Tank, A.M.G., Verver, G., Monitoring European averaged temperature based on the E-OBS gridded dataset (2013) J. Geophys. Res., 118 (11), pp. 5120-5135
  • Van Der Schrier, G., Barichivich, J., Harris, I., Jonesand, P.D., Osborn, T.J., Monitoring global drought using the self-calibrating Palmer Drought Severity Index [in “State of the Climate in 2014”] (2015) Bull. Amer. Meteor. Soc., 96, pp. S30-S31
  • Van Der Werf, G.R., (2015) Global Fire Emissions Database, p. 2016. , http://www.globalfiredata.org/updates.html, GFED): Updates. Accessed February
  • Van Der Werf, G.R., Climate regulation of fire emissions and deforestation in equatorial Asia (2008) Proc. Natl. Acad. Sci. USA, 105, pp. 20350-20355
  • Van Der Werf, G.R., Global fire emissions and the contribution of deforestation, savanna, forest, agricultural, and peat fires (1997-2009) (2010) Atmos. Chem. Phys, 10, pp. 11707-11735
  • Van Wijk, E.M., Rintoul, S.R., Freshening drives contraction of Antarctic Bottom Water in the Australian Antarctic Basin (2014) Geophys. Res. Lett, 41, pp. 1657-1664
  • Vautard, R., Cattiaux, J., Yiou, P., Thépaut, J.-N., Ciais, P., Northern Hemisphere atmospheric stilling partly attributed to an increase in surface roughness (2010) Nat. Geosci, 3, pp. 756-761
  • Velicogna, I., Sutterley, T.C., Van Den Broeke, M., Regional acceleration in ice mass loss from Greenland and Antarctica using GRACE time-variable gravity data (2014) Geophys. Res. Lett, 41, pp. 8130-8137
  • Ventrice, M.J., Thorncroft, C.D., Janiga, M.A., Atlantic tropical cyclogenesis: A three-way interaction between an African easterly wave, diurnally varying convection, and a convectively coupled atmospheric Kelvin wave (2012) Mon. Wea. Rev, 140, pp. 1108-1124
  • Ventrice, M.J., Thorncroft, C.D., Schreck, C.J., Impacts of convectively coupled Kelvin waves on environmental conditions for Atlantic tropical cyclogenesis (2012) Mon. Wea. Rev, 140, pp. 2198-2214
  • Vernier, J.-P., Major influence of tropical volcanic eruptions on the stratospheric aerosol layer during the last decade (2011) Geophys. Res. Lett, 38
  • Vimont, D.J., Kossin, J.P., The Atlantic meridional mode and hurricane activity (2007) Geophys. Res. Lett, 34
  • Vivier, F., Iudicone, D., Busdraghi, F., Park, Y.-H., Dynamics of sea surface temperature anomalies in the Southern Ocean diagnosed from a 2D mixed-layer model (2010) Climate Dyn., 34, pp. 153-184
  • Von Storch, H., Zwiers, F.W., (1999) Statistical Analysis in Climate Research, p. 484. , Cambridge University Press
  • Voss, K.A., Famiglietti, J.S., Lo, M., De Linage, C., Rodell, M., Swenson, S.C., Groundwater depletion in the Middle East from GRACE with implications for transboundary water management in the Tigris-Euphrates-western Iran region (2013) Water Resour. Res, 49, pp. 904-914
  • Voulgarakis, A., Hadjinicolaou, P., Pyle, J.A., Increases in global tropospheric ozone following an El Niño event: Examining stratospheric ozone variability as a potential driver (2011) Atmos. Sci. Lett, 12, pp. 228-232
  • Wagner, W., Dorigo, W., De Jeu, R., Fernandez-Prieto, D., Benveniste, J., Haas, E., Ertl, M., Fusion of active and passive microwave observations to create an essential climate variable data record on soil moisture (2012) Proc. XXII ISPRS Congress, Melbourne, Australia, Intl. Society for Photogrammetry and Remote Sensing
  • Wahyunto, S.R., Subagjo, H., Maps of area of peatland distribution and carbon content in Sumatera, 1990-2002 (2003) Bogor, Indonesia: Wetlands International—Indonesia Programme & Wildlife Habitat Canada (WHC), , http://indonesia.wetlands.org/Infolahanbasah/PetaSebaranGambut/tabid/2834/language/en-GB/Default.aspx
  • Wahyunto, S., Ritung, S., Subagjo, H., Map of peatland distribution area and carbon content in Kalimantan, 2000-2002 (2004) Bogor, Indonesia: Wetlands International—Indonesia Programme & Wildlife Habitat Canada (WHC), , http://indonesia.wetlands.org/Infolahanbasah/PetaSebaranGambut/tabid/2834/language/en-GB/Default.aspx
  • Wakita, M., Watanabe, S., Murata, A., Tsurushima, N., Honda, M., Decadal change of dissolved inorganic carbon in the subarctic western North Pacific Ocean (2010) Tellus, 62B, pp. 608-620
  • Waliser, D.E., Gautier, C., A satellite-derived climatology of the ITCZ (1993) J. Climate, 6, pp. 2162-2174
  • Wan, H., Xiaolan, L.W., Swail, V.R., Homogenization and trend analysis of Canadian near-surface wind speeds (2010) J. Climate, 23, pp. 1209-1225
  • Wang, C., Atlantic warm pool [in “State of the Climate in 2014”] (2015) Bull. Amer. Meteor. Soc., 96 (7), pp. S123-S124
  • Wang, C., Weisberg, R.H., The 1997-98 El Niño evolution relative to previous El Niño events (2000) J. Climate, 13, pp. 488-501
  • Wang, C., Weisberg, R.H., Virmani, J.L., Western Pacific interannual variability associated with the El Niño-Southern Oscillation (1999) J. Geophys. Res., 104, pp. 5131-5149
  • Wang, C., Liu, H., Lee, S.-K., Atlas, R., Impact of the Atlantic warm pool on United States landfalling hurricanes (2011) Geophys. Res. Lett, 38
  • Wang, J., Zhang, L., Dai, A., Van Hove, T., Van Baelen, J., A near-global, 2-hourly data set of atmospheric precipitable water from ground-based GPS measurements (2007) J. Geophys. Res., 112
  • Wang, L., Liu, H., Wang, S., Shu, S., 2012/13 Seasonal melt extent and duration [in “State of the Climate in 2013”] (2014) Bull. Amer. Meteor. Soc, 95 (7), pp. S149-S150
  • Wang, Y., Field, R.D., Roswintiarti, O., Trends in atmospheric haze induced by peat fires in Sumatra Island, Indonesia and El Niño phenomenon from 1973 to 2003 (2004) Geophys. Res. Lett, 31
  • Wanninkhof, R., Relationship between wind speed and gas exchange over the ocean revisited (2014) Limnol. Oceanogr. Methods, 12, pp. 351-362
  • Wanninkhof, R., Doney, S.C., Bullister, J.L., Levine, N.M., Warner, M., Gruber, N., Detecting anthropogenic CO2 changes in the interior Atlantic Ocean between 1989 and 2005 (2010) J. Geophys. Res., 115
  • Wassmann, P., Duarte, C.M., Agustí, S., Sejr, M.K., Footprints of climate change in the Arctic marine ecosystem (2011) Global Change Biol., 17, pp. 1235-1249
  • Waters, J.F., Millero, F.J., Sabine, C.L., Changes in South Pacific anthropogenic carbon (2011) Global Biogeochem. Cycles, 25
  • Weatherhead, B., Tanskanen, A., Stevermer, A., (2005) Ozone and Ultraviolet Radiation, pp. 151-182. , http://www.acia.uaf.edu/PDFs/ACIA_Science:Chapters_Final/ACIA_Ch05_Final.pdf, Arctic Climate Impact Assessment, Cambridge University Press
  • Weber, M., Dikty, S., Burrows, J.P., Garny, H., Dameris, M., Kubin, A., Abalichin, J., Langematz, U., The Brewer-Dobson circulation and total ozone from seasonal to decadal time scales (2011) Atmos. Chem. Phys, 11, pp. 11221-11235
  • Weller, R.A., Variability and trends in surface meteorology and air-sea fluxes at a site off northern Chile (2015) J. Climate, 28, pp. 3004-3023
  • Wells, N., Goddard, S., Hayes, M.J., A self-calibrating Palmer Drought Severity Index (2004) J. Climate, 17, pp. 2335-2351
  • Wentz, F.J., A well calibrated ocean algorithm for Special Sensor Microwave/Imager (1997) J. Geophys. Res., 102, pp. 8703-8718
  • Wentz, F.J., A 17-yr climate record of environmental parameters derived from the Tropical Rainfall Measuring Mission (TRMM) microwave imager (2015) J. Climate, 28, pp. 6882-6902
  • Wentz, F.J., Ricciardulli, L., Hilburn, K.A., Mears, C.A., How much more rain will global warming bring? (2007) Science, 317, pp. 233-235
  • Wever, N., Quantifying trends in surface roughness and the effect on surface wind speed observations (2012) J. Geophys. Res., 117
  • (2015) Glacier Mass Balance Bulletin, 1, p. 230. , http://wgms.ch/literature_published_by_wgms/, 2012-2013). M. Zemp et al., Eds., World Glacier Monitoring Service
  • Latest glacier mass balance data. World Glacier Monitoring Service (2015) Accessed, p. 2015. , http://wgms.ch/latest-glacier-mass-balance-data/
  • Latest glacier mass balance data (2016) World Glacier Monitoring Service, Accessed February, p. 2016. , http://wgms.ch/latest-glacier-mass-balance-data/
  • Whan, K., Zscheischler, J., Orth, R., Shongwe, M., Rahimi, M., Asare, E.O., Seneviratne, S.I., Impact of soil moisture on extreme maximum temperatures in Europe. Wea (2015) Climate Extremes, 9, pp. 57-67
  • Wheeler, M., Kiladis, G.N., Convectively coupled equatorial waves: Analysis of clouds and temperature in the wavenumber-frequency domain (1999) J. Atmos. Sci., 56, pp. 374-399
  • Wheeler, M., Hendon, H.H., An all-season real-time multivariate MJO index: Development of an index for monitoring and prediction (2004) Mon. Wea. Rev, 132, pp. 1917-1932
  • Global solar UV index: A practical guide (2002) World Health Organization, p. 28. , http://www.who.int/uv/publications/en/GlobalUVI.pdf
  • Widlansky, M.J., Timmermann, A., McGregor, S., Stuecker, M.F., Cai, W., An interhemispheric tropical sea level seesaw due to El Niño Taimasa (2014) J. Climate, 27, pp. 1070-1081
  • Wielicki, B.A., Barkstrom, B.R., Harrison, E.F., Lee, R.B., III, Smith, G.L., Cooper, J.E., Clouds and the Earth’s Radiant Energy System (CERES): An Earth observing system experiment (1996) Bull. Amer. Meteor. Soc., 77, pp. 853-868
  • Wielicki, B.A., Clouds and the Earth’s Radiant Energy System (CERES): Algorithm overview (1998) IEEE Trans. Geosci. Remote Sens., 36, pp. 1127-1141
  • Wiig, Ø., Born, E.W., Stewart, R.E.A., Management of Atlantic walrus (Odobenus rosmarus rosmarus) in the Arctic Atlantic (2014) NAMMCO Sci. Publ, 9, pp. 315-344
  • Wijffels, S., Roemmich, D., Monselesan, D., Church, J., Gilson, J., Ocean temperatures chronicle the ongoing warming of Earth (2016) Nat. Climate Change, 6, pp. 116-118
  • Wild, J.D., Long, C.S., Barthia, P.K., McPeters, R.D., Constructing a long-term ozone climate data set (1979-2010) from V8.6 SBUV/2 profiles (2012) Proc. Quadrennial Ozone Symp, , http://larss.science.yorku.ca/QOS2012pdf/6071.pdf, 2012, Toronto, ON, Canada
  • Willett, K.M., Jones, P.D., Gillett, N.P., Thorne, P.W., Recent changes in surface humidity: Development of the HadCRUH dataset (2008) J. Climate, 21, pp. 5364-5383
  • Willett, K.M., Berry, D.I., Simmons, A., Surface humidity [in “State of the Climate in 2012”] (2013) Bull. Amer. Meteor. Soc., 94 (8), pp. S18-S19
  • Willett, K.M., Williams, C.N., Jr., Dunn, R.J.H., Thorne, P.W., Bell, S., De Podesta, M., Jones, P.D., Parker, D.E., HadISDH: An updateable land surface specific humidity product for climate monitoring (2013) Climate Past, 9, pp. 657-677
  • Willett, K.M., Berry, D.I., Simmons, A., Surface humidity [in “State of the Climate in 2013”] (2014) Bull. Amer. Meteor. Soc., 95 (7), pp. S19-S20
  • Willett, K.M., Dunn, R.J.H., Thorne, P.W., Bell, S., De Podesta, M., Jones, P.D., Parker, D.E., Williams, C.N., Jr., HadISDH land surface multi-variable humidity and temperature record for climate monitoring (2014) Climate Past, 10, pp. 1983-2006
  • Williams, N.L., Feely, R.A., Sabine, C.L., Dickson, A.G., Swift, J.H., Talley, L.D., Russell, J.L., Quantifying anthropogenic carbon inventory changes in the Pacific sector of the Southern Ocean (2015) Mar. Chem, 174, pp. 147-160
  • Willis, J.K., Can in situ f loats and satellite altimeters detect long‐term changes in Atlantic Ocean overturning? (2010) Geophys. Res. Lett, 37
  • Willis, J.K., Fu, L.-L., Combining altimeter and subsurface float data to estimate the time-averaged circulation in the upper ocean (2008) J. Geophys. Res., 113
  • Willis, J.K., Roemmich, D., Cornuelle, B., Interannual variability in upper ocean heat content, temperature, and thermosteric expansion on global scales (2004) J. Geophys. Res., 109
  • Winker, D.M., Hunt, W., McGill, M.J., Initial performance assessment of CALIOP (2007) Geophys. Res. Lett, 34
  • (2011) Scientific Assessment of Ozone Depletion: 2010. Global Ozone Research and Monitoring Project Rep, , http://www.esrl.noaa.gov/csd/assessments/ozone/2010/report.html, 52, World Meteorological Organization
  • Scientific assessment of ozone depletion: 2014 (2014) Global Ozone Research and Monitoring Project, p. 416. , https://www.wmo.int/pages/prog/arep/gaw/ozone_2014/ozone_asst_report.html, Rep. 55, World Meteorological Organization
  • (2015) WMO Statement on the Status of the Global Climate in 2014, p. 24. , http://library.wmo.int/opac/index.php?lvl=notice:display&id=16898#.VtRsbUaBnco.], WMO-No. 1152, World Meteorological Organization
  • Wolter, K., Timlin, M.S., Monitoring ENSO in COADS with a seasonally adjusted principal component index (1993) Proc. 17Th Climate Diagnostics Workshop, pp. 52-57. , Norman, OK, NOAA/NMC/CAC, NSSL, Oklahoma Climate Survey, CIMMS and the School of Meteorology, University of Oklahoma
  • Wolter, K., Timlin, M.S., Measuring the strength of ENSO— How does 1997/98 rank? (1998) Weather, 53, pp. 315-324
  • Woosley, R.J., Millero, F.J., Wanninkhof, R., Rapid anthropogenic changes in CO2 and pH in the Atlantic Ocean: 2003-2014 (2016) Global Biogeochem. Cycles, 30, pp. 70-90
  • Wooster, M.J., Zhukov, B., Oertel, D., Fire radiative energy for quantitative study of biomass burning: Derivation from the BIRD experimental satellite and comparison to MODIS fire products (2003) Remote Sens. Environ, 86, pp. 83-107
  • Worden, H.M., Decadal record of satellite carbon monoxide observations (2013) Atmos. Chem. Phys, 13, pp. 837-850
  • Worthington, L.V., The 18° water in the Sargasso Sea (1959) Deep-Sea Res., 5, pp. 297-305
  • Wu, J., Zha, J., Zhao, D., Estimating the impact of the changes in land use and cover on the surface wind speed over the East China Plain during the period 1980-2011 (2016) Climate Dyn, 46, pp. 847-863
  • Wu, M.-C., Yeung, K.-H., Chang, W.-L., Trends in western North Pacific tropical cyclone intensity. Eos (2006) Trans. Amer. Geophys. Union, 87, pp. 537-548
  • Wylie, D.P., Jackson, D.L., Menzel, W.P., Bates, J.J., Global cloud cover trends inferred from two decades of HIRS observations (2005) J. Climate, 18, pp. 3021-3031
  • Xie, P., An in situ-satellite blended analysis of global sea surface salinity (2014) J. Geophys. Res. Oceans, 119, pp. 6140-6160
  • Xu, M., Chang, C.P., Fu, C., Qi, Y., Robock, A., Robinson, D., Zhang, H., Steady decline of East Asian monsoon winds, 1969-2000: Evidence from direct ground measurements of wind speed (2006) J. Geophys. Res., 111
  • Ying, M., Cha, E.-J., Kwon, H.J., Comparison of three western North Pacific tropical best track datasets in a seasonal context (2011) J. Meteor. Soc. Japan, 89, pp. 211-224
  • Young, P.J., Pre-industrial to end 21st century projections of tropospheric ozone from the Atmospheric Chemistry and Climate Model Inter-comparison Project (ACCMIP) (2013) Atmos. Chem. Phys, 13, pp. 2063-2090
  • Yu, H., Lu, Y., Chen, P.-Y., Zhou, W.C., Intensity change characteristics of tropical cyclones in the western North Pacific as revealed by three different datasets (2012) J. Trop. Meteor., 18, pp. 119-126
  • Yu, L., A global relationship between the ocean water cycle and near-surface salinity (2011) J. Geophys. Res., 116
  • Yu, L., Sea-surface salinity fronts and associated salinity-minimum zones in the tropical ocean (2015) J. Geophys. Res. Oceans, 120, pp. 4205-4225
  • Yu, L., Weller, R.A., Objectively analyzed air-sea heat fluxes for the global ice-free oceans (1981-2005) (2007) Bull. Amer. Meteor. Soc., 88, pp. 527-539
  • Yu, L., Jin, X., Buoy perspective of a high-resolution global ocean vector wind analysis constructed from passive radiometers and active scatterometers (1987-present) (2012) J. Geophys. Res., 117
  • Yu, L., Jin, X., Insights on the OAFlux ocean surface vector wind analysis merged from scatterometers and passive microwave radiometers (1987 onward) (2014) J. Geophys. Res. Oceans, 119, pp. 5244-5269
  • Yu, L., Jin, X., Confidence and sensitivity study of the OAFlux multisensor synthesis of the global ocean surface vector wind from 1987 onward (2014) J. Geophys. Res., 119, pp. 6842-6862
  • Yuan, X., ENSO-related impacts on Antarctic sea ice: A synthesis of phenomenon and mechanisms. Antarct (2004) Sci., 16, pp. 415-425
  • (2016) Annual Climate Overview, , http://www.zamg.ac.at/cms/de/klima/klima-aktuell/jahresrueckblick, (in German). Zentralanstalt für Meteorology und Geodynamik, Austria
  • Zemp, M., Hoelzle, M., Haeberli, W., Six decades of glacier mass-balance observations: A review of the worldwide monitoring network (2009) Ann. Glaciol., 50, pp. 101-111
  • Zemp, M., Reanalysing glacier mass balance measurement series (2013) Cryosphere, 7, pp. 1227-1245
  • Zemp, M., Historically unprecedented global glacier decline in the early 21st century (2015) J. Glaciol., 61, pp. 745-762
  • Zhang, C., Madden-Julian oscillation (2005) Rev. Geophys, 43
  • Zhang, C., Madden-Julian oscillation: Bridging weather and climate (2013) Bull. Amer. Meteor. Soc., 94, pp. 1849-1870
  • Zhang, C., Gottschalck, J., SST anomalies of ENSO and the Madden-Julian oscillation in the equatorial Pacific (2002) J. Climate, 15, pp. 2429-2445
  • Zhang, D.-L., Zhu, L., Roles of upper-level processes in tropical cyclogenesis (2012) Geophys. Res. Lett, 39
  • Zhang, J., Reid, J.S., Westphal, D.L., Baker, N.L., Hyer, E.J., A system for operational aerosol optical depth data assimilation over global oceans (2008) J. Geophys. Res., 113
  • Zhang, K., Kimball, J.S., Nemani, R.R., Running, S.W., Hong, Y., Gourley, J.J., Yu, Z., Vegetation greening and climate change promote multidecadal rises of global land evapotranspiration (2015) Sci. Rep, 5
  • Zhang, X., Church, J.A., Sea level trends, interannual and decadal variability in the Pacific Ocean (2012) Geophys. Res. Lett, 39
  • Zhang, X., Alexander, L., Hegerl, G.C., Jones, P., Klein Tank, A., Peterson, T.C., Trewin, B., Zwiers, F.W., Indices for monitoring changes in extremes based on daily temperature and precipitation data (2011) Wiley Interdiscip. Rev.: Climate Change, 2, pp. 851-870
  • Zhang, Y., Multi-decadal trends in global terrestrial evapotranspiration and its components (2016) Sci. Rep, 5, p. 19124
  • Zhao, L., Wu, Q., Marchenko, S.S., Sharkhuu, N., Thermal state of permafrost and active layer in central Asia during the International Polar Year (2010) Permafrost Periglacial Process., 21, pp. 198-207
  • Zheng, Z.-W., Lin, I.-I., Wang, B., Huang, H.-C., Chen, C.-H., A long neglected damper in the El Niño-typhoon relationship: A ‘Gaia-like’ process (2015) Sci. Rep, 5, p. 11103
  • Zhou, Y., Ren, G., Change in extreme temperature event frequency over mainland China, 1961−2008 (2011) Climate Res, 50, pp. 125-139
  • Ziemke, J.R., Chandra, S., Duncan, B.N., Froidevaux, L., Bhartia, P.K., Levelt, P.F., Waters, J.W., Tropospheric ozone determined from Aura OMI and MLS: Evaluation of measurements and comparison with the Global Modeling Initiative’s Chemical Transport Model (2006) J. Geophys. Res., 111
  • Ziemke, J.R., Douglass, A.R., Oman, L.D., Strahan, S.E., Duncan, B.N., Tropospheric ozone variability in the tropical Pacific from ENSO to MJO and shorter timescales (2015) Atmos. Chem. Phys, 15, pp. 8037-8049
  • Zou, C.-Z., Wang, W., Stability of the MSU-derived atmospheric temperature trend (2010) J. Atmos. Oceanic Technol., 27, pp. 1960-1971
  • Zou, C.-Z., Wang, W., Inter-satellite calibration of AMSU-A observations for weather and climate applications (2011) J. Geophys. Res., 116
  • Zubov, V., Rozanov, E., Egorova, T., Karol, I., Schmutz, W., The role of external factors in the evolution of the ozone layer and stratospheric circulation in 21st century (2013) Atmos. Chem. Phys, 13, pp. 4697-4706
  • Zwally, H.J., Fiegles, S., Extent and duration of Antarctic surface melting (1994) J. Glaciol., 40, pp. 463-476
  • Zweng, M.M., (2013) Salinity, 2, p. 40. , https://www.nodc.noaa.gov/OC5/woa13/, World Ocean Atlas 2013, NOAA Atlas NESDIS 74

Citas:

---------- APA ----------
(2016) . State of the climate in 2015. Bulletin of the American Meteorological Society, 97(8), S1-S275.
http://dx.doi.org/10.1175/2016BAMSStateoftheClimate.1
---------- CHICAGO ----------
Multitudinario:468. "State of the climate in 2015" . Bulletin of the American Meteorological Society 97, no. 8 (2016) : S1-S275.
http://dx.doi.org/10.1175/2016BAMSStateoftheClimate.1
---------- MLA ----------
Multitudinario:468. "State of the climate in 2015" . Bulletin of the American Meteorological Society, vol. 97, no. 8, 2016, pp. S1-S275.
http://dx.doi.org/10.1175/2016BAMSStateoftheClimate.1
---------- VANCOUVER ----------
Multitudinario:468. State of the climate in 2015. Bull. Am. Meteorol. Soc. 2016;97(8):S1-S275.
http://dx.doi.org/10.1175/2016BAMSStateoftheClimate.1