Emprego de técnicas de aprendizado de máquina para o monitoramento de sistemas rotativos via análise modal operacional [recurso eletrônico]
Nathali Rolon Dreher
DISSERTAÇÃO
Português
T/UNICAMP D812e
[Machine learning techniques for the monitoring of rotating systems via operational modal analysis]
Campinas, SP : [s.n.], 2022.
1 recurso online (126 p.) : il., digital, arquivo PDF.
Orientador: Tiago Henrique Machado
Dissertação (mestrado) - Universidade Estadual de Campinas, Faculdade de Engenharia Mecânica
Resumo: Este trabalho apresenta um estudo geral sobre a aplicabilidade de métodos de aprendizado de máquina não supervisionado combinados a métodos da Análise Modal Operacional (OMA) no Monitoramento da Saúde Estrutural (SHM) de máquinas rotativas. Para alcançar tal objetivo, os dados de um sistema...
Ver mais
Resumo: Este trabalho apresenta um estudo geral sobre a aplicabilidade de métodos de aprendizado de máquina não supervisionado combinados a métodos da Análise Modal Operacional (OMA) no Monitoramento da Saúde Estrutural (SHM) de máquinas rotativas. Para alcançar tal objetivo, os dados de um sistema rotativo suportado por mancais hidrodinâmicos, coletados sob diferentes condições de teste, foram empregados. Os métodos Decomposição no Domínio da Frequência (FDD) e Identificação de Subespaço Estocástico (SSI) foram implementados a fim de extrair os parâmetros modais do sistema rotativo a partir dos dados experimentais. O método de aprendizado não supervisionado chamado Clusterização Hierárquica foi utilizado em um algoritmo que realiza a interpretação automática do diagrama de estabilização obtido a partir do método SSI. Os resultados obtidos a partir do algoritmo permitiram definir quais condições de teste são adequadas para a extração dos parâmetros modais do sistema rotativo. Em seguida, o algoritmo de aprendizado não supervisionado conhecido como K-means foi empregado para determinar quais dos atributos mais empregados para caracterizar os sinais de vibração são capazes de fornecer informações a respeito da qualidade das medições quanto à capacidade de extração dos parâmetros modais do rotor através da OMA. O método K-means e os atributos selecionados foram aplicados a dados do sistema rotativo não utilizados na etapa anterior, o que permitiu que os dados fossem classificados como adequados ou não adequados para a OMA antes que esta fosse aplicada aos sinais. Através dessas investigações, verificou-se o potencial da técnica desenvolvida no trabalho como uma ferramenta de auxílio ao Monitoramento da Saúde Estrutural de máquinas rotativas
Ver menos
Abstract: This work presents a general study on the applicability of unsupervised machine learning methods combined with Operational Modal Analysis methods in Structural Health Monitoring of rotating machines. To achieve this goal, data from a rotating system supported by hydrodynamic bearings...
Ver mais
Abstract: This work presents a general study on the applicability of unsupervised machine learning methods combined with Operational Modal Analysis methods in Structural Health Monitoring of rotating machines. To achieve this goal, data from a rotating system supported by hydrodynamic bearings collected under different test conditions were employed. The Frequency Domain Decomposition (FDD) and the Stochastic Subspace Identification (SSI) methods were implemented in order to extract the rotating system modal parameters from the experimental data. The unsupervised machine learning method called Hierarchical Clustering was used in an algorithm that performs the automatic interpretation of the stabilization diagram obtained from the SSI method. The results obtained from this algorithm enabled the definition of which test conditions were adequate to the extraction of modal parameters from the rotating system. Then, the unsupervised learning algorithm known as K-means was used to determine which of the features most used to characterize vibration signals are able to provide information about the quality of measurements when the ability to extract rotor modal parameters through OMA is analyzed. The K-means method and the selected features were applied to data from the rotating system that were not used in the previous step, which allowed the new data to be classified as suitable or not suitable for OMA before it was applied to the signals. Through these investigations, it was verified the potential of the developed technique as a tool to aid the Structural Health Monitoring of rotating machines
Ver menos
Requisitos do sistema: Software para leitura de arquivo em PDF
Emprego de técnicas de aprendizado de máquina para o monitoramento de sistemas rotativos via análise modal operacional [recurso eletrônico]
Nathali Rolon Dreher
Emprego de técnicas de aprendizado de máquina para o monitoramento de sistemas rotativos via análise modal operacional [recurso eletrônico]
Nathali Rolon Dreher