The segmentation of MRI is a challenging task due to artifacts introduced by the acquisition process, like bias field and noise. In this paper, using a cartoon-texture decomposition of the image, we present a strategy that segments the cartoon processed by simultaneous bias correction and denoising. Preliminary numerical tests show that our method is effective in segmenting MRI data corrupted by noise.

Segmenting MR Images Through Texture Extraction and Multiplicative Components Optimization

Antonelli Laura;
2023

Abstract

The segmentation of MRI is a challenging task due to artifacts introduced by the acquisition process, like bias field and noise. In this paper, using a cartoon-texture decomposition of the image, we present a strategy that segments the cartoon processed by simultaneous bias correction and denoising. Preliminary numerical tests show that our method is effective in segmenting MRI data corrupted by noise.
2023
Istituto di Calcolo e Reti ad Alte Prestazioni - ICAR
978-3-031-31975-4
MRI segmentation
cartoon-texture decomposition
Kullback-Leiber divergence
ADMM
File in questo prodotto:
File Dimensione Formato  
prod_486248-doc_201712.pdf

solo utenti autorizzati

Descrizione: Segmenting MR Images Through Texture Extraction and Multiplicative Components Optimization
Tipologia: Versione Editoriale (PDF)
Dimensione 3.5 MB
Formato Adobe PDF
3.5 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/461950
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 2
social impact