An important topic in complex network research is the temporal evolution of networks. Existing approaches aim at analyzing the evolution extracting properties of either the entire network or local patterns. In this paper, we focus on detecting clusters of temporal snapshots of a network, to be interpreted as eras of evolution. To this aim, we introduce a novel hierarchical clustering methodology, based on a dissimilarity measure between two temporal snapshots of the network. We devise a framework to discover and browse the eras, supporting the exploration of the evolution at any level of temporal resolution. We show how our approach applies to real networks, by detecting eras in an evolving co-authorship graph; we illustrate how the discovered temporal clustering highlights the crucial moments when the network had profound changes in its structure. Our approach is finally boosted by introducing a meaningful labeling of the obtained clusters, such as the characterizing topics of each discovered era, thus adding a semantic dimension to our analysis.
Discovering Eras in Evolving Social Networks
Coscia M;Giannotti F;Monreale A;Pedreschi D
2010
Abstract
An important topic in complex network research is the temporal evolution of networks. Existing approaches aim at analyzing the evolution extracting properties of either the entire network or local patterns. In this paper, we focus on detecting clusters of temporal snapshots of a network, to be interpreted as eras of evolution. To this aim, we introduce a novel hierarchical clustering methodology, based on a dissimilarity measure between two temporal snapshots of the network. We devise a framework to discover and browse the eras, supporting the exploration of the evolution at any level of temporal resolution. We show how our approach applies to real networks, by detecting eras in an evolving co-authorship graph; we illustrate how the discovered temporal clustering highlights the crucial moments when the network had profound changes in its structure. Our approach is finally boosted by introducing a meaningful labeling of the obtained clusters, such as the characterizing topics of each discovered era, thus adding a semantic dimension to our analysis.File | Dimensione | Formato | |
---|---|---|---|
prod_92126-doc_131500.pdf
solo utenti autorizzati
Descrizione: Discovering Eras in Evolving Social Networks
Tipologia:
Versione Editoriale (PDF)
Dimensione
310.01 kB
Formato
Adobe PDF
|
310.01 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.