Graph representation learning has become a topic of great interest and many works focus on the generation of high-level, task-independent node embeddings for complex networks. However, the existing methods consider only few aspects of networks at a time. In this paper, we propose a novel framework, named Co-MLHAN, to learn node embeddings for networks that are simultaneously multilayer, heterogeneous and attributed. We leverage contrastive learning as a self-supervised and task-independent machine learning paradigm and define a cross-view mechanism between two views of the original graph which collaboratively supervise each other. We evaluate our framework on the entity classification task. Experimental results demonstrate the effectiveness of Co-MLHAN and its variant Co-MLHAN-SA, showing their capability of exploiting across-layer information in addition to other types of knowledge.

Co-MLHAN: contrastive learning for multilayer heterogeneous attributed networks

Martirano, L.;
2022

Abstract

Graph representation learning has become a topic of great interest and many works focus on the generation of high-level, task-independent node embeddings for complex networks. However, the existing methods consider only few aspects of networks at a time. In this paper, we propose a novel framework, named Co-MLHAN, to learn node embeddings for networks that are simultaneously multilayer, heterogeneous and attributed. We leverage contrastive learning as a self-supervised and task-independent machine learning paradigm and define a cross-view mechanism between two views of the original graph which collaboratively supervise each other. We evaluate our framework on the entity classification task. Experimental results demonstrate the effectiveness of Co-MLHAN and its variant Co-MLHAN-SA, showing their capability of exploiting across-layer information in addition to other types of knowledge.
2022
Istituto di Calcolo e Reti ad Alte Prestazioni - ICAR
Attributed networks
Contrastive learning
Entity classification
Graph representation learning
Heterogeneous networks
Multilayer networks
File in questo prodotto:
File Dimensione Formato  
Co-MLHAN.pdf

accesso aperto

Licenza: Creative commons
Dimensione 4.73 MB
Formato Adobe PDF
4.73 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/532884
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 5
  • ???jsp.display-item.citation.isi??? 4
social impact