Scholarly communication graphs represent semantic relations between scientific products (papers, data, algorithms, etc), authors, organizations and research projects. In this context the aim is to find a way to measure the distance between papers and data (semantic correlation) to obtain a better data discovery. In fact, data metadata are poor, and the identification of a correlation distance between a paper (richer) and data allows to propagate the context (for example abstract) from the richer object to the other one

Analysis of DataCite for paper - dataset context propagation

Baglioni M.
2016

Abstract

Scholarly communication graphs represent semantic relations between scientific products (papers, data, algorithms, etc), authors, organizations and research projects. In this context the aim is to find a way to measure the distance between papers and data (semantic correlation) to obtain a better data discovery. In fact, data metadata are poor, and the identification of a correlation distance between a paper (richer) and data allows to propagate the context (for example abstract) from the richer object to the other one
2016
Istituto di informatica e telematica - IIT
Istituto di Scienza e Tecnologie dell'Informazione "Alessandro Faedo" - ISTI
Context-propagation
DataCite
Scholarly communication
File in questo prodotto:
File Dimensione Formato  
prod_359088-doc_117699.pdf

solo utenti autorizzati

Descrizione: Analysis of DataCite for Paper - Dataset context propagation
Tipologia: Altro materiale allegato
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 247.14 kB
Formato Adobe PDF
247.14 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/318641
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact