Gold-based nanostructures for ultrafast dynamic nanothermometer

Authors
Sun, Hongtao
ORCID
Loading...
Thumbnail Image
Other Contributors
Lian, Jie
Borca-Tasçiuc, Theodorian
Borca-Tasçiuc, Diana-Andra
Huang, Liping
Issue Date
2014-12
Keywords
Mechanical engineering
Degree
PhD
Terms of Use
This electronic version is a licensed copy owned by Rensselaer Polytechnic Institute, Troy, NY. Copyright of original work retained by author.
Full Citation
Abstract
Nano-scale temperature measurements are of significance for fundamental understanding of functional applications and nanosystems, requiring ultimate miniaturization of thermometers with reduced size, maintained sensitivity, simplicity and accuracy of temperature reading. Particularly, grand challenges exist for scenarios of combustion or thermal shock where materials may be subjected to drastic temperature variations and extreme thermal flux, and dynamic thermal sensors with an ultrafast response (seconds to milliseconds) are yet to be developed.
Description
December 2014
School of Engineering
Department
Dept. of Mechanical, Aerospace, and Nuclear Engineering
Publisher
Rensselaer Polytechnic Institute, Troy, NY
Relationships
Rensselaer Theses and Dissertations Online Collection
Access
Restricted to current Rensselaer faculty, staff and students. Access inquiries may be directed to the Rensselaer Libraries.