Kılıç, Sadık Engin
Loading...
Name Variants
K.,Sadik Engin
Sadık Engin, Kılıç
Kılıç S.
S. E. Kılıç
Kılıç, Sadık Engin
S.E.Kılıç
Kiliç S.
S.,Kılıç
Kilic S.
K.,Sadık Engin
K., Sadik Engin
Kilic,S.E.
S. E. Kilic
K., Sadık Engin
Kılıç,S.E.
Sadik Engin, Kilic
Sadık Engin Kılıç
S., Kilic
Kilic, Sadik Engin
Kilic,Sadik Engin
S.E.Kilic
Kilic, S. Engin
Sadık Engin, Kılıç
Kılıç S.
S. E. Kılıç
Kılıç, Sadık Engin
S.E.Kılıç
Kiliç S.
S.,Kılıç
Kilic S.
K.,Sadık Engin
K., Sadik Engin
Kilic,S.E.
S. E. Kilic
K., Sadık Engin
Kılıç,S.E.
Sadik Engin, Kilic
Sadık Engin Kılıç
S., Kilic
Kilic, Sadik Engin
Kilic,Sadik Engin
S.E.Kilic
Kilic, S. Engin
Job Title
Profesör Doktor
Email Address
engin.kilic@atilim.edu.tr
ORCID ID
Scopus Author ID
Turkish CoHE Profile ID
Google Scholar ID
WoS Researcher ID

Scholarly Output
22
Articles
16
Citation Count
191
Supervised Theses
3
22 results
Scholarly Output Search Results
Now showing 1 - 10 of 22
Article Citation Count: 11A Neural Network Model for the Assessment of Partners' Performance in Virtual Enterprises(Springer London Ltd, 2007) Sari, Burak; Amaitik, Saleh; Kilic, S. Engin; Manufacturing EngineeringIn response to increasing international competition, enterprises have been investigating new ways of cooperating with each other to cope with today's unpredictable market behaviour. Advanced developments in information & communication technology (ICT) enabled reliable and fast cooperation to support real-time alliances. In this context, the virtual enterprise (VE) represents an appropriate cooperation alternative and competitive advantage for the enterprises. VE is a temporary network of independent companies or enterprises that can quickly bring together a set of core competencies to take advantage of market opportunity. In this emerging business model of VE, the key to enhancing the quality of decision making in the partner companies' performance evaluation function is to take advantage of the powerful computer-related concepts, tools and technique that have become available in the last few years. This paper attempts to introduce a neural network model, which is able to contribute to the extrapolation of the probable outcomes based on available pattern of events in a virtual enterprise. Quality, delivery and progress were selected as determinant factors effecting the performance assessment. Considering the features of partner performance assessment and neural network models, a back-propagation neural network that includes a two hidden layers was used to evaluate the partner performance.Article Citation Count: 2An Experimental Study on Ultrasonic-Assisted Drilling of Inconel 718 Under Different Cooling/Lubrication Conditions(Springer London Ltd, 2024) Erturun, Omer Faruk; Tekaut, Hasan; Cicek, Adem; Ucak, Necati; Namlu, Ramazan Hakki; Lotfi, Bahram; Kilic, S. Engin; Mechanical Engineering; Department of Mechanical Engineering; Manufacturing EngineeringUltrasonic-assisted drilling (UAD) is one of the efficient and innovative methods to improve the drillability of difficult-to-cut materials. In the present study, the UAD of Inconel 718 was investigated under different cooling and/or lubrication conditions. The drilling tests were carried out at a constant cutting speed (15 m/min) and a feed (0.045 mm/rev) using uncoated and TiAlN-coated solid carbide drills under dry, conventional cutting fluid (CCF), and minimum quantity lubrication (MQL) conditions. The applicability of UAD to drilling Inconel 718 was evaluated in terms of thrust force, surface roughness, roundness error, burr formation, subsurface microstructure and microhardness, tool wear, and chip morphology. The test results showed that, when compared to conventional drilling (CD), UAD reduced the thrust force and improved the hole quality, tool life, and surface integrity under all conditions. Good surface finish, lower roundness error, and minimum burr heights were achieved under CCF conditions. MQL drilling provided lower thrust forces, better tool performance, and good subsurface quality characteristics. In addition, the simultaneous application of CCF-UAD and MQD-UAD showed significantly better performance, especially when using the coated tool.Article Citation Count: 17A Survey of Partner Selection Methodologies for Virtual Enterprises and Development of a Goal Programming-Based Approach(Springer London Ltd, 2016) Nikghadam, Shahrzad; Sadigh, Bahram Lotfi; Ozbayoglu, Ahmet Murat; Unver, Hakki Ozgur; Kilic, Sadik Engin; Manufacturing EngineeringA virtual enterprise (VE) is a platform that enables dynamic collaboration among manufacturers and service providers with complementary capabilities in order to enhance their market competitiveness. The performance of a VE as a system depends highly on the performance of its partner enterprises. Hence, choosing an appropriate methodology for evaluating and selecting partners is a crucial step toward creating a successful VE. In this paper, we begin by presenting an extensive review of articles that address the VE partner selection problem. To fill a significant research gap, we develop a new goal programming (GP)-based approach that can be applied in extreme bidding conditions such as tight delivery timelines for large demand volumes. In this technique, fuzzy analytic hierarchy process (F-AHP) is used to determine customer preferences for four main criteria: proposed unit price, on-time delivery reliability, enterprises' past performance, and service quality. These weights are then incorporated into the GP model to evaluate bidders based on customers' preferences and goals. We present a case study in which we implement the F-AHP-GP technique and verify the model's applicability, as it provides a more flexible platform for matching customers' preferences.Master Thesis Partikül Takviyeli Alüminyum Metal Matris Kompozit Malzemelerin Talaşlı İşlenmesinin Sonlu Elemanlar Yöntemiyle Modellenmesi(2018) Rake, Nakka Lotfy Rake; Kılıç, Sadık Engin; Kılıç, Sadık Engin; Kılıç, Sadık Engin; Oliaei, Samad Nadimi Bavil; Manufacturing Engineering; Manufacturing EngineeringMetal matris kompozitleri (MMC'ler) otomotiv, havacılık ve nükleer santraller gibi birçok teknik alanda önemli malzemeler haline gelmiştir. Bu uygulamaların çoğunda, nihai ürünün istenen özelliklerine ulaşmak için talaşlı işleme süreçleri gereklidir. Bu nedenle, MMC'lerin talaşlı işlemesini incelemek ve işleme operasyonları sırasında davranışlarını anlamak için süreç modellerini geliştirmek önemlidir. Proses modellerine dayanarak, belirli MMC'lerin kesme koşullarını optimize ederek talaşlı işleme kalitesi ve maliyeti iyileştirilebilir. Bu hedefe doğru bir adım olarak, partikül takviyeli alüminyum metal matris kompozitlerinin (p-Al MMC'ler) talaşlı işlenmesini incelemek için sonlu eleman modellemesi (FEM) kullanılır. Seçilen matris malzemesi,% 20'lik bir hacim fraksiyonu ile 20 μm çapa sahip silikon karbür (SiC) parçacıkları ile güçlendirililmiş alüminyum alaşımı A359'dur. P-Al-MMC'nin ortogonal kesimi üç farklı yaklaşımla incelenmiştir. Birinci yaklaşımda, eşdeğer bir homojen malzeme modeli (EHM) uygulanmaya çalışılırken, ikinci ve üçüncü yaklaşımlarda p-AlMMC, iki fazlı bir heterojen malzeme olarak modellenmiştir. İkinci ve üçüncü yaklaşımlar sırasıyla donatı parçacıklarının periyodik karesi ve periyodik altıgen dağılımlarına dayanmaktadır. Matris / kesici takım, matris / takviye ve takviye/kesme aleti arasındaki etkileşim göz önüne alınmıştır. FE simülasyonlarının sonuçları literatürdeki deneysel veriler ile karşılaştırılmıştır. Sonuçlar, yüksek gerilme oranı testleri kullanılarak kalibre edilen EHM modellerinin kesme kuvvetlerinde iyi tahminler veremeyebileceğini ve talaşlı işleme simülasyonları için yeniden kalibre edilmesi gerektiğini ortaya çıkarmıştır. Sonuçlar ayrıca, p-MMC'lerin heterojen bir materyal olarak modellenmesiyle, kesme kuvveti tahminlerinin doğruluğunun önemli ölçüde geliştirilebileceğini ortaya koymuştur.Master Thesis Çökeltilerek Sertleştirilmiş Martensitik Paslanmaz Çelik Malzemede Ultrasonik Destekli Delik Delme(2023) Enis, Metin Berk; Kılıç, Sadık Engin; Lotfi, Bahram; Manufacturing Engineering17PH4 Paslanmaz Çelik, önemli korozyon direnci, yüksek yorulma ve çekme mukavemeti, tokluk ve yüksek sertliği sayesinde nükleer sektör, havacılık ve savunma sanayi gibi sektörlerde kullanımı oldukça yaygındır. Bu sektörlerde ve genel talaşlı imalat süreçlerinde ise delik delme en çok kullanılan yöntemlerden birisidir fakat bu malzemenin yüksek aşınma direnci, sertliği ve ısıl iletim kapasitesi nedeniyle delik delme performansını oldukça düşürür. İlk kez, bu çalışmada 17-PH-4 paslanmaz çeliğinde delik delme operasyonunun verimini arttırmak için Ultrasonik Destekli Delik Delme (UDDD) yöntemi kullanılmıştır. UDDD düşük genlikli titreşimler ve yüksek frekans kullanarak talaş kaldırma sürecini kolaylaştıran hibrit bir yöntemdir. Test planı, hem geleneksel delik delme (GDD) yöntemi ve UDDD'yi kıyaslamak hem de UDDD'nin gagalama ve direkt delik delme üzerindeki etkisini görmek üzere hazırlanmıştır. Deney sonuçları, UDDD'nin geleneksel delik delme yöntemine göre kesme kuvvetlerini, delik çıkışındaki çapak oluşumunu ve yığıntı talaş (YT) oluşumunu azalttığını, boyutsal doğruluğu arttırdığını ve yüzey kalitesinin iyileştiğini göstermiştir. Test sonuçları, kesme hızının artmasının; kesme kuvvetleri, YT, yüzey pürüzlülüğü ve sürekli talaş formunun azalmasında bariz bir etkisi olduğunu göstermiştir. Ek olarak yüzey pürüzlülüğü, kesme kuvvetleri ve çapak oluşumu sonuçları incelendiğinde direkt delik delmede UDDD' nin olumlu etkisi, gagalamaya göre daha fazla olmuştur.Article Citation Count: 0An Experimental Study of the Effects of Ultrasonic Cavitation-Assisted Machining on Ti-6al(Inderscience Publishers, 2024) Koçak,B.; Canbaz,H.İ.; Zengin,N.N.; Mumcuoğlu,A.B.; Aydın,M.B.; Namlu,R.H.; Kılıç,S.E.; Mechanical Engineering; Manufacturing EngineeringTi-6Al-4V has extensive applications in high-tech industries like aviation, defence and biomedical. However, the cutting of Ti-6Al-4V is challenging due to its poor machinability. Recently, ultrasonic cavitation-assisted machining (UCAM) has emerged as a cutting process that utilises high-frequency and low-amplitude vibrations to induce the formation of cavitation bubbles, thereby improving cutting performance. Despite the benefits of UCAM, there is lack of research investigating its application in Ti-6Al-4V. This study aims to investigate the efficacy of UCAM in improving the cutting performance of Ti-6Al-4V and compare it with conventional methods. Specifically, the study compares UCAM with conventional machining (CM) under conventional cutting fluid. The study reveals that UCAM can reduce cutting forces by up to 49.5% and surface roughness by up to 51.9%. Additionally, UCAM yields more uniform, homogeneous surfaces with reduced surface damage compared to CM. These results demonstrate the potential of UCAM for enhancing cutting performance of Ti-6Al-4V. Copyright © 2024 Inderscience Enterprises Ltd.Article Citation Count: 76An Intelligent Process Planning System for Prismatic Parts Using Step Features(Springer London Ltd, 2007) Amaitik, Saleh M.; Kilic, S. Engin; Manufacturing EngineeringThis paper presents an intelligent process planning system using STEP features (ST-FeatCAPP) for prismatic parts. The system maps a STEP AP224 XML data file, without using a complex feature recognition process, and produces the corresponding machining operations to generate the process plan and corresponding STEP-NC in XML format. It carries out several stages of process planning such as operations selection, tool selection, machining parameters determination, machine tools selection and setup planning. A hybrid approach of most recent techniques ( neural networks, fuzzy logic and rule-based) of artificial intelligence is used as the inference engine of the developed system. An object-oriented approach is used in the definition and implementation of the system. An example part is tested and the corresponding process plan is presented to demonstrate and verify the proposed CAPP system. The paper thus suggests a new feature-based intelligent CAPP system for avoiding complex feature recognition and knowledge acquisition problems.Article Citation Count: 1Enhancing Machining Efficiency of Ti-6al Through Multi-Axial Ultrasonic Vibration-Assisted Machining and Hybrid Nanofluid Minimum Quantity Lubrication(Elsevier Sci Ltd, 2024) Namlu, Ramazan Hakki; Lotfi, Bahram; Kilic, S. Engin; Mechanical Engineering; Department of Mechanical Engineering; Manufacturing EngineeringTi-6Al-4V offers a balance of good strength with lightweight properties. Yet, Ti-6Al-4V poses machining challenges, including low thermal conductivity, chemical adhesion to cutting tools, and chip removal difficulties. To improve machining efficiency, Ultrasonic Vibration-Assisted Machining (UVAM) has emerged as a promising approach. UVAM has demonstrated reduced tool wear, cutting forces, and improved surface quality compared to Conventional Machining (CM). Additionally, Minimum Quantity Lubrication (MQL) methods offer sustainable coolant alternatives, with recent research focusing on Nanofluid-MQL (NMQL) and Hybrid Nanofluid-MQL (HNMQL) for enhanced performance. Although there exists a body of literature showcasing the promising effects of UVAM and MQL methods individually, comprehensive investigations into the synergistic effects of these methodologies remain limited. This study addresses these critical research gaps by conducting a systematic examination of combined application of multi-axial UVAM and HNMQL. Specifically, it delves into the comparison of different vibration directions within UVAM, evaluates the effectiveness of UVAM when combined with cutting fluids incorporating Al2O3 and CuO nanoparticles in NMQLs and HNMQLs, and contrasts these novel approaches with conventional machining methods. The study unfolds in three distinct stages. The first stage examines the ultrasonic cutting mechanism and its combined application with the MQL technique. In the second stage, the study investigates the physical properties of the cutting fluids, including contact angle and surface tension. The final stage encompasses slot milling operations, where an array of parameters such as cutting forces, surface roughness, surface topography, surface texture, and the occurrence of burr formations are rigorously analyzed. The results demonstrate that the combination of multi-axial UVAM with HNMQL yields substantial advantages over traditional machining methods. Notably, it leads to a remarkable reduction in cutting forces (up to 37.6 %) and surface roughness (up to 37.4 %). Additionally, this combination engenders the production of highly homogeneous and uniform surface textures, characterized by minimal surface defects and a significantly diminished occurrence of burr formations. These findings underscore the potential of multi-axial UVAM combined with HNMQL as a promising approach in enhancing the machining of Ti-6Al-4V, thus offering a pathway to enhance the efficiency and precision of aerospace component manufacturing processes.Article Citation Count: 1Combined Use of Ultrasonic-Assisted Drilling and Minimum Quantity Lubrication for Drilling of Niti Shape Memory Alloy(Taylor & Francis inc, 2023) Namlu, Ramazan Hakki; Lotfi, Bahram; Kilic, S. Engin; Yilmaz, Okan Deniz; Akar, Samet; Mechanical Engineering; Department of Mechanical Engineering; Manufacturing EngineeringThe drilling of shape-memory alloys based on nickel-titanium (Nitinol) is challenging due to their unique properties, such as high strength, high hardness and strong work hardening, which results in excessive tool wear and damage to the material. In this study, an attempt has been made to characterize the drillability of Nitinol by investigating the process/cooling interaction. Four different combinations of process/cooling have been studied as conventional drilling with flood cooling (CD-Wet) and with minimum quantity lubrication (CD-MQL), ultrasonic-assisted drilling with flood cooling (UAD-Wet) and with MQL (UAD-MQL). The drill bit wear, drilling forces, chip morphology and drilled hole quality are used as the performance measures. The results show that UAD conditions result in lower feed forces than CD conditions, with a 31.2% reduction in wet and a 15.3% reduction in MQL on average. The lowest feed forces are observed in UAD-Wet conditions due to better coolant penetration in the cutting zone. The UAD-Wet yielded the lowest tool wear, while CD-MQL exhibited the most severe. UAD demonstrated a & SIM;50% lower tool wear in the wet condition than CD and a 38.7% in the MQL condition. UAD is shown to outperform the CD process in terms of drilled-hole accuracy.Conference Object Citation Count: 3Design of a Customer's Type Based Algorithm for Partner Selection Problem of Virtual Enterprise(Elsevier Science Bv, 2016) Nikghadam, Shahrzad; Ozbayoglu, Ahmet Murat; Unver, Hakki Ozgur; Kilic, Sadik Engin; Manufacturing EngineeringVirtual Enterprise (VE) is a temporary platform for individual enterprises to collaborate with each other, sharing their core competencies to fulfill a customer demand. In order to improve the customer satisfaction, the most successful VEs select their consortium's members based on customer's preferences. There is quite extensive literature in the field of partner selection in VE, each proposing a new approach to evaluate and select the most appropriate partners among pool of enterprises. However, none of the studies in literature recommend which partner selection methodology should be used in each project with a particular customer attitude. In this study an algorithm is proposed which classifies the customers into three categories; passive, standard and assertive. Three different approaches; Fuzzy Logic-FAHP TOPSIS and Goal programming are used for each customer type respectively. This classification is beneficial since the problem's characteristics; such as vagueness of data, change as the customer's attitude varies. The results certify that, adopting this algorithm not only helps the VE to select the most appropriate partners based on customer preferences, but also the model adapts itself to each customer's attitude. As a result, the overall system flexibility is significantly improved. (C) 2016 The Authors. Published by Elsevier B.V.
- «
- 1 (current)
- 2
- 3
- »