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Zusammenfassung

Plasmaausströmungen sind weitverbreitete Phänomene im Universum, welche sowohl in ex-
tragalaktischen wie in galaktischen Objekten häufig beobachtet werden. In dieser Arbeit un-
tersuchen wir drei verschiedene Quellen: Zum Einen analysieren wir Fermi-LAT Daten hoch-
energetischer Gamma-Emission der großskaligen "Lobes" der Radiogalaxie Centaurus A. Wir
verwenden zum ersten Mal die Planck-Beobachtungen, um die Flüsse der "Lobes" abzuleiten.
Die spektralen Energieverteilungen über viele Wellenlängenbereiche zeigen einen möglichen
lepto+hadronischen Ursprung der nichtthermischen Strahlung. Zum Anderen re-analysieren
wir Chandra-Beobachtungen (ingesamt mehr als 1500 Kilosekunden) des Jets aus der Radio-
galaxie M87, um dessen Strahlungscharakteristiken im Röntgenbereich näher zu bestimmen.
Die Variabilität des Kerngebietes und des inneren Jetknotens HST-1 sowie die Röntgenspek-
tren aller Knoten werden dabei untersucht. Eine Modellierung der spektralen Energieverteilun-
gen (SEDs) vom Radio-zum Röntgenbereich unter der Annahme eines Synchrotron-Ursprungs
zeigt, dass ein gebrochenes Potenzgesetz (broken power-law) eine zufriedenstellende Beschrei-
bung dieser SEDs für die meisten Knoten erlaubt, mit Ausnahme der Knoten B, C, und D. Bei
letzteren wird eine zusätzliche Emissionskomponente benötigt. Wir diskutieren die Implikatio-
nen und schlagen ein stratifiziertes Jetmodell zur Erklärung der Unterschiede vor. Schließlich
untersuchen wir die Röntgenemission des jüngsten Supernova-Überrestes (SNR) in unserer
Milchstrasse, G1.9+0.3. Wir bestimmen dabei die zugrundeliegende Energieverteilung der Elek-
tronen unter der Annahme einer ausschließlichen Synchrotron-Herkunft der mit Chandra und
NuSTAR detektierten Röntgenstrahlung. Ein Vergleich mit der maximalen Beschleunigungsrate
an Stoßfronten im nominalen Bohm-Diffusions-Regime zeigt, dass die Beschleunigung der Elek-
tronen in G1.9+0.3 um eine Größenordnung langsamer erfolgt. Wir diskutieren die sich daraus
ergebenden Implikationen im Zusammenhang mit dem Beitrag der SNRs zur Galaktischen Kos-
mischen Strahlung bei PeV-Energien.

Abstract
Outflows are ubiquitous phenomena in the universe. They have been widely observed in both
Galactic and extragalactic objects. In this thesis, we analyze three individual sources. Firstly,
we re-analyze the high energy γ-ray data of Fermi-LAT on the giant lobes of Centaurus A. We
utilize for the first time the Planck observations to derive the fluxes of the lobes. The multiwave-
length SEDs reveal a possible leptonic+hadronic origin of the non-thermal emission. Secondly,
we re-analyze Chandra observations of the M87 jet with a total exposure time of 1500 kilosec-
onds to explore the X-ray emission characteristics along the jet. The variabilities of the nucleus
and HST-1, as well as the photon spectra for all knots are investigated. Fitting the radio to X-
ray SEDs assuming a synchrotron origin, we show that a broken power-law electron spectrum
allows a satisfactory description of the SEDs for most knots except for B, C and D, for which an
additional component is needed. We discuss the implications and suggest that a stratified jet
model may account for the differences. Finally, we derive the energy distribution of ultrarela-
tivistic electron in G1.9+0.3, which is the youngest known SNR in the Galaxy, under the assump-
tion that the detected X-ray with Chandra and NuSTAR are of entirely synchrotron origin. The
electron acceleration is found to be an order of magnitude slower than the maximum rate pro-
vided by the shock acceleration in the nominal Bohm diffusion regime. We discuss the resultant
implications in the context of contribution of SNRs to the Galactic Cosmic Rays at PeV energies.
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Introduction 1

Highly collimated outflows (i.e., jets) and winds are remarkably common

phenomena in our universe, and have been widely observed in both Galactic

and extragalactic objects. They are generally believed to originate from the

accretion processes in active galactic nuclei (AGNs), star-forming regions,

and compact binary systems containing compact objects (i.e., white dwarfs,

neutron stars, and black holes (Beall, 2015). They also appear to be present

in explosive events such as supernovae (SNe) and gamma-ray bursts (GRBs)

associated with stellar collapse (Piran, 2000) and in pulsars in the form of

e+e− wind (Weisskopf et al., 2000a; Pavlov et al., 2003).

The outflow phenomena span a large range of different physical scales in

terms of size and energy budget in various classes of astrophysical objects.

The jets of young stellar objects (YSOs) only have typical projected lengths of

≤ few pcs and luminosities of (103−2×104) L�, emerging from protostars with

masses ∼ 1 M� (de Gouveia Dal Pino, 2005). While in AGNs, the powerful jets

created by supermassive black holes (SMBH) with masses 106 − 109 M�, have

typical sizes of ∼ 1 kpc − 1 Mpc and luminosities of ∼ 109 − 1015 L�. On the

other hand, giant radio lobes have been observed in the terminated region

of these large scale jets (see, e.g., Blandford & Rees, 1974). Such giant lobes,

with the huge volume and enormous energy budget there in, also deserve a

detailed study.

The aim of this thesis is to investigate the non-thermal phenomena

associated with the astrophysical outflows, in which the large scale (kpc) jet

is our prime interest. In this regard M87 is an ideal target to investigate due

to its proximity, large angular extension (more than 30′′) and high surface

brightness. Owing to the accumulative exposure and the recently enhanced

software tools of Chandra, an improved analysis can now be performed to

derive more accurate spectrometric information and to further investigate

the radiation mechanism in this region. In this thesis I present the results

of a detailed analysis of the Chandra data on the M87 nucleus and knots

1



2 INTRODUCTION

observed from 2000 to 2016. The giant lobes formed in the termination

region of large scale jet also reveal strong non-thermal emission and indicate

active particle acceleration process therein. Centaurus A (Cen A), which is the

closest radio galaxy, is associated with two giant lobes extending more than

10◦ (∼ 600 kpc in projection) (Shain, 1958; Burns et al., 1983). It is an unique

laboratory to study the spatial and energy distribution of relativistic electrons.

Furthermore, by comparing the radio/microwave and γ-ray emissions, we

can obtain unambiguous information on the magnetic fields. I present a

detailed analysis of the broadband emission of the lobes of Cen A using γ-ray

data from Fermi-LAT and microwave data from Planck.

The relativistic large scale jets are ideal site for particle acceleration but

not the only option. The non-relativistic shocks, on the other hand, can

also accelerate particles to relativistic energies (see e.g., Blandford & Eichler,

1987). Supernova remnants (SNRs) are believed to be the typical site of

shock acceleration (see, e.g., Hillas, 2013; Blasi, 2013). The details of the

acceleration in SNRs are still far from being understood. A crucial question

is whether such objects can accelerate cosmic ray particles to PeV energy.

The X-ray emmission related to the synchrotron radiation of accelerated

electrons, namely to the shape of the energy spectrum of radiation in the

cutoff region, can serve as a distinct signature of the acceleration mechanism

and its efficiency. In this regard, G1.9+0.3, the youngest known SNR in our

Galaxy (Reynolds et al., 2008; Green et al., 2008), is a perfect object to explore

this unique tool.

This thesis is organized as follows, Chapter 1 is an introduction to the

background knowledge, including a brief description of the non-thermal

radiation mechanism and particle acceleration processes involved in this

study, as well as the introduction to the instruments and corresponding data

analysis procedure used in this thesis; in Chapter 2 I present the multiwave-

length data analysis results on giant lobes of Cen A; in Chapter 3 I present

the detailed Chandra data analysis for the large scale jet of M87; in Chapter

4 I derive the relativistic electron spectrum in the young SNR G1.9+0.3 and

constrain the acceleration efficiency therein; Chapter 5 is the conclusion.

1.1 Radiation Mechanism

Electromagnetic energy can be emitted when charged particles are acceler-

ated and also during particles decay processes. In astrophysical objects (e.g.,

AGNs and SNRs), radiative processes from radio to the γ-ray energy band

have been studied and described in great detail. In this section, I present the

basic concepts and formulae of the synchrotron radiation, inverse compton
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(IC) scattering, and pion decay involved in our work, while other high en-

ergy radiation mechanism such as electron bremsstrahlung, proton-photon

interaction and relativistic electron-photon cascade will be covered briefly.

1.1.1 Synchrotron radiation

Synchrotron is a main nonthermal emission process in astrophysics and oc-

curs when relativistic electrons (or positrons) are centripetally accelerated by

a strong magnetic field, and produce high-energy photons. We use the basic

formulae reported in the book of Rybicki & Lightman (1986) and references

therein.

Synchrotron emission from a single electron

Let’s consider the motion of a relativistic electron with mass me and charge

e. As shown in Figure 1.1, the velocity of the electrons v has a pitch angle

θ with the direction of magnetic field B. The component of velocity v‖ is

parallel to B, and the perpendicular component is v⊥. The electron follows

the relativistic equations:

d
dt

(γmev) =
e
c

v × B, (1.1)

d
dt

(
γmec2

)
= ev · E, (1.2)

where the last equation equals to zero if we assume zero electric field, in this

case we have dγ/dt = 0. Then the first equation follows

meγ
dv
dt

=
e
c

v × B. (1.3)

Equation 1.3 can be written as:

dv‖
dt

= 0,
dv⊥
dt

=
e

γmec
v⊥ × B, (1.4)

from which we see immediately v‖ is constant, |v| is constant, so |v⊥| = con-

stant. The magnetic force is zero for motion parallel to the field. Thus, the

electron spirals around the magnetic field lines forming a helical motion

with frequency

νB =
eB

2πγmec
=
νL

γ
, (1.5)

where νL = eB
2πmec sin θ = 2.8 × 106

(
B

1G

)
sin θ Hz is the Larmor frequency. The

Larmor radius of the circular motion perpendicular to the magnetic field is

rL =
mec2

eB
γβ sin θ = 1.71 × 103γB−1(G) sin θ cm. (1.6)
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Here β = v
c , so the Lorentz factor γ = 1√

1−v2/c2
= 1√

1−β2
. According to the

Larmor formula, the total emitted power is

P =
dW
dt

=
2
3

r2
0cβ2γ2B2 sin2 θ, (1.7)

where r0 = e2

mec2 (in cgs units) is called the classical electron radius and has a

value of 2.8 × 10−13 cm. The single electron emitted power averaged over an

isotropic distribution of pitch angles becomes

Piso =
4
3
σTcβ2γ2UB ∼ 2.5 × 10−14

(
UB

1erg/cm3

)
γ2 erg/s. (1.8)

Here σT = 8πr2
0/3 is the Thomson cross section.

UB =
B2

8π
=

10−12

8π
×

(
B

1µG

)2

erg/cm3 = 0.025
(

B
1µG

)2

eV/cm3 (1.9)

is the energy density of the magnetic field.

Because of the beaming effect, the observer will see a pulse of radiation

confined in a time interval smaller than the Larmor period (1/νL), hence,

the spectrum will spread on a much larger range of frequencies than one

order of νB. In this case, the emitted synchrotron radiation power per unit

frequency interval, as a function of frequency ν of the emitted photon, is

given by
dP
dν

=

√
3e3B sin θ

mec2 F
(
ν

νc

)
. (1.10)

Here νc is the synchrotron critical frequency and expressed by

νc =
3
2
γ2νL sin θ = 4.2

(
B

1µG

)
γ2 sin θ Hz. (1.11)

The nondimensional synchrotron spectrum F
(
ν
νc

)
is defined as

F
(
ν

νc

)
=

(
ν

νc

) ∫ ∞

ν/νc

K5/3(x)dx, (1.12)

where K5/3 is the modified Bessel function of order 5/3. To avoid using the

special functions and improve the efficiency of the analytical integration,

Aharonian et al. (2010) provide a parametrization of the emissivity function

for synchrotron radiation in random magnetic fields:

dP
dν
'

√
3e3B sin θ

mec2

1.808x1/3
√

1 + 3.4x2/3

1 + 2.21x2/3 + 0.347x4/3

1 + 1.353x2/3 + 0.217x4/3 e−x, (1.13)

where x = ν
νc

. This practical approximation achieves an accuracy better than

0.2% over the entire range of emission energy, and has been applied in our
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Figure 1.1: An electron spirals around the magnetic field lines form-
ing a helical trajectory. Image taken from http://www.actucation.com/
college-physics-2/presence-of-only-magnetic-field.

synchrotron calculations. The frequency at maximum synchrotron emission

is

νm ' 0.29νc = 1.22
(

B
1µG

)
γ2 sin θ Hz. (1.14)

The cooling time for the single electron is

tc =
E
P

=
γmec2

P
∝

1
γ
. (1.15)

In many astrophysical calculations, we generally consider the case that the

synchrotron emission comes from an isotropic electrons population with a

distribution N(γ) which represents the number density of electrons per unit

of volume and energy. In this case, the synchrotron emissivity, namely, the

total power radiated per unit volume per unit frequency is calculated as

js(ν) =
1

4π

∫ γmax

γmin

dP
dν

N(γ) dγ. (1.16)

1.1.2 Inverse Compton scattering

One of the major γ-ray production mechanisms in different astrophysical

environments is inverse compton (IC) scattering. The IC scattering is a pro-

http://www.actucation.com/college-physics-2/presence-of-only-magnetic-field
http://www.actucation.com/college-physics-2/presence-of-only-magnetic-field
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cess in which the low energy photons are up-scattered to higher energies

through collisions with relativistic particles, so that the scattered photons

gain energy from the relativistic particles (Blumenthal & Gould, 1970; Rybicki

& Lightman, 1979). The relativistic particles usually refer to the electrons. In

the rest system of a relativistic electron with Lorentz factor γ, a photon of

energy hν will appear to be moving with an energy of γhν.

If the photon energy γhν � mec2:

photons gain energy from relativistic electrons. The electrons lose less part

of energy after one time scattering. This is the classical case of Thomson

scattering, and the incident photons are approximated as a continuous

electromagnetic wave. The cross sections of the scattering is the Thomson

cross section σT ,

σT =
8π
3

r2
0 = 6.65 × 10−25cm2. (1.17)

Based on the conservations of energy and momentum, the frequencies of

the photons νi and ν are related by

ν =
νi

1 +
hνi
mc2 (1 − cos θ)

. (1.18)

In the observer’s frame, the minimum frequency that a photon can acquire is

ν =
νi

4γ2 , (1.19)

the maximum frequency is

ν = 4γ2νi. (1.20)

and the mean frequency of the up-scattered photons is

< ν >=
4
3
γ2νi → γ =

(
3ν
4νi

)1/2

. (1.21)

The total IC power for an electron in an isotropic distribution of photons is

given by

Pcompt =
dErad

dt
=

4
3
σTcβ2γ2Uph ∼ 2.6 × 10−14

(
Uph

1erg/cm3

)
γ2 (erg/s), (1.22)

where Uph is the energy density of the radiation before scattering. The cooling

time due to the IC process is

tc =
γmec2

Pcompt
' 3 × 107/(Uphγ) s. (1.23)

Comparing Equation 1.8 with Equation 1.22, we can find that the ratio

between the power emitted through synchrotron and IC is given by

Psynch

Pcompt
=

UB

Uph
. (1.24)
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If the photon energy γhν ≥ mec2:

photons gain energy from relativistic electrons. In this situation, quantum

effects related to the interaction between electrons and photons must be

considered. Quantum effects appear in two ways: first, through the kinemat-

ics of the scattering mechanism and then, through the modification of the

cross section. The scattering will be no longer elastic because of the recoil of

the electron.

Accurate formula or the approximate expression of the IC photon spec-

trum have been given in several works, e.g., by Jones (1968) and Ryder (1996).

In this thesis, we select the approximation for the IC photon spectrum cal-

culation in Aharonian & Atoyan (1981), and Khangulyan et al. (2014). In the

case of isotropically distributed relativistic electrons, the computation of IC

spectrum for nonthermal seed photon fields is

dN(ω)
dω

=
2πr2

0

ω0E2

[
1 +

z2

2(1 − z)
+

z
b(1 − z)

−
2z2

b2(1 − z)2

−
z3

2b(1 − z)2 −
2z

b(1 − z)
ln

b(1 − z)
z

]
, (1.25)

where E,ω0, andω are the energies of electron, seed photon, and upscattered

photon, respectively; b = 4ω0E, z = ω/E, ω0
E � z ≤ b

1+b =
ωM
E .

If the seed photons for the IC scattering are dominated by black (or grey)

body radiation, the IC radiation spectrum for anisotropic interaction is given

by

dNani

dωdt
=

2r2
0m3

ec4κT 2

π~3E2 ×

[
z2

2(1 − z)
F1(x0) + F2(x0)

]
, (1.26)

where x0 = z
(1−z)tθ

, tθ = 2ET (1 − cos θ). θ is the initial angle between the

relativistic electron and seed photon. T is the seed photon temperature. κ is

the dilution factor in the case of grey-body radiation. The functions F1 and

F2 have the following approximated forms (i=1 or 2):

Fi '

(
π2

6
+ x0

)
e−x0 ×

1 +
aix

αi
0

1 + bix
βi
0

−1

(1.27)

with the values:

a1 = 0.153, b1 = 0.254, α1 = 0.857, β1 = 1.84,

a2 = 1.33, b2 = 0.534, α2 = 0.691, β2 = 1.668.
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The IC radiation spectrum for isotropic interaction with a blackbody

photon spectrum becomes

dNiso

dωdt
=

2r2
0m3

ec4κT 2

π~3E2 ×

[
z2

2(1 − z)
F3(x0) + F4(x0)

]
, (1.28)

where x0 = z
(1−z)t , t = 4ET .

F3 and F4 have the following approximations (i=3 or 4):

Fi '
π2

6
1 + cix0

1 +
π2ci

6 x0

e−x0 ×

1 +
aix

αi
0

1 + bix
βi
0

−1

, (1.29)

with the values:

a3 = 0.443, b3 = 0.54, c3 = 0.319, α3 = 0.606, β3 = 1.481,

a4 = 0.726, b4 = 0.382, c4 = 6.62, α4 = 0.461, β4 = 1.457.

1.1.3 Pion decay

The main high energy γ-ray production channel for relativistic protons are

p-p inelastic interactions followed by pion decay, the process for the decay

of π0 mesons into two γ-rays is

p + p→ π0 + X → γγ + X. (1.30)

Here, X represents minor secondary particles. The threshold kinetic energy

for a proton to produce a π0 is given by

T th
p = 2mπ + m2

π/2mp ≈ 0.28GeV. (1.31)

In natural units (i.e. ~ = c = kB = 1), mp = 0.938272046 GeV and mπ =

0.1349766 GeV are the proton and π0 masses, respectively. At rest, a π0 will

decay to produce a photon with energy Eγ = 1
2 mπ ≈ 68MeV.

By considering public Monte Carlo results and a compilation of pub-

lished data on p-p interactions from the kinematic threshold to PeV energies,

Kafexhiu et al. (2014) developed analytic parametrizations for the p-p total in-

elastic cross section and the γ differential cross section. The parametrization

formula for the p-p total inelastic cross section is

σinel =

30.7 − 0.96 log
 Tp

T th
p

 + 0.18 log2
 Tp

T th
p


×

1 −
T th

p

Tp

1.9
3

mb. (1.32)

Here, Tp is the proton kinetic energy in the laboratory frame. The parametriza-

tion of the γ-ray differential cross section is given by

dσ
dEγ

(
Tp, Eγ

)
= Amax(Tp) × F(Tp, Eγ), (1.33)
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where Amax(Tp) is the maximum value of dσ/dEγ which is a function of the

proton energy Tp. Amax is expressed as follows

Amax(Tp) =b0 ×
σπ(Tp)
Emax
π

: for T th
p ≤ Tp < 1 GeV,

Amax(Tp) =b1 θ
−b2
p exp

(
b3 log2(θp)

)
×
σπ(Tp)

mp

: for Tp ≥ 1 GeV, (1.34)

where, θp = Tp/mp, Emax
π is the maximum total π0 energy in the laboratory

frame, and σπ(Tp) is the inclusive π0 production cross section. Both Emax
π

and σπ(Tp) are functions of the proton energy Tp, details are presented in

Equation (10) and Section II in Kafexhiu et al. (2014). b0 = 5.9, and b1 − b3

are given in Table 1.1. F(Tp, Eγ) describes the shape of the spectrum and

depends on the proton energy Tp and γ-ray energy Eγ,

F(Tp, Eγ) =

(
1 − Xα(Tp)

γ

)β(Tp)

(
1 +

Xγ
C

)γ(Tp) , (1.35)

where Xγ and C are defined as follows:

Yγ =Eγ +
m2
π

4 Eγ
, Ymax

γ = Emax
γ +

m2
π

4 Emax
γ

,

Xγ =
Yγ − mπ

Ymax
γ − mπ

, C = λ × mπ/Ymax
γ . (1.36)

Table 1.2 lists the values of λ, α(Tp), β(Tp) and γ(Tp) for different energies and

models.

The γ-ray spectrum produced through p-p interactions with a distribution

Table 1.1: Coefficients b1 − b3 in eq. (1.34) for Geant 4.10.0, Pythia 8.18,
SIBYLL 2.1 and QGSJET-I.

Model Energy range b1 b2 b3

Geant 4 1 ≤ Tp < 5 GeV 9.53 0.52 0.054
Geant 4 Tp ≥ 5 GeV 9.13 0.35 9.7e-3
Pythia 8 Tp > 50 GeV 9.06 0.3795 0.01105
SIBYLL Tp > 100 GeV 10.77 0.412 0.01264
QGSJET Tp > 100 GeV 13.16 0.4419 0.01439

of protons N(Tp) is

Jγ(Eγ) = 4πnH

∫
dσ
dEγ

(Tp, Eγ)N(Tp)dTp, (1.37)

where nH is the density of target protons.
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In fact, elements heavier than hydrogen are found in many astrophysical

environments. Although the abundances of these elements are small, we

shouldn’t ignore the γ-ray contribution in their nucleus-nucleus interactions.

To correct the γ-ray spectrum for heavier nuclei interactions, the nuclear

enhancement factor (ε) is expressed as

ε(Tp) = 1.37 + 0.39 ×
σ

pp
R × G(Tp)
σinel(Tp)

. (1.38)

Here, G(Tp) is given by

G(Tp) = 1 + log
max

1, σinel(Tp)

σinel(T 0
p)

 . (1.39)

σ
pp
R = πr2

p = 10π mb is the proton geometrical cross section. σinel(Tp) is the

p-p total inelastic cross section given in Equation 1.32. T 0
p = 103 GeV. Then

the corrected γ-ray spectrum is εJγ(Eγ).

Table 1.2: Functions α(Tp), β(Tp), γ(Tp) and λ coefficients in eq. (1.35) for
Geant 4.10.0, Pythia 8.18, SIBYLL 2.1 and QGSJET-I. Functions κ(Tp) =

3.29 − 1
5 θ
−3/2
p and µ(Tp) = 5

4 q
5
4 exp

(
− 5

4 q
)
, respectively, where θp = Tp/mp.

Model Energy [GeV] λ α(Tp) β(Tp) γ(Tp)

Exp. Data T th
p ≤ Tp ≤ 1 – 1.0 κ 0

Geant 4 1 < Tp ≤ 4 3.00 1.0 µ + 2.45 µ + 1.45
Geant 4 4 < Tp ≤ 20 3.00 1.0 3

2µ + 4.95 µ + 1.50
Geant 4 20 < Tp ≤ 100 3.00 0.5 4.2 1
Geant 4 Tp > 100 3.00 0.5 4.9 1
Pythia 8 Tp > 50 3.50 0.5 4.0 1

SIBYLL 2.1 Tp > 100 3.55 0.5 3.6 1
QGSJET-I Tp > 100 3.55 0.5 4.5 1

1.1.4 Electron bremsstrahlung

Comprehensive analysis of features of the cross-sections of bremsstrahlung

can be found in Heitler (1954).

The lifetime of electrons due to the bremsstrahlung can be expressed as

tbr =
Ee

−dEe/dt
∼ 4 × 107(n/1cm−3)−1yr, (1.40)

where n is the number density of the ambient gas. We note that the lifetime

given by Eq. 1.40 is energy independent. This implies that the bremsstrahlung

losses will not change the injected electron spectrum. Thus steady state

of electrons N(E) should have the same shape as the injected spectrum
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Q(E). The spectrum of bremsstrahlung γ-rays is also power-law with the

same power-law index. But in reality we note ionization dominates over the

bremsstrahlung below 350 MeV. In fact both the ionization and bremsstrahlung

loss rates are proportional to n, thus this condition is independent the ambi-

ent gas density. In this case the the steady-state electron spectrum becomes

flatter. In the case of a power-law injection spectrum Q(E) ∼ E−Γ, the steady

state spectrum will be N(E) ∼ E−Γ+1, thus the bremsstralung γ-ray should

also have a very hard spectrum N(E) ∼ E−Γ+1 below several hundred MeV. In

many astrophysical scenarios the inverse Compton and synchrotron losses

may well dominate over bremsstrahlung, especially at very high energies.

In this case N(E) ∼ E−Γ−1 since the lifetime due to synchrotron and inverse

Compton loss are inversely proportional to the electron energy.

1.1.5 Proton-gamma interaction

The main processes of proton (hadron)-photon interactions include (i) in-

verse Compton scattering: p + γ → p + γ′, (ii) electron-positron pair produc-

tion: p + γ → p + e+e−, (iii) photodisintegration of nuclei: A + γ → A′ + kN,

(iv) photomeson production: N + γ → N + π. Where A is the nucleus and

N is nucleon. In extremely dense radiation fields the secondary π± mesons

may effectively interact with photons before they decay. Except for the in-

verse Compton scattering, all other processes take place only above certain

kinematic thresholds: ∼ 1 MeV, 10 MeV, and 140 MeV (in the rest frame of

projectile particles) for the pair production, photodisintegration, and pion

production, respectively. The process of inverse Compton scattering of pro-

tons is identical to the inverse Compton scattering of electrons, but the

energy loss rate of protons is suppressed, for the fixed energy of both parti-

cles, by a factor of (me/mp)4 ∼ 10−13. Thus this process is always negligible in

astrophysical processes.

For pair production, in each interaction only a small fraction of the pro-

ton energy is transferred to the secondary electrons (Blumenthal, 1970).

Therefore the energy loss rate of protons remains relatively slow. Moreover,

the energy region where this process dominates is quite narrow. It is limited

by the energy interval of protons ∼ (1 − 100) × 1015(ω0/1eV)−1 eV, (ω0 is the

average energy of target photons). When the proton energy exceeds the pion

production threshold, the hadronic photomeson interactions well dominate

over the pair production (see e.g., Berezinskii & Grigor’eva, 1988; Geddes

et al., 1996).

The photodisintegration of nuclei may be important in the formation of

the chemical composition of very high energy cosmic rays in both the com-

pact astrophysical objects (Karakula & Tkaczyk, 1993) and the intergalactic
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medium (see e.g., Stecker, 1998). But high energy γ-rays cannot be produced

in this process.

Photomeson production is the most efficient mechanism to transfer of

the kinetic energy of protons into high energy γ-rays. Close to the energy

threshold, the process proceeds through single-pion production, while at

higher energies, multi-pion production channels begin to dominate. Atoyan

& Dermer (2003) suggested a simple approach for approximation of the

pion production cross-sections by the sum of two step-functions σ1(E) and

σ2(E) for the single-pion and multi-pion channels respectively, with σ1 =

340 µb for 200 MeV ≤ Eγ ≤ 500 MeV and σ2 = 120 µb for E ≥ 500 MeV.

The inelasticities in these two energy intervals are approximated by fpγ =

0.2 and 0.6, respectively. Finally, applying the δ-function approximation to

calculations of the spectra of secondary particles (assuming Eγ ∼ 0.1Ep with

2 photons per π0-decay, and Eγ,ν ∼ 0.05Ep, with 1 electron and 3 neutrinos

produced in every charged pion decay), this simple approach is accurate

enough to calculate the energy spectra and production rate of secondaries.

The cross-sections of interactions of secondary electrons and γ-rays with

the ambient photons exceed the photomeson cross-sections by three orders

of magnitude. Therefore the electrons and γ-rays cannot leave the source re-

gion, but rather initiate electromagnetic cascades in the surrounding photon

and magnetic fields. The standard spectra of the low-energy cascade γ-rays

that eventually escape the source are not sensitive to the parent spectral

distributions, and thus contain information only about the total hadronic

power of the source. On the other hand the secondary neutrinos freely es-

cape the production region, and thus carry direct information about the

energy spectra of accelerated protons.

1.1.6 Relativistic electron-photon cascades

Relativistic electrons can produce γ-rays in different astrophysical environ-

ments with high efficiency through bremsstrahlung, inverse Compton scat-

tering and synchrotron (and/or curvature) radiation, respectively. Each of

these γ-rays production mechanisms has its major "counterpart" - a γ-rays

absorption mechanism of the same electromagnetic origin - resulting in e−-

e+ pair production in matter (the counterpart of bremsstrahlung), in photon

gas (the counterpart of inverse Compton scattering), and in a magnetic field

(the counterpart of synchrotron radiation). In many astrophysical scenarios,

in particular in compact galactic and extragalactic objects with favourable

conditions for particle acceleration, the internal γ-ray absorption becomes

unavoidable. If the γ-ray production and absorption is processed in relativis-

tic regimes the problem cannot be reduced to a simple absorption effect.
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The secondary electrons produce a new generation of high energy γ-ray,

and these photons again produce e−e+ pairs, so an electromagnetic cascade

develops. Thus according to the γ-ray production and absorption mecha-

nism, the electromagnetic cascades can be investigated in three different

scenarios, that is, in matter, in photon fields and in magnetic field.

The theory of electromagnetic cascades in matter can be applied to the

interaction cosmic rays with the Earth’s atmosphere (see e.g., Rossi & Greisen,

1941; Nishimura, 1969; Ivanenko, 1968), as well as some sources of high en-

ergy cosmic radiation, in particular to the "hidden source" scenarios like

massive black holes in centers of AGN or young pulsars inside the dense

shells of recent supernovae explosions (see e.g., Berezinskii et al., 1990). Also,

within the so-called "beam dump" models (see e.g., Halzen & Hooper, 2002),

applied to X-ray binaries, etc. In such objects, the thickness of the surround-

ing gas can significantly exceed 100 g/cm2, thus the protons produced in the

central source would initiate (through the production of high energy γ-ray

and electrons) electromagnetic showers. These sources perhaps represent

the "best hope" of neutrino astronomy, but they are generally considered as

less attractive targets for γ-ray astronomy. In photon fields such cascades

can be created on almost all astronomical scales, from compact objects

like accreting black holes, fireballs in gamma-ray bursts, and sub-pc jets of

blazars, to large-scale (up to 100 kpc) AGN jets and larger than 1 Mpc clusters

of galaxies. Very high energy γ-rays emitted by astronomical objects can

initiate cascade in the whole universe by interacting with the background

radiation fields. Such mechanism can make significant contribution to the

diffuse extragalactic γ-ray background.

Cascade in a magnetic field is crucial to understand of the physics of

pulsar magnetospheres (Sturrock, 1971; Baring & Harding, 2001). Such cas-

cades can also play a role in Earth’s geomagnetic field (Anguelov & Vankov,

1999; Plyasheshnikov & Aharonian, 2002), accretion disks of massive black

holes (Bednarek, 1997), etc. In general, the pair cascades in magnetic fields

are effective when the product of the particle (photon or electron) energy

and the strength of the B-field becomes close to the "quantum threshold" of

about EB ≥ Bcritmec2 ∼ 2 × 107 TeV Gauss.

1.2 Acceleration Mechanism

The question of how to accelerate cosmic rays to the observed energies has

long been discussed. Italian-American physicist Fermi (1949) for the first

time proposed that cosmic rays can be accelerated via diffusion between

collisions by the randomly moving interstellar clouds. It was subsequently
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realized that shocks or any regions of converging outflows could efficiently

accelerate the particles in a similar manner, which is also called first-order

Fermi acceleration.

1.2.1 Shock acceleration

The principle of first-order Fermi acceleration is usually applied to the

collisionless-shock, where Coulomb scattering is negligible and the energy

and momentum transferred between particles and shocks are only mediated

by plasma processes. Denoting the velocities of upstream and downstream

fluids in the rest frame of the shock front, the velocity of which is us in the

lab frame, to be uu = us and ud respectively, we can find the ud = us/4 based

on the Ranking-Hugoniot condition in the strong shock limit (shock speed

� sound speed).

Suppose a charged particle with energy E0 starts off in the upstream side

and enter the downstream with a pitch angle θ with respect to the shock

normal, we find the energy of the particle viewed in the rest frame of the

downstream reads,

E′0 = γE0(1 − βcosθ) (1.41)

where β = uu − ud = 3us/4c and γ = 1/
√

1 − β2. The "scattering" between

the particle and the fluid is due to the motion in the magnetic field so the

"scattering" is elastic. Thus, we have the particle’s energy after scattering

is E′1 = E′0 in the rest frame of the downstream region. If we transform the

particle’s energy back to the rest frame of the upstream, we have

E1 = γE′0(1 + βcosθ′) = γ2E0(1 − βcosθ)(1 + βcosθ′) (1.42)

where θ′ is the pitch angle relative to the shock normal after the scattering.

Assuming the particle move randomly both before and after the scatter-

ing, we can average over the pitch angle to get the average energy gain per

upstream-downstream-upstream cycle. To do this, we need to bear in mind

that the pitch angle distribution of the particle entering the downstream

region and returning back to the upstream region are, respectively,

dn
dcosθ

= 2cosθ, −1 ≤ cosθ ≤ 0, (1.43)

and
dn

dcosθ′
= 2cosθ′, 0 ≤ cosθ′ ≤ 1. (1.44)

After carrying out the calculation, we obtain the average energy increment

of the particle in one upstream-downstream-upstream cycle is

∆E
E

=
E1 − E0

E0
= γ2

(
1 +

4
3
β +

4
9
β2

)
(1.45)
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For non-relativistic shock (β � 1), we have ∆E
E '

us
c .

Of course, the shock acceleration efficiency also depends on how much

time it requires to accomplish one cycle. This is then determined by the way

that cosmic ray move in both the upstream and the downstream region, or

the way that cosmic rays are scattered. Bell (1978) suggested that cosmic

rays can scatter off Alfvén waves generated by themselves and then move in

a diffusive way. Thus, shock acceleration is also referred to diffusive shock

acceleration (DSA). This process reduces particle’s stream speed roughly to

Alfvén speed and make it inevitable that the particle is overtaken by the shock.

On the other hand, this process provides a certain possibility for particles in

the downstream to return back to the upstream instead of convecting away

with the downstream fluid. The average residence times of a particle in the

upstream region and downstream region can be given by tu = 4κu/uuc and td =

4κd/udc respectively, where κu = λuc/3 and κd = λdc/3 are the spatial diffusion

coefficient in the upstream and downstream with λu and λd being the mean

free path of wave-particle interaction in the upstream and downstream

respectively. The total time to accomplish one cycle is tcyc = tu + td and we

can find the acceleration timescale

tacc = tcyc

( E
∆E

)
=

4
us

(
κu

uu
+
κd

ud

)
(1.46)

In the limit of Bohm diffusion, we have κu = κd = rgc/3 where rg = E/eB is the

Larmor radius of the particle. We can then get

tacc =
20
3

rg

c

(
c
us

)2

(1.47)

1.2.2 Stochastic acceleration

When particles scatter off MHD waves in the downstream and the upstream,

they actually can also gain energy in those scatterings. But the shock velocity

is usually much larger than the phase speed of the MHD wave, so the energy

gain via scattering off the waves are neglected. In the case that the phase

speed of the MHD wave is high, acceleration by MHD waves is also efficient.

Similarly to the case of shock acceleration, we consider a particle with energy

E0 in lab frame is scattered by a MHD wave such as Alfvén with phase speed

uA. The energy of the particle viewed in the rest frame of the wave is given by

Eq. 1.41 with θ being the angle between the particle velocity and the wave

velocity, β = uA/c and γ = 1/
√

1 − β2 in this case. The scattering in the rest

frame of the wave is elastic since the electric field vanishes and the particle’s

energy after scattering can be given by Eq. 1.42 after being converted back

to the lab frame. Next, we also need to average over the pitch angle. For the
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emergence angle, if we assume both particles and waves move randomly, the

distribution of the pitch angle should be isotropic, i.e., dn/dcosθ′ = Constant.
On the other hand, the probability of a collision is proportional to the relative

velocity between the wave and the particle, so we have

dn
dcosθ

=
c − uAcosθ

2c
(1.48)

We can also see that the probability for a "head-on" collision (cosθ < 0) which

will increase the energy of the particle is larger than the "tail-on" collision

(cosθ < 0) which will make the particle lose energy, and hence particle will

eventually gain energy after lots of scatterings. But this mechanism will lead

to the diffusion of the distribution of particles in the momentum space. After

some calculation, the energy increment in one scattering can be obtained by

∆E
E

=
4
3
γ2β2 (1.49)

Given a non-relativistic MHD wave, we have ∆E/E = 4
3β

2. Since the energy

increment is proportional to the square of the speed of the scattering center,

this mechanism is called the second-order Fermi acceleration. Because the

scattering centers in this case are usually assumed to be moving in random

directions, this mechanism is also referred to stochastic acceleration. The

average time needed for one scattering is just the time to propagate one

mean free path. Thus, we have the stochastic acceleration timescale

tsto =
λ

c
E

∆E
(1.50)

In the limit of Bohm diffusion, we have

tsto =
3
4

rg

c

(
c

vA

)2

(1.51)

1.2.3 Shear acceleration

Shear acceleration is also a Fermi-type acceleration mechanism. It was firstly

proposed by Berezhko and his collaborators in 1980s. In this mechanism,

they considered particle propagating in a shearing flow with a velocity gradi-

ent inside the flow. Energetic particles could sample the velocity difference

while they move across the flow by scattering off MHD waves which are em-

bedded in different layers of the shearing flow with different bulk velocities.

Different layers then serve as the scattering center and each scattering is

then accompanied by the conversion of bulk kinetic energy of the flows to

particle energies. The most considered shearing profile of the flow is a longi-

tudinal shear with linear velocity gradient. More specifically, let’s consider a
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flow moving along z-axis with velocity ~u = u(x)~ez of a shear in the x-axis and

∂u/∂x =Constant. In one mean free path of wave-particle interaction, the

velocity difference of the background flow where a particle locates can be

given by

δu =
∂u
∂x
λsinθ (1.52)

where θ is the angle between the velocity of the particle and z-axis. Denote

the initial energy of the particle by E0, the energy of the particle viewed in

the rest frame of the background flow where the particle arrives at after one

mean free path is then

E1 = γE0(1 − βcosθ)s (1.53)

where β = δu/c and γ = 1/
√

1 − β2. Usually, we have β � 1 and γ ' 1 + β2/2,

unless we consider an ultra-relativistic shearing flow. Provided that the

particle velocity is randomly oriented, one can average over θ and find the

energy increment in one scattering is

∆E
E

=
2
15
γ4β2 '

2
15
β2. (1.54)

From the point of view of the expression for the energy increment, the shear

acceleration is a second-order Fermi acceleration mechanism. Indeed, simi-

lar to the second-order stochastic acceleration, it can lead to the diffusion

of the distribution of particles in the momentum space, since the energy

of particle could either increase or decrease in one scattering, depending

on the pitch angle. On the other hand, from the point of view of the energy

conversion, shear acceleration is similar to shock acceleration since the

non-thermal energy of particles is converted from the kinetic energy of the

background flow. The acceleration timescale in the limit of Bohm diffusion

is then

tacc =
λ

c
E

∆E
=

15
2

rg

c

( c
δu

)2
(1.55)

Note that δu usually increases with the particle’s energy. This is because the

mean free path usually increases with the particle’s energy so that a larger

velocity difference of the background flow will be experienced by the particle

between two scattering events. This makes the shear acceleration a more

efficient mechanism for higher energy particles.

Compare Eqs. 1.47, 1.51 and 1.55, we can see the acceleration timescales

of shock, stochastic and shear acceleration have a similar form in spite of

the prefactors. Indeed, all these three mechanisms rely on the scattering

processes which convert kinetic energy of the scattering centers to particles.

The main difference is the geometry of the scattering. Fermi acceleration

has been widely applied to the acceleration of energetic particles in various

astrophysical objects such as solar flares (Murphy et al., 1987), supernova
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Figure 1.2: Left panel: Schematic diagram for the shock acceleration. The
filled black circle and the thick vertical solid line shows the initial position of
a particle and the shock front respectively. The upstream and downstream
fluid move rightward with uu and ud respectively. The thin solid curves show
the trajectory of the particle recrossing the shock. Middle panel: Schematic
diagram for the stochastic acceleration. The black filled irregular regions
represent MHD waves (turbulence) or the so-called magnetic clouds with a
velocity uA. The filled circle represent a particle and the dashed line shows
its trajectory. The particle will be scattered when it encounters a magnetic
cloud (i.e., resonate with a MHD wave), In a single scattering, particle could
gain or lose energy, depending on the incidence and emergence angle.
But after many scatterings, a net energy gain will be in achieved. Right
panel: Schematic diagram for the shear acceleration. u1, u2, u3 are the bulk
velocities in different parts of a flow. The filled circle shows the initial
position of the particle. The dashed line shows the trajectory of the particle
in the flow. The particle could be scattered at different parts of the flow (as
marked with the open circle) and gain energy from the flow.

remnants (Bell, 1978; Lagage & Cesarsky, 1983; Aharonian et al., 2001; Drury

et al., 2001; Aharonian et al., 2004; Vink, 2006), stellar winds (Webb et al.,

1985), and pulsar wind termination shocks (Kroon et al., 2016) within the

Milky Way; the jets and hot spots from radio galaxies (Begelman & Kirk,

1990), AGN jets (Rieger & Mannheim, 2002; Pogge, 1997), blazars (Stecker

et al., 2007), vicinity of supermassive black hole (Liu et al., 2006), and GRBs

(Waxman, 1995).

Beside the Fermi acceleration mechanism, magnetic reconnection is also

a well discussed mechanism. Charged particles can be accelerated in the

large scale electric field generated in the dissipation along the current sheet

which is formed when highly conducting plasma inflows encounter each

other. A detailed description of this mechanism is beyond the scope of this

section and one can refer to Zweibel & Yamada (2009). Note that particles

can also gain energy by traveling back and forth several times across the two

converging plasma inflows, similar to shock acceleration.
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1.3 Statistical Technique and Application

1.3.1 Minimum χ2 estimation

When we use a model to fit data, we usually expect to get an idea of how good

the fit is. χ2 statistic is one method of measuring the agreement between

data and the given model. The statistical function is defined as

χ2 =

N∑
i=1

z2
i =

N∑
i=1

ypre
i − yobs

i

σi

2

, (1.56)

where yobs
i are the observed data values, ypre

i are the corresponding values

predicted by the model, and σi are the uncertainties in the measurement. N
is the number of degrees of freedom. If the residuals ypre

i − yobs
i are typically of

the same size as σi, then zi ∼ 1 and χ2 ∼ N, and this suggests that the model

is a reasonable fit to the data. If the residuals are much larger or smaller than

σi, this suggests a poorer fit.

If zi have Gaussian independent distributions with mean 0 and variance

1, then χ2 follows a χ2 distribution. The probability density function for the

χ2 distribution with N degrees of freedom is shown in Figure 1.3. We can see

the higher the number of degrees of freedom, the further to the right is the

curve. The central limit theorem1 tells us that if the degrees of freedom is

large enough, the χ2 distribution is an asymptotically Gaussian distribution.

In general, zi is not independent. In this case, if we fit a linear model with

p parameters (i.e. parameters that are independent) to N independent data

points, then the χ2 distribution has N − p degrees of freedom. Sometimes

people use the reduced chi-squared which is simply χ2 divided by the num-

ber of degrees of freedom to measure the agreement between data and the

given model.

χ2
r =

1
N − p

N∑
i=1

z2
i =

1
N − p

N∑
i=1

ypre
i − yobs

i

σi

2

(1.57)

If χ2
r = 1 suggests that it’s a good fit.

However, in some practical applications, the number of observations are

low, in which case the probability of measuring yobs given the expected value

ypre
i will obey other kind of distributions (e.g., Poisson distribution) rather

than Gaussian distribution, so the χ2 will not follow the χ2 distribution.

In this case, the maximum likelihood estimation can be another optional

method to fit the data.
1Statement: if y is the sum of N independent random variables, xi, i = 1,2,...N, each drawn

from a distribution with mean µi and variance vi, then the density distribution for y
1. has an expectation value (expected mean) E[y] =

∑
i µi;

2. has a variance Var(y) =
∑

i µi;
3. becomes Gaussian in the limit N → ∞. .
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Figure 1.3: The χ2 distribution for 2, 4, 10, 20 degrees of freedom. The
higher the number of degrees of freedom, the further to the right is the
curve.

1.3.2 Maximum likelihood estimation

The likelihood P(D|θ) represents the probability of observing event D given

the model hypothesis is true. Maximum likelihood estimation (MLE) is the

most common method of estimating the parameter values that maximize the

likelihood P(D|θ). In practice the observed data D are discrete, so we define

a one-dimensional set of N values D = {di} (i = 1, 2, ...,N). Generally the

probability of measuring di obey some kind of distribution, e.g., the Poisson

distribution used in Fermi-LAT analysis below, Gaussian distribution used in

Section 1.3.5. If each of the N points has been drawn independently from

this distribution, then the likelihood of the whole set of data is

L(D|θ) = P(d1|θ)P(d2|θ)...P(dN |θ) =

N∏
i=1

P(di|θ). (1.58)

Generally, it is more convenient to use the logarithmic likelihood form ln

L(D|θ). Because the computation of the product of a large number of small

probabilities can easily underflow, and this is resolved by the sum of the log

probabilities; in addition, the logarithm is a monotonic function, so that

maximization of the log of a function is equivalent to maximization of the

function itself. When we use a model to fit the observed data, we hope to

obtain the maximum value of the likelihood function (PDF). The first thought

to have an extremum is to solve the first-order partial differential equation
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of the posterior PDF with respect to θ by setting it to 0. The solution is

ln L(D|θ)
dθ

= 0. (1.59)

However, in most cases the high dimensional parameter space and the com-

plex distribution of the PDF make it impossible to obtain analytic solutions.

The only way to solve this problem is the numerical analysis by sampling

these model parameters θ directly.

Maximum likelihood estimation and χ2 estimation

For Gaussian distribution of measurement noise with varying standard devi-

ation, σi, the probability of the data set coming from the model parameters

is given by

L =

N∏
i=1

1√
2πσ2

i

exp

− [ypre
i (θ) − yobs

i ]2

2σ2
i

 (1.60)

ypre
i (θ) is the given model with parameters θ, and yobs

i is the observational data.

Taking the logarithm,

ln L = K −
N∑

i=1

[ypre
i (θ) − yobs

i ]2

2σ2
i

(1.61)

− ln L ∝
N∑

i=1

[ypre
i (θ) − yobs

i ]2

2σ2
i

≡
1
2
χ2 (1.62)

The ln L function is related to the χ2 parameter, χ2 = −2 ln L, so the maxi-

mization of the ln L is equivalent to a minimization of χ2.

Likelihood ratio test

Suppose a null hypothesis 2 and an alternative hypothesis 3are under consid-

eration, the first model is simpler or more parsimonious than the second one.

While the most common situation is to consider "nested" models, where the

first model is obtained from the second model by putting some of the param-

eters to be zero. For instance, the first model describes N point sources, while

the second model has N+1 sources. The likelihood ratio (LR) test statistic,

also called test statistic (TS), is given by

TS = −2ln
(

L(θ0)
L(θ1)

)
, (1.63)

2The null hypothesis is a hypothesis which the researcher tries to disprove, reject or
nullify.

3The alternative hypothesis is a hypothesis which the researcher really thinks is the cause
of a phenomenon.
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where L(θ0) and L(θ1) are the two likelihood values. When there are many

events, Wilks’s theorem4 states that the TS distribution asymptotically tends

to a χ2 distribution

TS = −2ln
(

L(θ0)
L(θ1)

)
∼ χ2

r , (1.64)

where r is the number of parameters characterizing the additional source in

the alternative model. As a general rule, the TS value is approximately the

square of the significance.

1.3.3 Likelihood application in Fermi-LAT fitting

The likelihood technique (Cash, 1979; Mattox et al., 1996) has been applied

to the analysis of LAT data. It is performed in counts space. First a likelihood

function that is applicable to the LAT data needs to be constructed. If the LAT

data are divided into N (time, energy, sky pixel...) bins, the observed number

of counts in each bin will be very small. Assume the expected number of

counts in the ith bin is mi which is a function of the source model, then the

probability of measuring ni counts in this bin obeys the Poisson distribution5,

namely,

pi =
e−mimni

i

ni!
. (1.65)

In practice, the expected number of counts mi derived from the model is

unknown and the goal is to estimate the value of mi given ni. The likelihood

L is the product of pi for each time bin,

L =

N∏
i=1

pi = e−Nexp

N∏
i=1

mni
i

ni!
. (1.66)

The logarithmic likelihood is given by

ln L = −Nexp +

N∑
i=1

niln mi −

N∑
i=1

ln ni!. (1.67)

We can see the first term Nexp =

N∑
i=1

mi, which is the total number of counts

that the source model predicts, is purely a function of the spectral model.

The second term is a function of both the source model and the data. The

last term only depends on the observed data.

For the model fitting, we expect to get the highest probability of detecting

one source and obtain the best fit parameters including both the spectrum

4https://en.wikipedia.org/wiki/Likelihood-ratio_test#Wilks.27_theorem
5https://en.wikipedia.org/wiki/Poisson_distribution

https://en.wikipedia.org/wiki/Likelihood-ratio_test#Wilks.27_theorem
https://en.wikipedia.org/wiki/Poisson_distribution
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and its location, so we use the TS to fit the data and test the hypothesis. The

TS is defined as:

TS = −2ln
(

Lmax,0

Lmax,1

)
, (1.68)

Here Lmax,0 is the maximum likelihood value for a model without an addi-

tional source (the null hypothesis) and Lmax,1 is the maximum likelihood

value for a model with an additional source (the alternative hypothesis) at a

specified location. TS is maximized when the likelihood for the model with

the source is maximized. There are five optimizers in Fermi-LAT science

tools that can be used to maximize the logarithmic likelihood function and

determine the best-fit spectral parameters: DRMNGB, DRMNFB, EWMINUIT,

MINUIT and LBFGS. Generally speaking, the best way to find the parameter

estimates is to use DRMNGB (or DRMNFB) to find initial values and then use

MINUIT (or NEWMINUIT) to find more accurate results.

1.3.4 Markov Chain Monte Carlo method

Bayes theorem

Bayes theorem is fundamental in Bayesian inference (e.g. hypothesis testing,

model fitting), and it shows the relation between two conditional probabili-

ties that are the reverse of each other. Taking D as some data which we have

obtained to test the model with parameters θ, then Bayes theorem is stated

mathematically as the following equation:

P(θ|D) =
P(D|θ)P(θ)

P(D)
, (1.69)

where the posterior P(θ|D) is the conditional probability of model parameters

given the observing event D is true. The term in the numerator P(D|θ) is the

likelihood and represents the probability of observing event D given that the

model hypothesis is true. P(θ) is the prior and the denominator P(D) is the

evidence. P(D) does not depend on the model parameters, we can consider

it as an integration constant for the posterior, so that the unnormalized

posterior is just the product of the likelihood and prior.

Why use Markov Chain Monte Carlo method

In most cases the posterior PDF is not of a standard distribution form (e.g,

highly peaked, multimodal), and it’s hard to sample finely and sufficiently.

In addition, to determine the posterior by evaluating on a regular, but multi-

dimensional parameter grid is far too inefficient. Monte Carlo (MC) method

can provide an efficient way to sample from a proposal distribution (Q(θ))
directly rather then define an arbitrary set of grid values of θ at which we then
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evaluate the posterior. Unfortunately, the MC method is often inefficient,

because the rejection sampling6 wastes a lot of time drawing samples in

regions where the posterior P(θ|D) is low.

Markov chain Monte Carlo algorithm

In Bayesian statistics, MCMC method is a "smart" method to sample and

estimate the posterior PDF over high dimensional parameter space, and find

the maximum posteriori estimation. The principle of MCMC method is to set

up a random walk over the parameter space θ, and the posterior probability

P(θ|D) improves as a function of the number of steps. The random walk is

achieved using a Markov chain, which means that the probability of moving

from sample θt to θt+1 is defined by a transition probability Q(θt+1|θt) which

is independent of the step number. In a Markov Chain the next position

depends only on the current position. The simplest and most commonly

used MCMC algorithm is the Metropolis-Hastings (M-H) algorithm. The

iterative procedure (Foreman-Mackey et al., 2013) is as follows:

1. Draw a set of parameter values θ′ from the proposal distribution given

a current set of parameter values θt: θ′ ∼ Q(θ′|θt).

2. Define σ =
P(θ′)Q(θt |θ

′)
P(θt)Q(θ′ |θt)

.

3. Pick a number from an uniform distribution between 0 and 1: r ∼
U(0, 1).

4. If r ≤ σ then

5. Replace the next parameter set with the proposed set and then repeat:

θt+1 ← θ′

6. else

7. Assign the current parameter set to the next set: θt+1 ← θt

8. end if

1.3.5 Naima and application of MCMC

Naima (Zabalza, 2015) is an open-source python package for the computa-

tion of nonthermal radiative output from relativistic particles. It can infer

the properties of the corresponding particle distribution given an output

nonthermal spectrum. There are two main components of the package:

several radiative models, e.g., synchrotron, inverse compton, nonthermal

6https://en.wikipedia.org/wiki/Rejection_sampling

https://en.wikipedia.org/wiki/Rejection_sampling
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bremsstrahlung, and neutral pion decay , and a set of utility particle distribu-

tion functions, e.g., power-law form, exponential cutoff power-law form and

etc. Users can also define their own particle distribution functions that make

it flexible to implement any type of particle cooling, escape, or acceleration

physics before computing its radiative output. Naima uses the physical unit

module astropy.units in the astropy package7 to convert the input spectra

and parameters in their needed units during the calculations.

Assuming that the probability of the observed flux and uncertainties

(Fi, σi) in this measurement obeys Gaussian distribution, the likelihood func-

tion L is the product of the N times measurements

L =

N∏
i=1

1√
2πσ2

i

exp
− (S (~p, Ei) − Fi)2

2σ2
i

 , (1.70)

where S (~p, Ei) is the spectral model which is a function of the parameter

vector ~p and energy Ei. Taking the logarithm,

ln L ∝
N∑

i=1

(S (~p, Ei) − Fi)2

σ2
i

(1.71)

Then the likelihood function is provided to run an MCMC sampling, and

estimate the sampled parameters.

In practical application, we need to provide the observed flux and un-

certainties (Fi, σi), photon spectral model S (~p, Ei) derived from the electron

spectrum, and a prior likelihood function to the function run_sampler to

fit the data. The function run_sampler will further call the emcee module

EnsembleS ampler8 to execute MCMC sampling. A full explanation of the

emcee can be found in http://dan.iel.fm/emcee/current/.

How many MCMC iterates are needed can not be firmly answered. The

easiest and simplest indicator that the iterations are sufficient is the accep-

tance fraction, it should be in the 0.2 to 0.5 range; another indicator is when

the correlation time is much shorter than the run time by a factor of ∼ 10,

which will make sure that it has run long enough. (Foreman-Mackey et al.,

2013)

7http://docs.astropy.org/en/stable/units/
8http://dan.iel.fm/emcee/current/api/#emcee.EnsembleSampler

http://dan.iel.fm/emcee/current/
http://docs.astropy.org/en/stable/units/
http://dan.iel.fm/emcee/current/api/#emcee.EnsembleSampler
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1.4 Instruments and Data Analyses

1.4.1 Fermi-LAT and extended sources analysis

Operational principle

The Large Area Telescope (LAT), launched by NASA on June 11, 2008, is

the principal scientific instrument on board the Fermi Gamma-ray Space

Telescope (Fermi)9. The high-energy γ-rays cannot be refracted by a lens or

focused by a mirror, therefore the Fermi-LAT is designed as a pair-conversion

telescope. The LAT consists of three main detector systems, an thin plastic

anti-coincidence detector (ACD), a silicon strip tracker, and a calorimeter.

Figure 1.4 shows the principles of LAT operation. Incident γ-rays pass freely

through the ACD, the ACD surrounds the tracker and provides rejection of

charged cosmic ray (CR) backgrounds and identifies the relatively rare γ-rays.

A γ-ray continues until it interacts with an atom in one of the thin tungsten

foils, producing two charged particles: e+ and e−: γ (Eγ > 1.02 MeV)→ e+ + e−.

They proceed on, creating ions in thin silicon strip tracker. The silicon strips

alternate in the X and Y directions, allowing the progress of the particles to

be tracked. Finally the particles are stopped by the calorimeter which mea-

sures the total energy deposited. The information from the anticoincidence

detector, tracker and calorimeter is combined to estimate the energy and

direction of the γ-ray.

9http://fermi.gsfc.nasa.gov/

http://fermi.gsfc.nasa.gov/
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Figure 1.4: Principles of Fermi-LAT operation. Image taken from https:
//www-glast.stanford.edu/instrument.html.

https://www-glast.stanford.edu/instrument.html
https://www-glast.stanford.edu/instrument.html
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Figure 1.5: The performance of the Pass 8 event class. Images
taken from https://www.slac.stanford.edu/exp/glast/groups/canda/
lat_Performance.htm.

https://www.slac.stanford.edu/exp/glast/groups/canda/lat_Performance.htm
https://www.slac.stanford.edu/exp/glast/groups/canda/lat_Performance.htm
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Figure 1.5 — continued

Performance

Fermi-LAT is an imaging, wide field-of-view (FOV), high-energy γ-ray tele-

scope, detecting photons from 20 MeV to more than 300 GeV (Atwood et al.,

2009). The FOV covers about 20% (> 2 sr) of the sky. Instrument response
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Figure 1.6: Point source differential flux sensitivity between 31.6 MeV and
1 TeV. Image taken from https://www.slac.stanford.edu/exp/glast/
groups/canda/lat_Performance.htm.

functions (IRFs), the parameterized representations of ScienceTools perfor-

mance, can be factorized into four parts: the effective area of the detector,

acceptance (the integral of the effective area over the solid angle), the an-

gular resolution as given by the point spread function (PSF), and energy

dispersion. Detailed information about the associated IRFs are given in Ack-

ermann et al. (2012). Pass 8 data and science tools version v10r0p5 are the

updated versions of previous Pass 7 reprocessed (P7REP) data and science

tools version v9r33p0 correspondingly. The performance of the Pass 8 event

class is shown in Figure 1.5. The first two images are the effective collecting

area as a function of photon energy and incidence angle. The effective area

is larger than 9000 cm2 at 10 GeV in the center of the FOV. The third image

shows the acceptance. 68% and 95% containment radii (angular resolution)

of the acceptance weighted PSF as a function of energy are given in the fourth

image. The energy resolution depends on the γ-rays energy and its incidence

angle are shown in the last two images. Based on the above instrument

performance characterizations, the point source flux sensitivity is derived

assuming a power-law spectrum with index 2 and is shown in Figure 1.6,

the curves are for four different locations in Galactic coordinates: Galactic

center, intermediate latitudes, north Galactic pole, and north Celestial pole.

https://www.slac.stanford.edu/exp/glast/groups/canda/lat_Performance.htm
https://www.slac.stanford.edu/exp/glast/groups/canda/lat_Performance.htm
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Extended source analysis

The analysis of an extended source is performed using the following steps:

i. Extract event data

The photon event data are extracted from the LAT data server https://

fermi.gsfc.nasa.gov/cgi-bin/ssc/LAT/LATDataQuery.cgi. The re-

quired search parameters are object name or coordinates, search radius

R, time range, and energy range. Equatorial coordinates J2000, mission

elapsed time (MET) system, and spacecraft data are selected.

ii. Event selections

gtselect is used to filter the time range, energy range, and event class

of the original photon data. It can also filter the zenith angle. Then

gtmktime is used to pick out the good time intervals (GTI) with valid

data based on above filtered photon data and the spacecraft file.

iii. Counts map

The counts map is created by the tool gtbin with CMAP option to make

out the emission of the extended structures. For binned likelihood

analysis, a 3D (binned) counts map with an energy axis, called a counts

cube is built by gtbin with CCUBE option. The counts map is an in-

ternally tangent square region of the extracted circular region, so the

region of interest (ROI) is the square with the length for a side
√

2R.

iv. Create spatial template

For consistency, it is often better to build a two dimensional template

to describe the extended emission in the model. There are a few things

that must be compatible with the Fermi-LAT products, (a) the template

must be in J2000 coordinates. (b) The background must be set to 0,

namely, set all of the points below a certain value to 0. (c) The total

flux must be normalized to 1, namely, one needs to integrate over the

entire map to get the normalization factor and divide each pixel by this

number. Here pyFits10 is used to divide, subtract and normalize the

map.

v. Compute livetimes and exposure

To speed up the exposure calculations performed by likelihood, gtltcube

is used to create a livetime cube which is the livetime as a function of

sky position and off-axis angle. Then the gtexpcube2 tool applies the

livetime cube to the ROI, and generates a binned exposure map. Here

10http://www.stsci.edu/institute/software_hardware/pyfits

https://fermi.gsfc.nasa.gov/cgi-bin/ssc/LAT/LATDataQuery.cgi
https://fermi.gsfc.nasa.gov/cgi-bin/ssc/LAT/LATDataQuery.cgi
http://www.stsci.edu/institute/software_hardware/pyfits
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in order to consider the effects of the large PSF of the LAT, an exposure

map that includes sources up to 10 degrees outside the ROI should be

created.

vi. XML model file

The tool make3FGLxml.py11 is ran to generate a XML model for a given

spectral and spatial model from the third year LAT source catalog

(3FGL)12 analysis for each source. Meanwhile the extended source

templates, the latest Galactic diffuse emission model gll_iem_v06.fits,

and the extragalactic isotropic model iso_P8R2_SOURCE_V6_v06.txt13

are loaded into the XML model. The model includes the parameters of

the source’s spectrum, position, and intensity.

vii. Model counts map

The gtsrcmaps tool creates a model counts map for use with the binned

likelihood analysis. It multiplies each source spectrum in the XML

model by the exposure at the source position, and convolves that expo-

sure with the effective PSF.

viii. Likelihood analysis – parameter optimization

We run gtlike to perform the likelihood analysis. In addition, we can

also use another more powerful python tool pyLikelihood for the like-

lihood analysis. pyLikelihood can not only perform all of the same

likelihood analysis like gtlike, but can access all of the model parame-

ters. In addition, it can also calculate the upper limits.

1.4.2 Planck instrument and flux measurement

Instrument and scientific mission

Planck14 (Tauber et al., 2010; Planck Collaboration et al., 2011a), launched

on May 14, 2009, is the third generation space mission following the Cosmic

Background Explorer (COBE) (angular resolution 7◦; microwave, infrared;

launched in 1989) and WMAP (angular resolution 13′; 23 - 94 GHz; launched

in 2001). Planck scanned the whole sky twice in one year, with a combination

of high sensitivity ( ∆T
T ∼ 2 × 10−6 K) and angular resolution from 33′ to

5′. It carried two scientific instruments and executed observations in nine

frequency bands, the Low-Frequency Instrument (LFI; Mandolesi et al., 2010;

11https://fermi.gsfc.nasa.gov/ssc/data/analysis/user/
12https://fermi.gsfc.nasa.gov/ssc/data/access/lat/4yr_catalog/
13https://fermi.gsfc.nasa.gov/ssc/data/access/lat/BackgroundModels.html
14http://www.esa.int/Planck

https://fermi.gsfc.nasa.gov/ssc/data/analysis/user/
https://fermi.gsfc.nasa.gov/ssc/data/access/lat/4yr_catalog/
https://fermi.gsfc.nasa.gov/ssc/data/access/lat/BackgroundModels.html
http://www.esa.int/Planck
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Figure 1.7: The three panels compare 10◦ × 10◦ patches of all-sky maps
created by COBE, WMAP, and Planck capable of detecting the CMB. The
colors in the map represent different temperatures: red for warmer and
blue for cooler. Image taken from http://photojournal.jpl.nasa.gov/
catalog/PIA16874.

Figure 1.8: Component-separated CMB temperature maps at full resolu-
tion, FWHM=5′, Nside = 2048. The colors in the maps represent different
temperatures: red for warmer and blue for cooler. Image taken from Planck
Collaboration et al. (2016c).

http://photojournal.jpl.nasa.gov/catalog/PIA16874
http://photojournal.jpl.nasa.gov/catalog/PIA16874
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Bersanelli et al., 2010; Mennella et al., 2011) covers the 30, 44, and 70 GHz

bands with amplifiers cooled to 20 K. The High Frequency Instrument (HFI;

Lamarre et al., 2010; Planck HFI Core Team et al., 2011) covered the 100,

143, 217, 353, 545, and 857 GHz bands with bolometers cooled to 0.1 K. A

combination of radiative cooling and three mechanical coolers produced

the temperatures needed for the detectors and optics (Planck Collaboration

et al., 2011b). Two data processing centres (DPCs) checked and calibrated the

data and made maps of the sky (Planck HFI Core Team et al., 2011; Zacchei

et al., 2011).

Planck’s sensitivity, angular resolution, and frequency coverage make it a

powerful instrument for Galactic and extragalactic astrophysics as well as

cosmology (Planck Collaboration et al., 2016d). Details about the scientific

operations of the Planck instrument can be found in Planck Collaboration

et al. (2014b) and Planck Collaboration et al. (2016a). One main objective

of Planck is designed to measure the oldest light in our universe, imprinted

on the sky when the universe was just 380 000 years after the Big Bang,

namely, measure the cosmic microwave background (CMB) at microwave

and infrared frequencies. The three 10◦ × 10◦ patches of all-sky maps in

Figure 1.7 compare how much detail can be seen in the observations of COBE

(left panel), WMAP (middle panel), and Planck (right panel) satellites used to

measure the CMB. COBE’s poor angular resolution make it impossible to see

the small structures less than 7 ◦, WMAP has found strong evidence for the

much smaller structures, and Planck, with its greater resolution, has revealed

the anisotropies of the CMB, e.g., with temperature fluctuation at a level

of ∼ 10−5 K. It is of greatest interest for cosmology to accurately measure

the anisotropies in small CMB structures, because this traits then can be

used to measure the universe’s geometry, content, and evolution; to test

the Big Bang model and the cosmic inflation theory. Planck collaboration

has applied four complementary CMB component separation algorithms

(Commander, NILC, SEVEM, and SMICA) to the Planck sky maps, and the

corresponding anisotropies of the component-separated CMB are shown in

Figure 1.8. The colors in the map represent different temperatures: red for

warmer and blue for cooler. These tiny temperature fluctuations correspond

to regions of slightly different densities, representing the seeds of their all

future structures: the stars, galaxies, and galaxy clusters of today.

Data reduction and flux density measurement

Here I summarize the basic steps of the Planck data analysis, details will be

listed in Section 2.3.

i. Obtain the primary Planck all-sky maps, they are in Healpix format.
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ii. Degrade or upgrade the resolution of the grid for consistence with other

maps, e.g., γ-ray emission map.

iii. Project Healpix data onto two dimensional map.

iv. Temperature units and MJy sr−1 are converted to flux density per pixel

Jy/pix.

v. Components modelling and separation.

vi. Use the aperture photometry to measure the flux density.

1.4.3 Chandra telescope and data processing

Chandra telescope and performance

The Chandra X-ray Observatory (CXO) was launched on July 23, 1999 by the

space shuttle Columbia. The principle of measuring the photon energy is

that an individual X-ray photon liberates multiple electrons in Si through

photoelectric interaction, then Chandra detectors measure the photon en-

ergy according to the number of electrons. Chandra provides unprecedented

capabilities for subarcsecond angular resolution (≤ 0.5′′) imaging, and sensi-

tivity ∼ 4 × 10−15erg/cm2/s. The Science Instrument Module (SIM) holds the

two focal plane instruments, the Advanced CCD (charged coupled device)

Imaging Spectrometer (ACIS) and the High Resolution Camera (HRC). ACIS

has an energy range of 0.08 - 10 keV, and the effective area is about 110 cm2

at 0.5 keV, 600 cm2 at 1.5 keV, and 40 cm2 at 8 keV. It is used for studying the

temperature variation across X-ray sources such as vast clouds of hot gas in

intergalactic space, or chemical variations across clouds left by supernova

explosions. The HRC, with energy range of 0.06 - 10 keV, accurately records

the position, number, and energy of X-rays, and is especially useful for imag-

ing hot matter in remnants of exploded stars, and in distant galaxies and

clusters of galaxies, and for identifying very faint sources.15 ACIS include

two kinds of CCD layouts: ACIS-I has a FOV of 16.9′ × 16.9′, and ACIS-S has

a FOV of 8.3′ × 50.6′. HRC also include two kinds of CCD layouts: HRC-I

has a FOV of 30′ × 30′, and HRC-S has a FOV of 6′ × 90′.16 Because the vast

majority of X-rays from the universe are absorbed by earth’s atmosphere,

Chandra must orbit above it, up to an altitude of ∼ 140, 000 km in space

(Weisskopf et al., 2000b, 2002), which is about a third of the distance to the

moon. Chandra has observed a wide variety of high energy X-ray phenom-

ena in all-encompassing astronomical objects, e.g., the very hot regions of

15http://chandra.si.edu/about/science_instruments.html
16http://cxc.cfa.harvard.edu/cdo/about_chandra/#ACIS

http://chandra.si.edu/about/science_instruments.html
http://cxc.cfa.harvard.edu/cdo/about_chandra/#ACIS
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the universe from the exploded stars, the giant clouds of super hot gas that

surround galaxy clusters, and the matter around black holes (Weisskopf et al.,

2002).

ACIS imaging processing

The Chandra data reduction and spectra extraction are performed using

CIAO (Chandra Interactive Analysis of Observations; current version 4.917)

tool and the Chandra Calibration Database (CALDB, current version 4.7.618).

We perform the spectral analysis with Sherpa19. Below is an overview of the

Chandra spectral analysis, and the practical applications are illustrated in

Section 3.2.

i. Use the script download_chandra_obsid to download public Chandra data

by ObsId from the Chandra archive.

ii. Reprocess the data with chandra_repro to ensure that the latest calibra-

tion products have been used.

iii. Astrometric corrections are needed to get best possible source positions

in the case of multiple observations.

iv. Use specextract to extract source and background spectra and build the

proper Response Matrix Files (RMFs) and Ancillary Response Files

(ARFs).

v. Fit ACIS spectral data with Sherpa.

Pileup is a phenomenon of two or more photon events overlapping in a single

detector frame and being read as a single event with the wrong energy. It is

inherent to CCD detectors. The observations are not affected by pileup if the

source is faint enough and the observation is short enough. For sufficiently

bright sources, pileup leads to a visible "hole" in the source image. Thus,

the effects of the pileup can lead to the loss of spectral information and are

unnegligible. A solution to the pileup problem is proposed in paper Davis

(2001), and the pileup model included in Sherpa is used to fit the spectra

with heavy pileup contamination20.

17http://cxc.harvard.edu/ciao/download/
18http://cxc.harvard.edu/ciao/download/caldb.html
19http://cxc.harvard.edu/sherpa/threads/index.html
20http://cxc.harvard.edu/sherpa/ahelp/jdpileup.html

http://cxc.harvard.edu/ciao/download/
http://cxc.harvard.edu/ciao/download/caldb.html
http://cxc.harvard.edu/sherpa/threads/index.html
http://cxc.harvard.edu/sherpa/ahelp/jdpileup.html
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1.4.4 NuSTAR and data processing

NuSTAR telescope and performance

The Nuclear Spectroscopic Telescope Array (NuSTAR) mission, launched in

June 13, 2012, is the first focusing hard X-ray telescope in orbit (Harrison

et al., 2013). NuSTAR consists of two co-aligned telescope modules with

corresponding focal plane modules termed FPMA and FPMB, both operating

in the energy range from 3 to 79 keV. So far, NuSTAR has the best angular

resolution and sensitivity beyond∼ 10 keV. NuSTAR has an angular resolution

of 18′′(FWHM) and a half-power diameter (diameter of a circle enclosing

half of the X-ray counts from a point source) of 58′′. The FOV is 10′at 10 keV

and 6′at 68 keV. The effective area is about 700 cm2 at 5 keV, 800 cm2 at 10

keV, and 60 cm2 at 79 keV. The flux sensitivity is 2 × 10−15erg/cm2/s in the 6-10

keV range and 1 × 10−14erg/cm2/s in the 10-30 keV range.21 NuSTAR is aimed

at studying objects such as black holes, supernovae, and extremely active

galaxies.22

NuSTAR data processing

The NuSTAR data reduction and spectra extraction are performed using the

HEASoft23, which includes the NuSTAR Data Analysis Software (NuSTARDAS)

and corresponding NuSTAR CALDB. Generally, the fitting package XSPEC24

or Sherpa is used to perform the spectral analysis. Below are the main

processing steps:

i. Download the NuSTAR observation(s) from http://heasarc.gsfc.nasa.

gov/FTP/nustar/data/obs/.

ii. Calibrate and screen the primary event files by running the nupipeline

script.

iii. Use nuproducts to generate the high-level data products, e.g., the energy

spectra, the RMF and ARF files for spectral analysis, the corrected

source and background light-curves, and the sky images.

iv. Fit the NuSTAR spectra using Sherpa.

21https://heasarc.gsfc.nasa.gov/docs/nustar/nustar_tech_desc.html
22https://www.nustar.caltech.edu/page/education_outreach
23https://heasarc.nasa.gov/lheasoft/download.html
24https://heasarc.gsfc.nasa.gov/xanadu/xspec/

http://heasarc.gsfc.nasa.gov/FTP/nustar/data/obs/
http://heasarc.gsfc.nasa.gov/FTP/nustar/data/obs/
https://heasarc.gsfc.nasa.gov/docs/nustar/nustar_tech_desc.html
https://www.nustar.caltech.edu/page/education_outreach
https://heasarc.nasa.gov/lheasoft/download.html
https://heasarc.gsfc.nasa.gov/xanadu/xspec/
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2.1 Introduction and Motivation

Centaurus A (Cen A) is a Fanaroff-Riley type I (FR I) radio galaxy that is

hosted by the massive elliptical galaxy NGC 5128 (see Israel, 1998). It is the

closest radio galaxy located at a distance of 3.8 ± 0.1 Mpc (Harris et al., 2010,

1′ ' 1.14kpc). Cen A contains a central black hole with a mass of (5.5±3.0)×107

M� (Cappellari et al., 2009). The dynamical age of the galaxy is ∼ 0.5 −1.5

Gyr (Wykes et al., 2013, 2014; Eilek, 2014). At radio frequencies, a pair of

giant lobes are visible, extending from the core to the north and south with

an angular size of ∼ 10◦ (∼ 600 kpc in projection) (Shain, 1958; Burns et al.,

1983); Because of its unique proximity and complex morphology, the giant

lobes have been extensively studied in both radio (e.g. Combi & Romero,

1997; Stefan et al., 2013; Alvarez et al., 2000; Hardcastle et al., 2009; McKinley

et al., 2013) and γ-ray bands (e.g. Abdo et al., 2010b; Yang et al., 2012).

The high energy γ-ray emission in the outer lobes is believed to be pro-

duced through the inverse Compton (IC) channel, when the relativistic elec-

trons upscatter low energy background photons, including the cosmic mi-

crowave background (CMB) and ubiquitous extragalactic background light

(EBL), to MeV-GeV energies (Abdo et al., 2010b; Yang et al., 2012). This

provides an unique opportunity to map the spatial and energy distribu-

tion of relativistic electrons in this source. Furthermore, by comparing the

radio/microwave and γ-ray emissions, we can obtain unambiguous infor-

mation on the magnetic fields.

Owing to the accumulative photon statistics and the recently improved

software tools of Fermi-LAT, we can extend the original analysis of Yang et al.

(2012) to lower and higher energies and investigate the spatial variation of

39
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γ-ray spectra. In such low magnetic field (∼ uG) the electrons that produce

GeV γ-rays via IC scattering, have much higher energies than those which

produce radio/microwave radiation via synchrotron radiation. The Planck

satellite provides high sensitivity data with full sky coverage extending from

30 GHz to 853 GHz. These frequencies minimise the energy gap between the

two electron populations responsible for radio and γ-rays emissions.

In this chapter, we present a detailed analysis of the broadband emission

of the lobes of Cen A using γ-ray data from Fermi-LAT and microwave data

from Planck. In Section 2.2, we perform the analysis of Fermi-LAT data.

In Section 2.3, we analyse the MHz-range data from radio telescopes and

microwave data from Planck. In Section 3.3, we fit the broadband spectral

energy distributions (SEDs) of the lobes within a pure leptonic and more

complex leptonic+hadronic models. We discuss the results in Section 3.4.

2.2 Fermi-LAT Data Analysis

The analysis of this section includes the Fermi-LAT data from the direc-

tions of the two giant radio lobes. We selected observations from August

4, 2008 (MET 239557417) until June 27, 2015 (MET 457063584) and used

photons in the energy range between 60 MeV and 30 GeV. A 14◦ × 14◦ square

region centred at the location of Cen A (RA = 201◦21′54′′, Dec = −43◦1′9′′)
was selected as the region of interest (ROI). We selected both the front and

back converted photons. To reduce the background contamination from

the Earth’s albedo, the events from directions > 90◦ were excluded from the

analysis. We adopted the version P8R2_SOURCE_V6 of the instrument re-

sponse function (IRF) provided by the Fermi-LAT collaboration. The binned

likelihood analysis implemented in science tool gtlike was used to evaluate

the spectrum.

To define the initial source list, we use the four-year catalogue (3FGL)

(Acero et al., 2015) by running the make3FGLxml script1. In the initial list,

the spectral parameters of point-like sources within the ROI are left as free

parameters. Also, we use the default spatial template for giant lobes pro-

vided by the Fermi collaboration. We use the models of Galactic diffuse and

isotropic emission provided by the Fermi team2 for the foreground compo-

nents. In the fitting, the normalisations of both components are left as free

parameters.

1http://fermi.gsfc.nasa.gov/ssc/data/analysis/user/make3FGLxml.py
2http://fermi.gsfc.nasa.gov/ssc/data/access/lat/BackgroundModels.html

http://fermi.gsfc.nasa.gov/ssc/data/analysis/user/make3FGLxml.py
http://fermi.gsfc.nasa.gov/ssc/data/access/lat/BackgroundModels.html
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Table 2.1: TS value and likelihood value for the three templates used in
2.2.1.

Model Core North lobe South lobe -log(Likelihood)
T1 7147 459 1591 42104
T2 6195 377 1610 42156
T3 5881 337 1566 42184

2.2.1 Spatial analysis

For morphology studies, we also build our own templates directly from

the γ-ray residual maps. We apply gtlike with the initial source list and

derive a fitted model. Then we produce the residual maps by removing

the contributions from the diffuse background and all catalogue sources

except the giant lobes. We also mask the inner 1◦ nucleus of Cen A to prevent

the contamination from that region. Finally, we divide the residual maps

into north and south lobes. Generally speaking, high energy maps with

higher angular resolution are more suitable for the spatial analysis, but

low statistics in the higher energy range may prevent any improvement.

To address this problem, we apply the procedure described above to the

energy range > 1000 MeV and > 100 MeV, respectively. The resulting spatial

templates are labelled as T1 (> 1000 MeV) and T2 (> 100 MeV).

We use the residual templates T1 and T2, as well as the default spatial

templates provided by the Fermi team3 (T3), to model the giant lobes, and

apply gtlike to three models in the energy range above 100 MeV. The resulting

TS and -log(Likelihood) values are listed in table 2.1. In the case of template

T1, the core of Cen A is clearly visible with a test statistic of TS > 7000,

corresponding to a detection significance of 84σ. Extended emission to

the north and south of the lobes of Cen A is detected with significances

of TS > 450 (21σ) and TS > 1500 (39σ), respectively. The -log(Likelihood)

for T1 is significantly smaller than that of T2 and T3. Therefore, for our

analysis, we select template T1. The Fermi-LAT counts map produced for

the > 1000 MeV data set, is shown in Figure 2.1(a); the green crosses show

the position of point-like sources from the 3FGL catalogue within the ROI.

The corresponding residual image (template T1) is shown in Figure 2.1(b).

For comparison, the Planck 30 GHz lobe contours (green contours) are also

plotted in the image. It can be seen that both the north and south lobes of

the HE γ-ray emission extend beyond the radio lobes.

3http://fermi.gsfc.nasa.gov/ssc/data/analysis/scitools/extended/extended.
html

http://fermi.gsfc.nasa.gov/ssc/data/analysis/scitools/extended/extended.html
http://fermi.gsfc.nasa.gov/ssc/data/analysis/scitools/extended/extended.html
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Figure 2.1: (a) LAT counts map of the 14◦ × 14◦ ROI. The counts map is
smoothed with a Gaussian of kernel 0.7◦. The green crosses indicate the
position of the point-like sources within 7◦ of Cen A. (b) Residual maps of
lobes after subtracting the diffuse background, the point-like sources, and
the Cen A core. The green contours indicate Planck 30 GHz lobe contours.
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Figure 2.2: Derived SEDs of the north lobe and south lobe, with power-law
fits. The corresponding photon indices are ΓN and ΓS. The ratio of the north
and south fluxes is shown in the bottom panel. For the first two energy bins,
the SEDs derived using a larger ROI are also shown as bold triangles.

2.2.2 Spectral analysis

To derive the SED, we divide the energy interval between 100 MeV and 30 GeV
into ten equal bins in logarithmic space and use gtlike in each bin. To extend

the spectral analysis to lower energies, we also include photons with energy

between 60 MeV and 100 MeV, and regard these as the first energy bin. We

apply energy dispersion correction to this energy bin. The significance of

the signal detection in each energy bin exceeds TS = 8 (∼ 3σ). The SEDs

fitted with a power law are shown in Figure 2.2. Correspondingly, the pho-

ton indices of the north and south lobes are (2.21 ± 0.02) and (2.29 ± 0.03),
respectively. Within uncertainties, the index of the north lobe is consistent

with that in Yang et al. (2012), while the index of the south lobe is slightly

smaller. The integral flux above 100 MeV is (0.54 ± 0.06) × 10−7 ph cm−2 s−1 for
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Figure 2.3: Spectral extraction regions used for Figure 2.4. The contour
levels correspond to the γ-ray image (>1000 MeV). The red lines indicate
the regions of the radio and Planck aperture photometry. The contours
inside the corresponding regions show the template used for the extraction
of the corresponding LAT spectrum. N1, N2, and N3 are the outer, middle,
and inner regions of the north lobe, and S1, S2, and S3 are the outer, middle,
and inner regions of the south lobe. The circle is the core region.
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bottom plot shows the SEDs of the slices in the south lobe. The solid lines
indicate the power-law fits. Γ1, Γ2, and Γ3 are the corresponding photon
indices.
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the north lobe and (1.22 ± 0.05) × 10−7 ph cm−2 s−1 for the south lobe.

At low energy, the point spread function (PSF) of Fermi can be as large

as 5◦, in which case the 14◦ × 14◦ ROI used here may be not sufficient. We

refit the first two energy bins using a 20◦ × 20◦ ROI to see the influence of the

limited ROI. These results are also shown in Figure 2.2 and are consistent

with those derived from the smaller ROI.

To test the possible spectral variations from the outer regions of the lobes

towards the central core, we split each lobe of template T1 into three parts.

These regions are shown in Figure 2.3. The contour levels derived from the

Fermi-LAT γ-ray image (>1000 MeV), are used for the spectral extraction and

the red rectangles are used for the radio and Planck data aperture photometry.

The outer, middle and inner regions of the north lobe are N1, N2 and N3,

respectively, and S1, S2 and S3 are the outer, middle and inner regions of the

south lobe, respectively. The circle is the core region.

We derive the SEDs (see Figure 2.4) for every slice and an upper limit is

calculated within 3σ confidence level for the signal that is detected with a

significance of less than 2σ. We use a power-law function to fit the observed

data. The upper limits in SEDs are also used to constrain the parameters of

the power-law function. As shown in Figure 2.4, in the north lobe N1 and

N2 are consistent with each other within the uncertainties, but N3 is steeper

than N1 and N2. In the south lobe, the photon indices for the three slices

differ: the spectra become harder moving away from the core.

2.3 Radio and Planck Data Reduction

2.3.1 Radio data

We use 118 MHz MWA data (McKinley et al., 2013), 408 MHz Haslem data

(Haslam et al., 1982), and 1400 MHz Parkes data (O’Sullivan et al., 2013).

The flux densities are measured using aperture photometry over the same

subregions as the Planck data (red rectangles shown in Figure 2.3). We use a

ds9 plug-in radio flux measurement4 to measure the flux densities for each

region and frequency. The results are listed in table 2.3.

2.3.2 Planck data

We use the Planck full-mission maps from Public Data Release 2 (PR2) prod-

ucts, which can be obtained via the Planck Legacy Archive (PLA) interface5.

The Planck all-sky maps are in Healpix (Górski et al., 2005) format, with

4http://www.extragalactic.info/~mjh/radio-flux.html
5http://pla.esac.esa.int/pla

http://www.extragalactic.info/~mjh/radio-flux.html
http://pla.esac.esa.int/pla
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the resolution parameter Nside = 1024 for LFI 30, 44 and 70 GHz, and 2048

for LFI 70 GHz and HFI 100 − 857 GHz. The data are given in units of CMB

thermodynamic temperature (KCMB) up to 353 GHz, and in MJy sr−1 for 545
and 857 GHz. The temperature units and MJy sr−1 are converted to flux den-

sity per pixel with multiplication by the factor given in the last column of

table 2.2, the derivations of the conversion factors are in Appendix A. For

ease of comparison with γ-ray emission, we degrade the resolution of the

original Healpix data from 1024 or 2048 into 512 (a pixel size of about 6′),

and then project them on to the area with Fermi-LAT’s sky map using the

Healpy package6 and Astropy package7. Both calibration and systematic

uncertainties are considered. The zodiacal light level corrections are added

to the maps, and the cosmic infrared backgrounds (CIB) are removed from

the maps (Planck Collaboration et al., 2016a). The characteristics of Planck

for each frequency band are listed in table 2.2.

6https://healpy.readthedocs.org/en/latest/tutorial.html
7http://docs.astropy.org/en/stable/index.html#

https://healpy.readthedocs.org/en/latest/tutorial.html
http://docs.astropy.org/en/stable/index.html#
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Table 2.2: Planck characteristics of full mission maps.

Frequency Beam FWHM Calibration error Systematic error CIB correction Zodiacal light correction Units factor
[GHz] [arcmin] [%] [µKCMB] [MJy/sr] [MJy/sr] [Jy/pix]

30 32.29 0.35 0.19 - - 107.90
44 27.00 0.26 0.39 - - 226.02
70 13.21 0.20 0.40 - - 530.61

100 9.68 0.09 - 0.003 1.03e-4 953.87
143 7.30 0.07 - 0.0079 3.57e-4 1518.00
217 5.02 0.16 - 0.033 1.84e-3 1933.37
353 4.94 0.78 - 0.13 0.01 1187.18
545 4.83 5.00 - 0.35 0.04 3.99
857 4.64 5.00 - 0.64 0.12 3.99

The beams and the values used for Planck original data corrections are all taken from Planck Collaboration et al. (2016a).

Table 2.3: Flux density measurements of the regions of Cen A at low fre-
quencies. Blanks indicate the signal that was not detected in that region.

Frequency Flux density [Jy]
[GHz] N1 N2 N3 core S1 S2 S3
0.118a 362.65±48.26 517.63±61.86 620.58±70.84 2877.38±295.91 479.99±60.31 849.74±95.37 764.29±86.30
0.408a 165.07±18.78 265.98±28.95 291.83±31.21 1103.06±112.19 368.12±39.64 495.86±52.01 382.24±40.48

1.4b 72.25±1.55 97.56±2.04 107.22±2.22 483.45±9.74 81.13±1.73 163.92±3.37 162.55±3.34
30 9.63±0.01 11.19±0.01 12.41±0.01 82.48±0.01 9.29±0.01 19.26±0.01 24.36±0.01
44 5.43±0.03 8.03±0.03 8.67±0.02 55.09±0.02 - 10.82±0.03 16.63±0.02
70 2.37±0.07 11.70±0.06 7.92±0.05 39.89±0.05 - 15.67±0.06 12.58±0.05

100 - 4.45±0.05 - 23.21±0.03 - 9.11±0.04 -
143 - - - 9.16±0.04 - 3.92±0.04 -

a 10% of the flux is considered as systematic error.
b 2% of the flux is considered as systematic error.
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Figure 2.5: From top left to bottom right: radio/microwave images of the
Cen A and surrounding field at 118, 408, 1400 MHz, 30, 44, 70, 100, and 143
GHz. The Planck maps are cleaned maps, which are used to measure the
flux densities (see subsection 2.3.3 in details). These images are smoothed
using a Gaussian kernel 0.3◦.
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Figure 2.5 — continued

2.3.3 Thermal dust and CMB components separation

In our ROI, synchrotron radiation dominates in the low frequency band.

However, in the high frequency bands (> 100 GHz) CMB and thermal dust

emission begin to overwhelm the non-thermal emission (Planck Collabo-

ration et al., 2016b). It is possible to use higher frequency maps to derive

accurate information on CMB anisotropy and thermal dust emission, with

which we can get more robust non-thermal spectra in lower frequency than

a simple aperture photometry method.

Thermal emission from dust grains dominates the radiation mechanism

in the far-infrared (FIR) to millimetre range (e.g. Draine (2003); Draine &

Li (2007); Compiègne et al. (2011)), and is the main foreground hampering

the study of Cen A at Planck frequencies. We selected a modified blackbody

(MBB) (Planck Collaboration et al., 2014a) to fit the thermal dust component

empirically, that is

Id = AdBν (Tobs)
(
ν

ν0

)βobs

, (2.1)

where ν0 = 353 GHz is the reference frequency. There are three parameters

in this model: the dimensionless amplitude parameter Ad, temperature Tobs,

and the spectral index βobs. Because there are only a few frequency bands

available, in the fitting we leave Ad and Tobs to be free and fix the index βobs to

be the value in the Planck all-sky model of thermal dust emission (Planck

Collaboration et al., 2014a) from PLA.

Another foreground is the CMB. A blackbody with the TCMB = 2.7255 K

(Fixsen, 2009) is selected to fit the CMB component

ICMB = ACMBBν (TCMB) , (2.2)

where ACMB is a dimensionless amplitude parameter.
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In order to derive the emission signals of Cen A in the low energy band

from 30 to 143 GHz accurately, we use the Planck 217, 353, 545, and 857

GHz, and IRAS 3000 GHz (100 µm) data to constrain the parameters Ad, Tobs,

and ACMB at each pixel using a chi-squared (χ2) minimisation, and then

extrapolate the two models to low energy. Here we manipulate the 100 µm
data following the method described in Planck Collaboration et al. (2014a).

Considering the effects of both the parameter uncertainties of the mod-

els (CMB and thermal dust) and the errors of the observed Planck data, we

perform the following steps in deriving the microwave flux and errors of the

lobes. (1) For any pixel within the ROI, we draw 50 groups of random samples

from a normal (Gaussian) distribution for the free parameter set (ACMB, Ad,

and Tobs) according to the best-fitted value and fitted uncertainties. The

same procedure is also applied to the observed Planck data in each pixel.

The observed uncertainties should obey a Poisson distribution rather than

a Gaussian, but the large counts of the Planck maps makes Gaussian statis-

tics a reasonable assumption. (2) For each group of samples, we calculate

the thermal dust and CMB components based on equation 2.1 and equa-

tion 2.2, respectively. The thermal dust and CMB maps are both smoothed

to the Planck original angular resolution (listed in Table table 2.2) to obtain

a matched resolution map. Then we remove the CMB and thermal dust

component to derive the background subtracted value of this pixel in each

sample. (3) We choose the average and standard deviation of the 50 sampled

background subtracted values as the final cleaned value and corresponding

errors in this pixel. (4) We repeat steps (1) to (3) at each pixel within the

ROI, and finally derive the CMB and dust emission subtracted cleaned maps

and corresponding error maps, which are used to measure the integral flux

densities in the following. The derived cleaned maps from 30 GHz to 143

GHz are shown in Figure 2.5.

2.3.4 Flux density measurements

We use the standard aperture photometry, with the aperture size (red rectan-

gles) shown in Figure 2.3, to measure the integral flux densities of the Planck

30, 44, 70, 100, and 143 GHz maps. The measurements of flux density for

each region and frequency, together with errors within 1σ confidence level,

are listed in Table 3. The errors are derived from the error maps described

above using error propagation.8 The flux densities of the core are consistent

8Let function y2 =
y0
y1

, y0 and y1 are two independent variables with the corresponding
errors σ0 and σ1. Then the uncertainty σ2 of the function y2 depends on σ0 and σ1: σ2 =√(

∂y2
∂y0

)2
σ2

0 +
(
∂y2
∂y1

)2
σ2

1 =

√(
σ0
y1

)2
+

(
y0σ1

y2
1

)2
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Figure 2.6: γ-rays from hadronic interactions of cosmic rays in different
channels. Also shown is the SED of the south lobe. The primary proton
spectra are assumed to be a power-law function with an index of 2.3 to fit
the high energy part of the SED of the south lobe.

with their corresponding values of region 3 in Hardcastle et al. (2009), which

confirm that our model selection and method are reasonable.

2.4 Modelling the Spectral Energy Distributions

To fit the derived spectral distributions, we use the software package Naima9.

We find that the power-law shape of the spectrum extends down to 100 MeV.

This does not agree with the spectrum of low energy γ-rays from hadronic

interactions of cosmic rays. The latter has a standard shape, which is dictated

by the kinematics of the π0 decay rather than the spectrum of cosmic rays.

The region of sharp decline of the SED of π0-decay γ-rays below 1 GeV is

partly "filled" by photons generated by secondary electrons (through the

IC scattering and Bremsstrahlung), that are the products of the charged π±-

meson decays. However, these components do not appear to sufficiently

compensate the deficit even in the most optimistic case of a "thick target"

when the production of secondaries is saturated. This is demonstrated in

Fig.2.6, which shows the three channels of γ-ray production initiated by pp
interactions and the SED of south lobe. It is assumed that the density of the

ambient gas n is sufficiently high that the lifetimes of relativistic protons,

tpp ∼ 1015
(

n
1 cm−3

)−1
s, as well as secondary electrons, are shorter than the

confinement time of cosmic rays. Under this condition, the steady-state

9http://naima.readthedocs.org/en/latest/index.html#

http://naima.readthedocs.org/en/latest/index.html#
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solutions shown in Figure 2.6 apparently do not depend on the density

n. The relative contribution of γ-rays from secondary electrons does not

strongly depend on the spectrum of cosmic rays. We can safely conclude

that the low energy γ-rays from both lobes are not contributed by cosmic ray

protons and nuclei.

Thus, the spectral measurements presented in this work remove the

uncertainty of the previous study, Yang et al. (2012), regarding the origin of

γ-rays. It is clear that γ-rays are produced, at least in the energy band below

1 GeV, by directly accelerated electrons. Because of the low gas density in the

lobes, the γ-ray production is dominated by the IC scatterings of photons

of the 2.7 K CMB radiation, with possible contribution from photons of the

EBL by relativistic electrons. Although the energy density of the EBL is much

lower than the energy density of the CMB, the role of the EBL photons can

be noticeable in the formation of the spectrum at the highest γ-ray energies,

especially in the case of a cutoff in the electron spectrum below a few TeV. The

photons from the host galaxy of Cen A are also potential seed photons for IC

scattering. As calculated in Abdo et al. (2010b), however, the IC gamma rays

from the photon fields produced by the host galaxy are negligible compared

with those from the CMB and EBL.

For different parts of the lobes, the distributions of electrons and the

strength of the magnetic fields can be derived from the fit of the Planck,

radio, and Fermi-LAT γ-ray data by synchrotron and IC components, respec-

tively. We use the formalism of Aharonian et al. (2010) for the calculations

of synchrotron radiation and the formalism proposed in Khangulyan et al.

(2014) for IC scattering. The temperature TCMB = 2.7255 K and energy den-

sity nCMB = 0.261 eV cm−3 are adopted for the CMB photon field. We use the

model of Franceschini et al. (2008) for the EBL.

For the energy distribution of electrons, we assume the following general

form:

N(E) = A
(

E
E0

)−α
exp(−

(
E

Ecutoff

)β
). (2.3)

Here E0 = 1 GeV is the reference energy. In calculations, the parameters A, α,

Ecutoff , and β, characterising the electron spectrum, and the strength of the

magnetic field B, are left as free parameters. The minimum electron energy

is set to Eemin = 1 MeV. Figure 2.7 shows the SED results obtained for the

subregions from Figure 2.3. The derived model parameters Ecutoff , β, B, and

the corresponding errors with 1σ confidence level, as well as the total energy

of electrons We, are presented in table 2.4 for the regions N1,N2, N3 and S1,

S2, S3. It should be mentioned that for N2, N3, S2, and S3, the Planck data

points above 70 GHz are significantly above the model predicted value and

we omit these points in the fit. The reason may be a poor understanding of
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Table 2.4: Summary of SED best-fitting model parameters for the power-
law electron distribution with cutoff.

Model components N1 N2 N3 S1 S2 S3
We [×1057 erg] 0.98±0.08 1.8±0.3 0.67+0.07

−0.05 0.18±0.03 2.5±1.5 1.0+0.3
−0.2

α 1.65±0.03 2.02+0.06
−0.07 1.79±0.04 2.42±0.02 1.96+0.07

−0.14 1.78±0.07
Ecutoff [GeV] 65.5±1.8 59±6 21.2±1.9 - 5.0±0.4 38.9+3.0

−1.8
β 20±2 1.9±0.2 0.68±0.02 - 0.42+0.05

−0.02 1.02+0.07
−0.05

B [µG] 0.70±0.04 1.26±0.08 1.78+0.07
−0.11 13.4±0.8 2.29+0.17

−0.12 1.74±0.07

Table 2.5: Summary of SED best-fit model parameters for a broken power-
law electron distribution.

Model components N1 N2 N3 S1 S2 S3
We [×1057 erg] 0.63±0.07 2.7+0.8

−0.5 0.55±0.07 0.18±0.03 2.8+2.0
−0.9 1.2+0.7

−0.4
α1 1.54±0.06 2.13+0.06

−0.08 1.92+0.05
−0.08 2.42±0.02 2.08±0.10 1.77±0.14

α2 8.5+2.0
−1.4 9±3 3.9±0.2 - 4.18±0.16 5.5+0.4

−0.3
Ebreak [GeV] 51±4 59+8

−12 32±3 - 36±3 44±4
B [µG] 0.79±0.06 1.14±0.09 1.79±0.12 13.4±0.8 1.37±0.08 1.23±0.09

Table 2.6: Summary of SED best-fit parameters in the leptonic+hadronic
model.

Model components N1 N2 N3 S1 S2 S3
Wp [×1060 erg] 1.04±0.12 0.78±0.11 0.42±0.19 1.4+0.7

−0.4 0.19+0.14
−0.08 0.61±0.10

α 2.59±0.12 2.7±0.2 2.16+0.20
−0.11 2.05±0.12 2.7+0.4

−0.3 2.48+0.08
−0.06

the high frequency background in this band. Meanwhile, for N2 and N3 the

high Fermi points are significantly above the model curve; this is caused by

the fact that the weighting of these high energy points in MCMC fitting is

relatively small owing to their larger error bars.

We should note that in this study we find, in contrast to the statement in

the paper Yang et al. (2012), that the EBL photons appear important (except

for the region S1), as target photons for the IC scattering, to fit the γ-ray

data. The reason is that now the additional Planck data provide stringent

constraints on the cutoff regions of the electron spectrum.

For all regions, except for S1, the γ-ray spectra correspond to electrons

from the post-cutoff region. Meanwhile the radio data are produced by elec-

trons from the pre-cutoff region. This follows from the essentially different

indices of the radio and γ-ray spectra. The region S1 is of special interest

because of lack of any indication for a cut off in both the radio and γ-ray

spectra. In this region, the γ-ray and radio data points can be fitted with a

pure power-law electron spectrum up to 1 TeV. Another special feature of

this region is that the derived magnetic field is about 10 µG, which is much

higher than in other regions. This value exceeds by an order of magnitude

the strength of the magnetic field typically assumed for the radio lobes (see

e.g. McKinley et al., 2015).
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Figure 2.7: Broadband SEDs for each region shown in Figure 2.3. Observed
radio and Planck data (black dots with error bars) are fitted with a syn-
chrotron model. Observed Fermi-LAT data (red dots with error bars) are
fitted with the inverse-Compton (IC) scatterings of the CMB and EBL pho-
ton fields except for S1, which only requires the seed photon contribution
from the CMB. The upper limits are calculated within a 3σ confidence level.
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The dynamical ranges of both the radio and γ-ray data points are rel-

atively small, therefore the power-law electron spectrum with a cutoff is

not an unique explanation of the data. For example, the broken power-law

function, given in the form

N(E) = A (
E
E0

)−α1 , E < Ebreak

N(E) = A (
E
E0

)−α2 (
E0

Ebreak
)α1−α2 , E < Ebreak,

(2.4)

can fit the radio and γ-ray data equally well. The results are shown in Figure

2.8. The best-fit parameters are summarised in Table 2.5. We don’t apply

this electron distribution to the region S1 since the latter is explained by a

pure power-law spectrum. The differences in the indices before and after

the break are significantly larger than 1. This implies that the break cannot

be a result of radiative cooling, but rather is a characteristic feature of the

acceleration spectrum.

As mentioned above, at low energies, E ≤ 1 GeV, the γ-ray data can be

explained only by directly accelerated electrons. However, we cannot exclude

a significant contribution by a hadronic component to the overall γ-ray

emission. Moreover, an additional hadronic component helps us to improve

the fit of γ-ray spectra. In particular, the hadronic γ-ray emission could be

considered as an alternative to the IC scattering on the EBL photons. Such

an attempt to fit the radio and γ-ray SEDs successfully, with an involvement

of an additional hadronic component, is demonstrated in Figure 2.9. In this

case IC scattering from CMB contributes to the low energy part of γ-rays,

while the π0 decays contribute to the high energy tail. This is similar, to some

extent, to the modelling of the radio lobes of Fornax A in McKinley et al.

(2015), where the X-ray flux is due to the IC scattering, and γ-rays are from

the π0-decays.

To reduce the number of free parameters, in the “IC+π0” model we fix

the magnetic field and electron spectrum to the best-fit values from the

pure leptonic models described above. The only exception is the peculiar S1

region, for which we fix the magnetic field to the value of 1µG, i.e. by a factor

of 10 smaller than in the pure IC scenarios. We adopt the parametrisation

of neutral pion decay described in Kafexhiu et al. (2014) in the π0 model

calculation. We also fix the gas density, n = 10−4 cm−3. Then, the remaining

two free parameters are the spectral index α, and the total energy in protons,

Wp. The derived values of these parameters are presented in Table 2.6. The

power-law indices of the proton spectra in the different regions are similar

with an average value close to 2.5. The only exception is the region S1, where

the photon spectrum is very hard with α ∼ 2. The total energy in relativistic
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Figure 2.8: Same as Figure 2.7 but for broken power-law electron distribu-
tions.
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Figure 2.9: Same as Figure 2.7 but for a hybrid model in which both leptonic
and hadronic process contribute.
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protons in S1 is also different; it is significantly higher than in other regions.

On the other hand, the additional hadronic component permits the reduc-

tion of the magnetic field to a nominal value of about 1µG. Finally, in the

south lobe we see a hardening of the proton spectrum. Interestingly, such an

effect has also been seen in Fermi bubbles (Su et al., 2010; Ackermann et al.,

2014; Yang et al., 2014), which are two giant, ∼ 10 kpc scale, γ-ray structures

belonging to our Galaxy.

2.5 Conclusion and Discussion

We have analysed the SEDs of the giant lobes of Cen A across a wide range

of energies. The presented results increase the significance of the γ-ray

detections reported before, and, more importantly, significantly extend the

γ-ray spectrum down to 60 MeV and up to 30 GeV. This allows us to make

rather robust conclusions regarding the origin of different components of

the γ-ray emission.

We confirm the different morphologies of the giant lobes in γ-rays and

radio frequencies. This can be explained by the fact that the morphology

of synchrotron radiation is strongly affected by the spatial distribution of

the magnetic field. Also, the electrons responsible for γ-ray emission have

higher energies than the electrons producing synchrotron emission in the

lobes. To minimise the energy gap between the electrons responsible for the

IC and synchrotron electrons, we further analyze the high frequency Planck

data.

We divided both lobes into three regions and found significant spectral

variations between regions. The power-law shape of the SED down to 100

MeV provides evidence against the hadronic origin of the emission. On the

other hand, the extension of γ-ray emission well beyond 10 GeV, and the

inclusion of the Planck data permits more comprehensive spectral studies

and broadband modelling of the SEDs. All regions in the south and north

lobes, except for the region S1, can be naturally explained within a pure

leptonic model in which the γ-rays are produced because of the IC scattering

of electrons on the CMB photons with a non-negligible contribution from the

EBL photons. The magnetic field and the total energy in relativistic electrons

in the lobes, which are derived from a comparison of the SED modelling and

the Fermi-LAT and Planck data, are about 1 µG and We ≈ 6 × 1057erg.

The region S1 has very different radiation characteristics compared to the

other regions. This is the only region where the radio and γ-ray components

have the same spectral index, and a single power-law electron spectrum

is required without a break or cutoff up to energies of 1 TeV. Although the
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SED of the region S1 can also be explained within a simple leptonic model,

it however requires an unusually large magnetic field, B ' 13µG, which is

an order of magnitude larger than the average field in the lobes. On the

other hand, the total energy of electrons in S1 is much smaller than in other

regions, by a factor of 3 to 15. Thus, the ratio of pressures due to the magnetic

field and relativistic electrons in S1 differs by 2 to 3 orders of magnitude from

the average value in the lobes.

An alternative explanation for the peculiar features of S1 could be the

effect of a non-negligible contribution of a new radiation component, pre-

sumably of hadronic origin. This contribution, on the top of the IC compo-

nent, should become significant only at high energies, therefore does not

contradict the above claim that γ-rays below 1 GeV should be dominated by

the IC scattering of electrons.

Indeed if we ignore the IC component from EBL, which is poorly con-

strained, the γ-ray spectra in all regions can be interpreted as a combination

of two components: IC scattering on CMB photons and hadronic γ-rays

from the pion decays. The derived total proton energy budget is of the order

of 5 × 1060erg, which is consistent with the estimation in Yang et al. (2012).

Such energy could only be accumulated on a timescale as long as 109 yrs,

assuming an injection rate of the order of 1044 erg/s. The diffusion coeffi-

cient of cosmic rays in this case can be estimated from the condition of their

propagation to distances of order of 100 kpc: D ∼ R2/t ∼ 3 × 1030 R
100 kpc cm2/s.

The hardening of the spectrum of cosmic rays in the south lobe is similar to

the spectral hardening towards the edge of Fermi bubbles (Su et al., 2010;

Ackermann et al., 2014; Yang et al., 2014), which may be related to the energy

dependent propagation of cosmic rays.

A possible problem of the leptonic+hadronic model applied to the lobes

of Cen A is the huge overall energy required in relativistic protons. It exceeds

the total energy in the magnetic field by two orders of magnitude. This

problem, however, can be reduced if we assume that the γ-ray production

at p-p collisions takes place primarily in the filamentary structures of the

lobes. This is similar to the idea in Crocker et al. (2014), who propose that the

collapse of thermally unstable plasma inside Fermi bubbles can lead to an

accumulation of cosmic rays and magnetic field into localised filamentary

condensations of higher density gas. If this is the case in the giant radio lobes

of Cen A as well, the required energy budget in CRs can significantly reduce

the required cosmic ray energy budget.

Concerning the relativistic electrons, their origin remains a mystery.

The huge size of the giant lobes makes it impossible to transport the rel-

ativistic electrons from the core of Cen A. More specifically, the SED fitting

results show that we need uncooled electrons of energy up to 50 GeV in
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the north lobe. The cooling time of 50 GeV electrons can be estimated as

tcool ∼
2×1019

wγ s ∼ 25 Myr, where w is the energy density of the ambient radi-

ation and magnetic fields in unit of eV cm−3 and γ is the Lorentz factor of

the electrons. The propagation length of electrons during the cooling time

is then l ∼ 30 kpc( D
1029 cm2/s )0.5, i.e. far less than the size of the lobe. The only

solution is the in situ acceleration of the electrons, such as the stochastic

acceleration in a turbulent magnetic field.





The Energy Distribution of
Relativistic Electrons in the
Kilo-Parsec Scale Jet of M87
with Chandra

3

3.1 Introduction

M87 (Virgo A, NGC 4486, 3C 274), the giant elliptical galaxy located in the

Virgo cluster at a distance of 16.7 ± 0.6 Mpc (1′′ = 78 pc), is one of the closest

radio galaxies (Blakeslee et al., 2009; Jordán et al., 2005). It is known to host a

central black hole with a mass of ' (3 − 6) × 109 M� (Macchetto et al., 1997;

Gebhardt et al., 2011; Walsh et al., 2013) and a one-sided ∼ 30′′scales jet

(Marshall et al., 2002; Harris et al., 2003). The jet is characterized by a viewing

angle between 10◦ − 25◦ and reveals superluminal motion of optical compo-

nents of (4 − 6)c within 6′′of the nucleus based on HST observations (Biretta

et al., 1999). Its jet power Pj is somewhat uncertain with estimates ranging

from a few times 1043 erg s−1 up to 1045 erg s−1 (e.g., Reynolds et al., 1996; de

Gasperin et al., 2012; Mościbrodzka et al., 2016; Levinson & Globus, 2017).

Owing to its proximity and high surface brightness at radio wavelengths

and above, M87 has become a key laboratory to investigate the property of

relativistic jets (e.g., Doeleman et al., 2012; Hada et al., 2016; Mertens et al.,

2016; Britzen et al., 2017).

Both the nucleus and several bright jet knots have been detected at radio,

optical, and X-ray wavelengths. Their broadband SEDs have been extensively

studied (e.g., Biretta et al., 1991; Sparks et al., 1996; Perlman et al., 2001).

The high-resolution observations performed by Chandra in the X-ray band

make it possible to investigate the SEDs of the jet substructures in or close

to the spectral cutoff regions, imposing important constraints on radiation

models (e.g., Marshall et al., 2002; Wilson & Yang, 2002; Waters & Zepf, 2005;

Zhang et al., 2010).

Owing to the accumulative exposure and the recently enhanced software

tools of Chandra, an improved analysis can now be performed to derive
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more accurate spectrometric information and to further investigate radi-

ation mechanism in this region. In this chapter we present the results of

a detailed analysis of the Chandra data on the M87 nucleus and knots ob-

served from 2000 to 2016. This chapter is structured as follows. In Section 3.2,

we describe details of the Chandra data reduction process, light curve anal-

ysis, and spectral analysis. In Section 3.3, we construct the radio to X-ray

SEDs of the substructures (knots) in M87 and provide model fits to infer the

spectral distributions of the parent particles. We discuss the consequences

in Section 3.4.

3.2 Chandra Data Analysis

Details about CXO please see Section 1.4.3. In this chapter, the Chandra data

reduction and spectra extraction are performed using CIAO (v4.8) tool and

the Chandra Calibration Database (CALDB, v4.7.2). We perform the spectral

analysis with Sherpa.

3.2.1 Data preparation

We collected the Chandra ACIS timed exposure (TE) mode observations

from April 15 (ObsID 517), 2000 until June 12, 2016 (ObsID 18856) to perform

a detailed analysis of the M87 jet and nucleus. In Table 3.1 we list all the

observations, including 99 observations with a 0.4 s frame time and 13 ob-

servations with a 3.2/3.1 s frame time. The total exposure time is over 1460

kiloseconds.

Figure 3.1 provides an exemplary case, showing the ObsID 1808 X-ray im-

age binned into 0.123′′ per pixel and smoothed with a Gaussian of FWHM=0.3".

To avoid pileup (i.e., two or more photons arriving at the same pixel

during a single frame time, thus mimicking a single event with the sum of

the energies; see e.g., Davis, 2001), we generally selected the observations

with frame time of 0.4 s for all substructures analyses. However, because

the knots E, F, I, B, and C, as shown in Figure 3.1, are much fainter than the

nucleus, HST-1, knot D, and knot A, we also included the observations with

frame time of 3.2/3.1 s in the analysis of these knots.

To reduce uncertainties caused by the position offsets of different ob-

servations, we perform the astrometric corrections as follows. In order to

obtain more reliable source localisation during the process of astrometric

correction, the effect of broadband energy on the exposure map needs to be

avoided. Thus we first produce the exposure-corrected image, the weighted

exposure map, and the weighted PSF map. Finally, we perform wcs_match

and wcs_update to match all selected Chandra observations with a reference
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Table 3.1: Chandra Observations of M87.

ObsID Frame Time Exp Time Start Date ObsID Frame Time Exp Time Start Date
(s) (ks) (YYY-MM-DD) (s) (ks) (YYY-MM-DD)

1808 0.4 12.85 2000-07-30 8578 0.4 4.71 2008-04-01
3085 0.4 4.89 2002-01-16 8579 0.4 4.71 2008-05-15
3084 0.4 4.65 2002-02-12 8580 0.4 4.7 2008-06-24
3086 0.4 4.62 2002-03-30 8581 0.4 4.66 2008-08-07
3087 0.4 4.97 2002-06-08 10282 0.4 4.7 2008-11-17
3088 0.4 4.71 2002-07-24 10283 0.4 4.7 2009-01-07
3975 0.4 5.29 2002-11-17 10284 0.4 4.7 2009-02-20
3976 0.4 4.79 2002-12-29 10285 0.4 4.66 2009-04-01
3977 0.4 5.28 2003-02-04 10286 0.4 4.68 2009-05-13
3978 0.4 4.85 2003-03-09 10287 0.4 4.7 2009-06-22
3979 0.4 4.49 2003-04-14 10288 0.4 4.68 2009-12-15
3980 0.4 4.79 2003-05-18 11512 0.4 4.7 2010-04-11
3981 0.4 4.68 2003-07-03 11513 0.4 4.7 2010-04-13
3982 0.4 4.84 2003-08-08 11514 0.4 4.53 2010-04-15
4917 0.4 5.03 2003-11-11 11515 0.4 4.7 2010-04-17
4918 0.4 4.68 2003-12-29 11516 0.4 4.71 2010-04-20
4919 0.4 4.7 2004-02-12 11517 0.4 4.7 2010-05-05
4921 0.4 5.25 2004-05-13 11518 0.4 4.4 2010-05-09
4922 0.4 4.54 2004-06-23 11519 0.4 4.71 2010-05-11
4923 0.4 4.63 2004-08-05 11520 0.4 4.6 2010-05-14
5737 0.4 4.21 2004-11-26 13964 0.4 4.54 2011-12-04
5738 0.4 4.67 2005-01-24 13965 0.4 4.6 2012-02-25
5739 0.4 5.15 2005-02-14 14974 0.4 4.6 2012-12-12
5740 0.4 4.7 2005-04-22 14973 0.4 4.4 2013-03-12
5744 0.4 4.7 2005-04-28 16042 0.4 4.62 2013-12-26
5745 0.4 4.7 2005-05-04 16043 0.4 4.6 2014-04-02
5746 0.4 5.14 2005-05-13 17056 0.4 4.6 2014-12-17
5747 0.4 4.7 2005-05-22 17057 0.4 4.6 2015-03-19
5748 0.4 4.7 2005-05-30 18233 0.4 37.25 2016-02-23
5741 0.4 4.7 2005-06-03 18781 0.4 39.51 2016-02-24
5742 0.4 4.7 2005-06-21 18782 0.4 34.07 2016-02-26
5743 0.4 4.67 2005-08-06 18809 0.4 4.52 2016-03-12
6299 0.4 4.65 2005-11-29 18810 0.4 4.6 2016-03-13
6300 0.4 4.66 2006-01-05 18811 0.4 4.6 2016-03-14
6301 0.4 4.34 2006-02-19 18812 0.4 4.4 2016-03-16
6302 0.4 4.7 2006-03-30 18813 0.4 4.6 2016-03-17
6303 0.4 4.7 2006-05-21 18783 0.4 36.11 2016-04-20
6304 0.4 4.68 2006-06-28 18232 0.4 18.2 2016-04-27
6305 0.4 4.65 2006-08-02 18836 0.4 38.91 2016-04-28
7348 0.4 4.54 2006-11-13 18837 0.4 13.67 2016-04-30
7349 0.4 4.68 2007-01-04 18838 0.4 56.29 2016-05-28
7350 0.4 4.66 2007-02-13 18856 0.4 25.46 2016-06-12
8510 0.4 4.7 2007-02-15 517 3.2 6.99 2000-04-15
8511 0.4 4.7 2007-02-18 241 3.2 38.04 2000-07-17
8512 0.4 4.7 2007-02-21 352 3.2 37.68 2000-07-29
8513 0.4 4.7 2007-02-24 3717 3.2 20.56 2002-07-05
8514 0.4 4.47 2007-03-12 2707 3.2 98.66 2002-07-06
8515 0.4 4.7 2007-03-14 6186 3.2 51.55 2005-01-31
8516 0.4 4.68 2007-03-19 7212 3.1 65.25 2005-11-14
8517 0.4 4.67 2007-03-22 7210 3.1 30.71 2005-11-16
7351 0.4 4.68 2007-03-24 7211 3.1 16.62 2005-11-16
7352 0.4 4.59 2007-05-15 5828 3.1 32.99 2005-11-17
7353 0.4 4.54 2007-06-25 6186 3.1 51.55 2005-01-31
7354 0.4 4.71 2007-07-31 5827 3.1 156.2 2005-05-05
8575 0.4 4.68 2007-11-25 5826 3.1 126.76 2005-03-03
8576 0.4 4.69 2008-01-04
8577 0.4 4.66 2008-02-16
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Figure 3.1: Image from the observation on 2000 July 30 (ObsID 1808) in
the 0.2-10 keV, binned in 0.123′′ per pixel and smoothed with a Gaussian of
FWHM=0.3′′. The source and background regions are indicated by green
shapes. Units of right ascension are hours:minutes:seconds, and units of
declination are degrees:arcminutes:arcseconds.

observation ObsID 1808 separately. We choose ObsID 1808 as a reference

because it has the longest exposure time among the observations with frame

time of 0.4 s, thus it has the best statistics to ensure an accurate positioning.

We define the source region of each knot based on the X-ray positions in

table 1 of Perlman & Wilson (2005). The source and background regions are

shown in Figure 3.1.

3.2.2 Time variability

To study the time variabilities, we extract the flux for each observation in the

0.3-7 keV energy band and build the light curves for each region.

Nucleus

The nucleus reveals significant variabilities as shown in the top panel of

Figure 3.2. We define five flaring periods, marked with "1", "2", "3", "4",

and "5" and present zoomed-in light curves in Figure 3.2. To investigate the

characteristic time scales of these flares in more detail, we fit the light curves

with an exponential function of the form

Φ = Φ0 × e−|t−t0 |/∆τ (3.1)

Here ∆τ = τd/ ln(2), τd is the characteristic timescales of each flare. We freeze

t0 to the time of the highest data point for each flare. Φ0 and τd are free
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Figure 3.2: Top: The Chandra 0.3-7 keV light curve for the nucleus from
July 29, 2000 (MJD 51754) until March 17, 2016 (MJD 57464). Five flares (red
data points, labeled as "1", "2", "3", "4", and "5") are selected for further
analyses in the following. Bottom: Zoomed-in light curve of the five flares.
The solid lines show the fitting results by using Eq. 1.
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Figure 3.3: The Chandra 0.3-7 keV light curve for HST-1 during the same
time interval as in Figure 3.2. The black points are considered to belong to
the low state (L). The dashed lines, on the other hand, separate the high state
from January 16 (MJD 52290), 2002 until May 14, 2010 (MJD 55330)) into
five subsections, that are labeled as H1, H2, H3, H4, and H5. The data from
April 01, 2009 to May 14, 2010 belong to a transition period between high
and low state, and have thus been included in both, L and H5 calculations.

parameters. In principle the rising and decay timescale can be different. The

current data set, however, prevents us from deriving difference of the two

timescales due to the limited time coverage, especially in the rising stage.

Thus for the flares 1, 2, and 4 we perform fits assuming that both the rising

and decaying stage have the same τd. For the flares 3 and 5 we only fit the

decaying stage. The corresponding values of Φ0, τd, and t0 are listed in Table

3.2. The characteristic timescale for flare 5 is shortest with τd = 3.9 ± 1.7 days.

This flare is contemporaneous to the rapid TeV γ-ray flare seen on April 9-10,

2010 (MJD 55296) (see e.g., Abramowski et al., 2012; Harris et al., 2011). The

day-scale activity seen at X-ray and TeV energies in this context favours a

common physical origin of this emission (Abramowski et al., 2012; Aliu et al.,

2012).

HST-1

HST-1 shows significant variability over time, revealing flux variations much

larger than those of the nucleus. During the period from 2002 to 2010 the

total X-ray energy flux varied by one order of magnitude, reaching an extreme

high state in 2005 (see Fig. 3.3).

The 2005 X-ray high state of HTS-1 seemingly correlates with a high state

of M87 at TeV energies exhibiting rapid day-scale activity (Aharonian et al.,

2006). Early models thus assumed a common physical origin, while the
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Table 3.2: The fitting parameters for the selected flares of the nucleus using
a symmetric exponential function.

Flare Time Range τd t0 (frozen) Φ0
(MJD) (days) (MJD) (×10−12 erg/cm2/s)

Flare 1 52675-52859 171.27±23.07 52708 4.80±0.17

Flare 2 53336-53483 66.36±16.32 53394 8.35±0.75

Flare 3 53877-54053 143.38±64.76 53915 8.08±0.97

Flare 4 54430-54601 85.11±18.95 54512 7.89±0.68

Flare 5 55181-55302 3.91±1.70 55298 7.23±0.96

All errors are 1σ confidence level.

apparent absence of such a correlation for the subsequent TeV high state

in 2010 has been taken as disfavouring it. We note that there are several

reasons why day-scale TeV activity related to HST-1 now appears disfavoured

(see Rieger & Aharonian, 2012, for review and discussion). The presence

or absence of a possible X-ray-TeV correlation, however, seems rather less

conclusive in this regard as changes in the magnetic field and radiating par-

ticle number in a synchrotron (X-ray) and inverse Compton (TeV) approach

could well allow to accommodate both of them.

The X-ray flux of HST-1 seems to be continuously decreasing since 2007

with a characteristic decay timescale of ∼ (0.5 − 1) yr. This supports previ-

ous indications (Harris et al., 2009), and while dominant IC cooling is not

excluded (e.g., Perlman et al., 2011), seems compatible with the synchrotron

cooling timescale of electrons producing ∼ 1 keV photons in a ∼milligauss

magnetic field, tsyn . 1.5 (2 × 107/γ′)(1 mG/B′)2δ−1 yr. This could be taken as

providing additional evidence for a synchrotron origin of the X-ray emission.

For the analysis of the spectral variations of HST-1 presented in Sec-

tion 3.2.3, we divide the high activity period from January 16, 2002 (MJD

52290) until May 14, 2010 (MJD 55330) into five sections denoted by H1,

H2, H3, H4, and H5. The observation on July 30, 2000 (ObsID 1808) and the

observations after May 13, 2009 (ObsID 10286) are treated as low state (L).

The observations from April 01, 2009 to May 14, 2010, on the other hand,

belong to a transition period between the high and the low state, and have

thus been included in the following in both, L and H5 spectral calculations.

For a bright source pile-up could lead to distortions in the energy spectrum.

Using the pileup_map tool, we estimated the pileup fraction and found that

for H2, H3 and H4 the fraction is larger than 10%, even though we have only

selected observations with frame time of 0.4 s to avoid pileup. Thus for the

following spectral analysis we only include H1, H5 and L for HST-1.
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Other knots

Knot D and knot A show no significant variability. The flux variations lie

within the statistic errors of the flux determination, which is 15% for knot

D and 5% for knot A. The fluxes derived for the knots E, F, I, B, and C have

significant uncertainties due to the limited statistics of the observations. We

do not find any hint for variability even after re-binning the observations.

With exception of HST-1, we thus combined all observations for the following

spectral analysis of the knots.
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Figure 3.4: Chandra 0.3-7 keV light curves for the knots D, E, F, I, A, B, and
C during the same time interval as in Figure 3.2.



72
THE ENERGY DISTRIBUTION OF RELATIVISTIC ELECTRONS IN THE

KILO-PARSEC SCALE JET OF M87 WITH Chandra

10-13

10-12

10-11

νF
ν
(e
rg
/c
m

2 /
s)

Knot A

2000.0 2002.0 2004.0 2006.0 2008.0 2010.0 2012.0 2014.0 2016.0
Time (Year)

52000 53000 54000 55000 56000 57000 58000
Time (MJD)

0.0
0.5
1.0
1.5

χ
2 /
do
f

10-14

10-13

10-12

νF
ν
(e
rg
/c
m

2 /
s)

Knot B

2000.0 2002.0 2004.0 2006.0 2008.0 2010.0 2012.0 2014.0 2016.0
Time (Year)

52000 53000 54000 55000 56000 57000 58000
Time (MJD)

0.0
0.5
1.0
1.5
2.0
2.5

χ
2 /
do
f

10-14

10-13

10-12

νF
ν
(e
rg
/c
m

2 /
s)

Knot C

2000.0 2002.0 2004.0 2006.0 2008.0 2010.0 2012.0 2014.0 2016.0
Time (Year)

52000 53000 54000 55000 56000 57000 58000
Time (MJD)

0.0
0.5
1.0
1.5

χ
2 /
do
f

Figure 3.4 — continued

3.2.3 Spectral analysis

For the spectral analysis we perform an aperture photometry using specex-

tract on the nucleus and each knot. The source and background regions are

defined as in Figure 3.1.
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Nucleus and HST-1 in early 2010

The nucleus is highly variable and suffers from pile-up even for observations

with frame time of 0.4 s, which could affect the inherent spectral energy

distribution (e.g., lead to spectral hardening). Thus we don’t combine any

observation. Instead, we focus only on an analysis of those observations

contemporaneous to the 2010 TeV flare. In 2010 HST-1 was back to a state

comparable with the pre-2004 time, during which pile-up was found to be

fairly mild (Harris & Krawczynski, 2006; Russell et al., 2015). We fit the spectra

in each observation using a single power-law plus Galactic absorption model.

To suitably deal with the pile-up we add an additional pileup model jdpileup

to the spectral fit. The fitted indices for the nucleus are shown in Tab. 3.3

along with those for HST-1. The photon indices for the nucleus are on

average close to Γ ∼ 2.1 − 2.2, which seems compatible with earlier (non-

flaring) results (Wilson & Yang, 2002; Perlman & Wilson, 2005). A hint for

spectral variations might be seen in the nucleus, while the HST-1 spectrum

appears stable, though the short exposures limit definitive inferences. Our

values for the nucleus are similar to that in Harris et al. (2011). Our values

for the nucleus are similar to that in Harris et al. (2011). Our results for

HST-1, however, are harder than those reported in Harris et al. (2011), yet

still compatible within the 1σ error bars. We note that in our analysis the

error bars are much larger due to the additional free parameters in the pileup

model that has been included in our analysis. For sources closer than an

arcsec, such as the nucleus and HST-1 (which are separated by 0.86"), an

"eat-thy-neighor" effect may in principle occur (Harris & Krawczynski, 2006;

Harris et al., 2009), where photons arriving within the same frame time and

3× 3 pixel grid are registered as a single event at the location of the pixel with

the larger energy. As suggested by Harris et al. (2009) this effect is however

not expected to cause serious problems below a (detector-based) intensity

limit of 4 keV/s (e.g., for the pre-2004 and post-2006 time for HST-1).

The X-ray photon indices for the nucleus are in principle in the range of

those achievable by Comptonization in a hot accretion flow. Early models in

fact assumed that the (quiescent) nuclear X-ray emission in M87 is produced

by an ADAF (e.g., Reynolds et al., 1996; Di Matteo et al., 2003). The similari-

ties of the nuclear spectrum to that of the jet and its knots, and the strong

brightness increase towards the nucleus (cf. Figure 3.5), however, suggest

that this "nuclear" emission is instead dominated by the jet (Wilson & Yang,

2002). This is supported by the fact that the luminosity of a hot accretion

flow at low accretion rates Ṁ roughly scales with Ṁ2, i.e. LADAF ∝ Ṁ2, while

that of the jet with L j ∝ Ṁ, so that for low Ṁ the jet starts to dominate (Yuan

& Narayan, 2014; Feng & Wu, 2017). The evidence for strong nuclear activity
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Table 3.3: X-ray photon indices for the nucleus and HST-1 during the 2010
TeV flare.

ObsID ΓNucleus ΓHST−1

11512 1.97±0.1 2.17+0.24
−0.21

11513 2.14+0.15
−0.14 2.20+0.27

−0.12

11514 1.98+0.16
−0.15 2.33+0.31

−0.16

11515 2.10+0.17
−0.16 2.23+0.18

−0.11

11516 1.84+0.16
−0.13 2.24+0.26

−0.13

11517 2.26+0.16
−0.15 2.23+0.28

−0.12

11518 2.16+0.20
−0.18 2.28+0.18

−0.14

11519 2.19+0.19
−0.14 2.22+0.21

−0.11

11520 2.24+0.21
−0.18 2.33+0.29

−0.11

All errors are 90% confidence level.
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Figure 3.5: Flux density (top panel) and power-law photon index (bottom
panel) in the X-ray 0.3-7 keV band along the jet. The source regions are
separated by the dashed lines. For this representation all observations
with frame time 0.4 s have been used for the nucleus, while for HST-1 only
"HST-1 L" data have been employed.

over time fits well into this.

Combined X-ray spectra of the knots

For all knots, except HST-1, we fit multiple observations simultaneously. For

HST-1 we exclude observations during H2, H3, and H4 in the spectral analysis

due to significant pile-up.



3.2 Chandra DATA ANALYSIS 75

Table 3.4: Results for the X-ray spectral fitting of the knots.

Component Γa NH
b Kc νFνd reduced χ2 dof

(×1020/cm2) (×10−5photons/keV/s) (×10−13erg/cm2/s)

HST-1 H1 2.25±0.05 4.74+0.78
−0.75 94.88+3.20

−3.10 44.73±0.62 0.98 2174

HST-1 H5 2.31±0.06 1.21+1.15
−1.10 50.59+2.45

−2.16 23.62±0.59 0.93 1293

HST-1 L 2.27+0.06
−0.04 <1.21 14.53+0.69

−0.35 6.86±0.15 1.08 1801

D 2.11±0.02 2.58±0.45 15.32+0.29
−0.28 7.45±0.10 0.94 6805

E 2.35±0.05 2.34+0.86
−0.83 4.10+0.16

−0.15 1.91±0.04 0.70 2726

F 2.61+0.07
−0.02 <0.46 2.15+0.06

−0.05 1.00±0.01 0.74 1720

I 2.50+0.04
−0.11 <0.57 1.20+0.02

−0.08 0.56±0.04 1.02 576

A 2.41±0.02 <0.10 21.22+0.13
−0.36 9.85±0.02 0.90 4811

B 2.35+0.06
−0.02 <0.8 3.49+0.13

−0.06 1.63±0.02 0.89 2480

C 1.89+0.09
−0.03 <0.85 1.78+0.12

−0.04 0.94±0.02 0.64 2145

F 2.79±0.04 2.4 (frozen) 2.36±0.05 1.13±0.02 0.75 1721

I 2.60±0.04 2.4 (frozen) 1.28±0.03 0.60±0.01 1.04 577

A 2.55±0.01 2.4 (frozen) 23.10±0.2 10.74±0.05 0.96 4812

B 2.49±0.03 2.4 (frozen) 3.85±0.06 1.79±0.02 0.90 2481

C 2.01±0.04 2.4 (frozen) 1.99±0.05 1.0±0.02 0.65 2146

All errors are 90% confidence level.
a Photon index.
b Equivalent hydrogen-absorbing column density.
c Amplitude of power-law model.
d Total integrated energy flux over 0.3-7 keV.

The bottom part provides the results if NH is frozen to the Galactic value.

In the X-ray band all knots can in principle be well fitted with a single

power-law plus Galactic absorption model, none seems to require an ob-

vious break or additional component within the X-ray band itself (but see

below). Table 3.4 lists the best-fit parameter values and the reduced χ2 value.

The reduced χ2 values reveal that all fits are acceptable at 90% confidence

level. Leaving the absorption column density NH free in the fit yields values

deviating significantly from the Galactic one (Perlman & Wilson, 2005). Har-

ris & Krawczynski (2006) have reported a mutual dependence between NH

and α in the fitting process, leading to some uncertainty. For comparison we

thus also provide results with NH frozen to the Galactic value. We do not find

evidence for a significant deviation (Osone, 2017) from a pure power-law in

the X-ray band for knot A if NH is kept frozen.

The derived photon indices for different knots are significantly different,

ranging from ' 1.89 (knot C) to ' 2.61 (knot F). The results roughly match

those obtained by Wilson & Yang (2002, 2004) and Perlman & Wilson (2005).

In Figure 3.5 we plot the profiles of the flux density and photon index αx along
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the jet by dividing the knots into small strips. We again use the single power-

law plus Galactic absorption model to fit each region. Finally, we use the

best fit model to simulate the energy flux of the de-convolved non-thermal

emission. In this process we divide the X-ray energy interval between 0.3

keV and 7 keV into 4 bins in logarithmic space. The derived X-ray data points

are listed in Tab. 3.5. With the exemption of the outermost knot C, the X-

ray photon index along the jet exhibits a trend similar to that reported in

Perlman & Wilson (2005), with slight but significant index variations ranging

from ' 2.1 − 2.2 (e.g. in knot D) to ' 2.4 − 2.6 (in knots F, A, and B). There is

little evidence for the inter-knot regions to have significantly steeper spectra

than the adjacent knots reinforcing the need for a distributed acceleration

mechanism.

3.3 SED Modeling

In order to gain further insights we construct the radio to X-ray SEDs of the

knots and provide model fits to infer the characteristics of the parent particle

distribution. We select contemporaneous multi-wavelength data to ensure

an adequate reconstruction. The optical to X-ray spectra of the H1, H5, and L

state of knot HST-1 are taken from the 2002 December, 2003 February, and

2003 April HST observations in Perlman et al. (2003), respectively. The radio

data are from Giroletti et al. (2012) based on observations between 2006

and 2010 with the Very Long Baseline Array (VLBA) at 1.7 GHz for H1, and

between 2009 and 2011 with the European VLBI Network (EVN) at 5 GHz for

the statuses H5 and L. We further use the published optical-near-infrared

data from Perlman et al. (2001), and the ultraviolet data from Waters & Zepf

(2005) for the knots D, E, F, I, A, B, and C. The black points in the radio energy

band are from Perlman et al. (2001). We don’t include the radio data points

of Biretta et al. (1991) in the spectral fitting, yet regard them as a reference for

the radio spectral indices because of the uncertainties with regard to these

measurements (see e.g., Perlman & Wilson, 2005). It should also be noted

that although our region C could be further divided into the sub-regions

C1 and C2, we only include the ultraviolet fluxes for C1. This simplification

appears justified considering the much lower ultraviolet flux from C2. For

comparison, we also plot the X-ray flux density from Marshall et al. (2002)

with grey symbols in Figure 3.6.

There are in principle several possible non-thermal scenarios for the

origin of large-scale X-ray emission, such as inverse Compton upscattering

(IC) of either synchrotron (synchrotron self-Compton; IC-SSC) or cosmic

microwave background (IC-CMB) photons, or direct synchrotron emission of
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Table 3.5: Deconvolved X-ray flux densities of the knots for different energy
bands.

Energy [keV] 0.3 − 0.7 0.7 − 1.4 1.4 − 3.2 3.2 − 7.0
Component Flux density [×10−14erg/cm2/s]

HST-1 H1 159.06±3.23 106.78±1.47 104.89±2.10 81.78±2.64

HST-1 H5 89.26±3.11 56.74±1.29 53.78±1.68 39.83±2.33

HST-1 L 24.58±0.97 16.40±0.40 15.92±0.66 12.14±0.97

D 23.03±0.33 17.22±0.17 18.71±0.24 16.10±0.33

E 7.47±0.20 4.61±0.10 4.21±0.12 3.02±0.14

F 4.82±0.11 2.44±0.03 1.83±0.04 1.05±0.04

I 2.48±0.26 1.36±0.09 1.12±0.13 0.69±0.12

A 40.38±0.19 23.94±0.06 20.86±0.09 14.19±0.12

B 6.33±0.10 3.93±0.05 3.58±0.10 2.56±0.05

C 2.25±0.04 2.00±0.03 2.59±0.06 2.67±0.10

relativistic electrons or protons (e.g., Aharonian, 2002; Harris & Krawczynski,

2002; Georganopoulos et al., 2016). As discussed in Wilson & Yang (2002), to

account for the keV X-ray flux by means of leptonic IC-SSC processes, the

magnetic field has to be substantially lower than equipartition. In the case

of IC-CMB it is possible to boost the X-ray flux by relativistic bulk motion,

but this requires high Doppler factors δ ' (10 − 40) and very small angles θ '

(1.2◦ − 4.7◦) between the jet and the line of sight (Harris & Krawczynski, 2002).

Though HST observations indicate that moderate superluminal motion in

M87 could persist out to knot C (Meyer et al., 2013), such values remain

highly unlikely. Moreover, IC radiation by a power-law electron distribution

in the Thomson regime is expected to exhibit a spectral index similar to the

one for synchrotron radiation, yet the observed X-ray spectra of the knots

are all significantly steeper than the radio spectra (exhibiting spectral indices

αrr ∼ 0.5, e.g. Biretta et al., 1991). An IC origin of the X-ray emission in M87

thus appears disfavoured (see also Biretta et al., 1991; Meisenheimer et al.,

1996; Wilson & Yang, 2002; Perlman & Wilson, 2005), and we therefore only

consider an electron synchrotron origin in the following.

We use the Markov Chain Monte Carlo (MCMC) code Naima (Zabalza,

2015) to explore the characteristics of the radiating particle distribution. The

code allows to implement different functional and includes tools to perform

MCMC fitting of non-thermal radiative processes to the data. Given the radio

to X-ray data of the knots in M87, the simplest functional form to take into

account is a broken power-law,

N(E) =

AE−α1 E ≤ Ebreak

AE(α2−α1)
break E−α2 E > Ebreak .

(3.2)
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For the fitting process, the parameters A, α1, Ebreak, α2 are left as free param-

eters and we assume non-relativistic motion for the entire jet. Our results

(cf. Table 3.6) show that the SEDs of the knots E, F, I and A could in principle

be satisfactorily described by synchrotron emission of a broken power-law

electron distribution with an index α1 ' 2.3 resembling that of particle accel-

eration at highly relativistic shocks (e.g., Achterberg et al., 2001). The second

index α2 for these knots deviates from that of a classical cooling break. This is

interesting, but could possibly be accounted for by deviations from a homo-

geneous one-zone approach and/or some additional re-acceleration (e.g.,

Liu & Shen, 2007; Sahayanathan, 2008; Liu et al., 2017). Diffusive synchrotron

radiation from random small-scale magnetic field could offer an alternative

explanation (Fleishman, 2006), although the observed high radio and optical

polarisation (e.g., Avachat et al., 2016) may complicate this interpretation.

We note that comparison of the fit results for a broken power-law and a

log-parabola model (cf. Massaro et al., 2004; Tramacere et al., 2007) shows

the first to be preferred over the second one.

The SEDs of the knots D, B, and C, on the other hand, cannot be well-fitted

assuming a homogeneous source region and the broken power-law form

Eq. (3.2). In principle, this should not come as a surprise given the morpho-

logical complexity of the knots and the evidence for internal jet stratification

(e.g., Perlman & Wilson, 2005; Avachat et al., 2016). The findings are neverthe-

less quite interesting by providing a first indication that the X-ray emission of

large-scale AGN jets might reveal some excess above a simple power-law ex-

tension from the optical fluxes, and in fact consist of multiple contributions.

To explore this in more details, we add an additional electron component to

fit the X-ray data. For simplicity we choose two exponential cutoff power-law

models

N(E) = A1 E−α1 exp

− (
E

Ecutoff1

)β + A2 E−α2 exp

− (
E

Ecutoff2

)β , (3.3)

treating again A1, α1, Ecutoff1, A2, α2, and Ecutoff2 as free parameters for the

fit. We note that alternative descriptions (e.g., two broken power-laws with

exponential cut-off) are in principle possible, yet require to fix some addi-

tional parameters. In our phenomenological fit the two components are

treated as independent. We note, though, that the correlation between the

X-ray flux maxima and the synchrotron break frequencies (e.g. Perlman &

Wilson, 2005) suggest that the X-ray emitting particles are not completely

independent from those at lower energies. The results should thus be treated

as a first guide only. To reduce the free parameters in our fit (cf. eq. 3.3), we

fixed the parameter β to 1 and 2, corresponding to the escaping and cooling-

dominated regime, respectively. We assume a magnetic field strength of
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B = 300 µG (Heinz & Begelman, 1997; Marshall et al., 2002) as reference value

in all our calculations. This is certainly a simplification as the magnetic field

strength is expected to be different for different regions, e.g. to vary by a

factor of ∼ 2 when different knots are compared (e.g., Biretta et al., 1991;

Meisenheimer et al., 1996). We note however, that in the fitting procedure B
scales as E−2

cutoff
and A−0.5, so that a different B only affects the best-fit value of

the break or cutoff energy, and the absolute normalization.

The derived model parameters as well as the total energy in non-thermal

electrons, We, with 1σ errors are listed in Table 3.6. Figure 3.6 shows the

corresponding synchrotron model fits for the observed SEDs of the knots.

The curves represent the SED models with the maximum likelihood. For

the knots D, B, and C, the dashed curves and the dot-dashed curves are

derived from two exponential cutoff power-law components, respectively,

as noted above. The derived values for the required energy in non-thermal

electrons range up to We ' 1053 erg (knot A) and imply a jet kinetic power

Pj & 1043 erg/s, compatible with other estimates for the general jet power (see

introduction). The energy density in electrons, ue, is typically comparable to

(or somewhat) less than the one in magnetic fields, uB = B2/(8π), ensuring

efficient confinement.

Our findings provide indications that for the knot regions D, B and C an

additional X-ray emitting component is needed to achieve a satisfactory SED

description. The indications are strongest in the case of knot C where the

X-ray emission seems particularly hard, and less strong in the case of knot

D. It is worth noting that radio and optical observations show that the knot

D region, located approximately between 2 and 5 arcsec, reveals extended

structures and can be further divided into sub-regions D-East, D-Middle

and D-West, each with additional sub-components (e.g. Perlman & Wilson,

2005; Avachat et al., 2016). Similarly, knot B, located approximately between

13 and 16 arcsec, can be divided into the sub-components B1 (broader and

brighter) and B2, while the knot C region, located approximately between

17 and 19 arcsec, can be divided into the subregions C1 and C2 (Perlman

& Wilson, 2005; Avachat et al., 2016). It seems thus conceivable that the

inferred two-component electron distribution can in principle be accounted

for by a superposition of electrons from different sub-regions. Moreover, the

features seen in the optical tend to be slightly narrower than those seen in

radio, suggesting that the radiating particles, although co-located, may not

necessarily have to be truly co-spatial. We note that we have incorporated

only the simplest broken power-law function to fit the SED of the knots

(except for B,C and D) and formally cannot rule out the possibility that the

SEDs of these knots are produced by more than one electron component

as well. Noting these caveats, the respective parent electrons distributions
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are shown in Figure 3.7. As can be seen, for the considered normalization

of the magnetic field strength the electron distribution tends to show a

break at energies around one TeV (γb ∼ 2 × 106) and needs to extend up to

multi-TeV energies (γ ∼ 108). These high-energy electrons cannot travel

more than a few parsecs before exhausting their energies due to synchrotron

cooling. A synchrotron origin thus requires an efficient and continuous

in-situ acceleration of electrons along the jet.

Inverse Compton (IC) up-scattering of cosmic microwave background

(CMB) photons (hνCMB) by these relativistic electrons will result in γ-ray

emission extending up to ∼ 10 (γ/108)2 TeV. The characteristic energy flux

levels νFν at TeV energies are, however, a factor of ∼ uCMB/uB ∼ 10−3 smaller

than those seen at X-ray energies (νFν . 10−12 erg/cm/s). This TeV emission

would thus be below the flux sensitivity limit of current γ-ray instruments.
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Figure 3.6: SEDs fitting results assuming a synchrotron origin of the X-ray
emission. The curves represent the best fit models. For the knots D, B, and
C both a broken power-law fit and a fit based on two exponential cutoff
power-law components (dashed and dot-dashed curves, with superposition
corresponding to the solid curve) assuming β = 1 are shown. The X-ray flux
densities from Marshall et al. (2002) are also plotted with grey symbol for
comparison.
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Figure 3.6 — continued
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Figure 3.7: Parent electron distributions derived from the fitting in Fig. 3.6.
For knots D, B, and C only the results of the two exponential cut-off power
laws are shown. The grey shadow areas are corresponding to 2σ confidence
level.
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Figure 3.7 — continued

3.4 Conclusions

We have collected Chandra ACIS data for M87 between 2000 and 2016 with

a total exposure time of about 1.5 Ms to perform a temporal and spectral

analysis of its nucleus and knots. The extracted X-ray light curves of the

nucleus and HST-1 reveal significant variability. We confirm indications for

day-scale nuclear X-ray variability contemporaneous to the TeV flare in April

2010. HST-1 shows a decline in X-ray flux since 2007 compatible with its

synchrotron origin.

The X-ray spectra of the nucleus and jet knots are all formally compatible

with a single power-law. The resultant X-ray photon index reveal a trend,

with index variations ranging from ' 2.1 (e.g. in knot D) to ' 2.4 − 2.6
(in the outer knots F, A, and B). When placed in a multi-band context, a

more complex situation is arising. Modelling the radio to X-ray SEDs with

a synchrotron model, a single broken power-law electron distribution with

a break at around Eb ∼ 1 TeV (assuming B ∼ 300µG) seemingly allows a

satisfactorily SED description for most knots. However, for the knots B, C
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Table 3.6: SEDs fit results of the knots of M87. Results of the two-
component fit are shown for knots D, B and C.

Component We(> 1GeV) α1 Ebreak α2
(×1051 erg) (GeV)

HST-1 H1 6.5+1.3
−1.9 2.08+0.06

−0.12 1300±60 3.49±0.07

HST-1 H5 3.8±0.5 1.85+0.06
−0.09 900+60

−80 3.63±0.09

HST-1 L 4.4+0.7
−0.5 1.77±0.07 460+20

−30 3.83±0.08

E 3.1+0.4
−0.6 2.37+0.03

−0.06 680+40
−50 3.65±0.07

F 10.1±1.4 2.33±0.04 630±30 4.52±0.10

I 5.2±0.8 2.34+0.04
−0.03 470±20 4.23±0.08

A 90+14
−8 2.3+0.04

−0.03 480±20 4.25+0.12
−0.08

Component We(> 1GeV) α1 Ecutoff1 α2 Ecutoff2
(×1051 erg) (GeV) (GeV)

D 11.3+0.13
−0.08 2.32±0.01 1130±40 2.0±0.10 194002000

−1700

β = 1 B 62.2±0.6 2.20±0.01 521±9 1.05±0.05 4900±200

C 51.2±0.4 2.24±0.01 443±5 1.51±0.07 13100±1100

D 11.1±1.6 2.36±0.04 1110±50 2.14±0.07 16200±700

β = 2 B 58+9
−4 2.33±0.03 1150+50

−60 0.92±0.04 8000±400

C 49±5 2.32±0.03 640±30 1.75+0.04
−0.05 17200±800

All errors are 1σ confidence level.

and D an additional high energy component is needed to account for the

broadband SEDs. This may be partly due to a blending of different (non-

resolved) components and/or the occurrence of additional acceleration and

emission processes.

A favorable interpretation for the origin of the X-ray emission is the

synchrotron radiation of relativistic electrons. This requires electrons to be

able to reach and sustain energies of γ ∼ 108 (300µG/B)1/2 in the presence of

losses, i.e. an in-situ acceleration of electrons in the jet and its knots. The

necessary acceleration efficiency η, defined by tacc = γmec/(ηeB) (Aharonian

et al., 2002), would be of the order of η & 3 × 10−4 (B/300µG), and likely to

be in the reach of stochastic acceleration scenarios (e.g., Rieger et al., 2007).

Localized (first order Fermi) shock acceleration alone, however, would not

be sufficient given the fact that here is little evidence for e.g. the inter-knot

regions to have significantly steeper spectra than the adjacent knots.

The homogeneous broken power-law model exhibits a change in indices

exceeding that induced by simple cooling effects. Assuming a continuous

power-law injection Perlman & Wilson (2005) have suggested that an energy-

dependent filling factor facc(γ) ∝ γ−ξ of the acceleration regions (with ξ ∼ 0.3,

i.e. occupying a smaller fraction at higher energies), might account for these

breaks. Alternative explanations could be a spatial varied propagation of the
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relativistic electrons or a different particle injection spectrum in different

energy band. However, to some extent, all of these assumptions are ad hoc

and detailed modelling as well as an advanced morphological analysis in

different energy bands would be required to further qualify them.

There are clear indications that in the case of knots B, C, and D, an

additional electron contribution is needed to account for the X-ray emission

in a multi-band context. We formally cannot rule out the possibility that

the SEDs of other knots are also produced by a two (or more) component

electron distribution, though the smoothness of the fits might seem to argue

for the opposite, i.e. there is no evidence for the X-ray emission in these

knots to consist of separate spectral components.

The additional electron component indicated in the case of knots B, C

and D is consistent with a bump or a spike-like feature at high energy. This

appears compatible with a scenario where electron acceleration occurs in

a shear layer under the condition of efficient radiative losses (Ostrowski,

2000). The short cooling time of relativistic electrons generally requires

that in addition to a (possible) localized shock-type scenario there must

be some distributed in situ acceleration occurring along the jet. Stochastic

or shear acceleration could present a natural explanation for this (e.g., Liu

et al., 2017). There is circumstantial evidence for a decreased thermal gas

emissivity along the jet that appears consistent with the dynamical effects of

a cocoon dominated by cosmic rays (CR) accelerated at the shearing jet side

boundary (Dainotti et al., 2012). The hint for a CR cocoon and the spectral

shape of the relativistic electrons in these knots could indicate that efficient

shear acceleration indeed takes place along the jet in M87, which seems to

link well into the broader evidence for a stratified or spine-sheath flow (e.g.,

Perlman et al., 1999).



On the Energy Distribution
of Relativistic Electrons in
the Young Supernova
Remnant G1.9+0.3

4

4.1 Introduction

SNRs are believed to be the sites where the bulk of GCRs are accelerated up to

PeV energies (1 PeV = 1015 eV) (see, e.g., Hillas, 2013; Blasi, 2013). In recent

years, significant progress has been achieved in the context of exploring the

CR acceleration in SNRs, in particular using the γ-ray observations in the

MeV/GeV and TeV energy bands (see, e.g., Aharonian, 2013). In particular,

the detection of the so-called π0-decay bump in the spectra of several mid-

age SNRs (see, e.g., Abdo et al., 2010c,d; Aharonian, 2013; Ackermann et al.,

2013), is considered as a substantial evidence of acceleration of protons

and nuclei in SNRs. Moreover, the detection of more than ten young (a few

thousand years old or younger) SNRs in TeV γ-rays (see, e.g., Zirakashvili

& Aharonian, 2010; Inoue et al., 2012; Abdo et al., 2010a; Aharonian, 2013)

highlights these objects as efficient particle accelerators, although the very

origin of γ-rays (leptonic or hadronic?) is not yet firmly established. More

disappointingly, so far all TeV emitting SNRs do not show energy spectra that

would continue as a hard power-law beyond 10 TeV. For a hadronic origin of

detected γ-rays, the "early" cutoffs in the energy spectra of γ-rays around or

below 10 TeV imply a lack of protons inside the shells of SNRs with energies

significantly larger than 100 TeV, and, consequently, SNRs do not operate as

PeV accelerators (PeVatrons). However, there are two possibilities that would

allow us to avoid such a dramatic conclusion for the current paradigm of

Galactic CRs:

(i) The detected TeV gamma-rays are of leptonic (Inverse Compton) origin.

Of course, alongside with the relativistic electrons, protons and nuclei can

(should) be accelerated as well, but we do not see the related γ-radiation

because of their ineffective interactions caused by the low density of ambient

87
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gas;

(ii) SNRs do accelerate protons to PeV energies, however it occurs at early

stages of evolution of SNRs when the shock speeds exceed 10,000 km/s; we

do not see the corresponding radiation well above 10 TeV because the PeV

protons have already left the remnant.

Both these scenarios significantly limit the potential of γ-ray observations

for the search for CR PeVatrons. Fortunately, there is another radiation com-

ponent which contains an independent and complementary information

about these extreme accelerators. It is related to the synchrotron radiation

of accelerated electrons, namely to the shape of the energy spectrum of

radiation in the cutoff region, which can serve as a distinct signature of

the acceleration mechanism and its efficiency. In the shock acceleration

scheme, the maximum energy of accelerated particles, E0 ∝ B v2
sh (Aharonian

& Atoyan, 1999). Therefore, the epoch of the first several hundred years of

evolution of a SNR, when the shock speed vsh exceeds 10,000 km/s and the

magnetic field is large B� 10 µG could be an adequate stage for operation

of a SNR as a PeVatron, provided, of course, that the shock acceleration

proceeds close to the Bohm diffusion limit (see, e.g., Malkov & Drury, 2001).

Remarkably, in this regime, the cutoff energy in the synchrotron radiation

of the shock-accelerated electrons is determined by a single parameter, v2
sh

(Aharonian & Atoyan, 1999; Zirakashvili & Aharonian, 2007). Therefore, for

the known shock speed, the position of the cutoff contains unambiguous

information about the acceleration efficiency. For vsh ' 10, 000 km/s, the syn-

chrotron cutoff in the spectral energy distribution (SED) is expected around

10 keV. Thus, the study of synchrotron radiation in the hard X-ray band can

shed light on the acceleration efficiency of electrons, and, consequently,

provide an answer as to whether or not these objects can operate as CR

PeVatrons, given that in the shock acceleration scheme the acceleration of

electrons and protons is expected to be identical. In this regard, G1.9+0.3 (X-

ray morphology ∼ 100′′ and radio morphology ∼ 84′′), the youngest known

SNR in our Galaxy (Reynolds et al., 2008; Green et al., 2008), is a perfect object

to explore this unique tool.

The X-ray observations with the Chandra and NuSTAR satellites (Reynolds

et al., 2009; Zoglauer et al., 2015) cover a rather broad energy interval which

is crucial for the study of the spectral shape of synchrotron radiation, in

particular in the cutoff region. Such a study has been conducted by the team

of the NuSTAR collaboration (Zoglauer et al., 2015).

In this chapter we present the results of our own analysis of the NuS-

TAR and Chandra data with an emphasis on the study of the SED of X-ray

radiation over two decades, from 0.3 keV to 30 keV. Using the synchrotron
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spectrum and the Markov Chain Monte Carlo (MCMC) technique, we derive

the energy distribution of electrons responsible for X-rays, and discuss the

astrophysical implications of the obtained results.

4.2 X-ray Observations

The recent hard X-ray observations of G1.9+0.3 by the NuSTAR satellite are

uniquely useful for understanding acceleration and radiation processes of ul-

trarelativistic electrons in SNRs at the early stages of their evolution. Detailed

study of the NuSTAR data, combined with the Chandra observations at lower

energies, has been comprehensively carried out by Zoglauer et al. (2015).

In particular, it was found that the source can be resolved into two bright

limbs with similar spectral features. The combined Chandra and NuSTAR

datasets have been claimed to be best described by the so-called srcut model

(Reynolds, 2008) or by the power-law function with an exponential cutoff.

The characteristic cutoff energies in these two fits have been found around 3

keV and 15 keV, respectively (Zoglauer et al., 2015).

To further investigate the features of the X-ray spectrum in the cutoff

region we perform an independent study based on the publicly available

Chandra and NuSTAR X-ray data. For NuSTAR, we use the set of three ob-

servations with ID 40001015003, 40001015005, and 40001015007, including

both the focal plane A (FPMA) and B (FPMB) modules. The data have been

analysed using the HEASoft version 6.16, which includes NuSTARDAS, the

NuSTAR Data Analysis Software package (the version 1.7.1 with the NuSTAR

CALDB version 20150123). For the Chandra data, we use the ACIS obser-

vations with ID 12691, 12692, and 12694. The Chandra data reduction is

performed using the version 4.7 of the CIAO package.

In Figure 4.1 we show the X-ray sky map above 3 keV based on the NuS-

TAR 40001015007 data set. In order to benefit from the maximum possible

statistics, for the spectral analysis we have chosen the entire remnant. The

background regions are selected in a way to minimise the contamination

caused by the PSF wings as well as from the stray light. The excess in the

south of the FPMA image is the stray light from X-rays that hit the detector

without impinging on the optics (Wik et al., 2014). We use the same source

regions for Chandra observations. The results of our study of the spatial

distribution of X-rays appear quite similar to those reported by (Zoglauer

et al., 2015). Therefore, in this work we do not discuss the morphology of the

source but focus on the study of spectral features of radiation.

The spectral shape of synchrotron radiation in the cutoff region is sensi-

tive to the spectrum of highest energy electrons which, in turn, depends on
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the electron acceleration and energy loss rates. To explore a broad class of

spectra, we describe the spectrum of X-rays in the following general form:

dN
dε

= AE−Γ exp[−(ε/ε0)β] . (4.1)

The change of the index β in the second (exponential) term allows a broad

range of spectral behaviour in the cutoff region. For example, β = 0 implies a

pure power-law distribution, while β = 1 corresponds to a power-law with a

simple exponential cutoff.

In the fitting procedure, in addition to the three parameters ε0,Γ, and β,

one should introduce one more parameter, the column density NH, which

takes into account the energy-dependent absorption of X-rays. We fix this

parameter to the value found by Zoglauer et al. (2015) from the fit of data

by their srcut spectral model. Strictly speaking, the best fit value of the

column density should be different for different spectral models. To check

the impact of different spectral models on the column density, we adopt

different functions leaving the column density as a free parameter in the

fitting procedure. We find that the difference of the best fit column density

and the above fiducial value is less than several percent. Therefore, in order

to keep the procedure simple and minimise the number of free parameters,

we adopt the value 7.23 × 1022 cm−2 from the paper of Zoglauer et al. (2015).

The results of our fit of the NuSTAR and Chandra spectral points using

the model "power-law with an exponential cutoff" in the general form of Eq.

4.1, that is, leaving β, Γ, and ε as free parameters, are shown in Table 4.1. One

can see that the best fit gives a rather narrow range of the index β around 1/2.

In Table 4.1 we also separately show the results of the fits with three fixed

values of β: 0, 1/2, and 1. While the pure-power-law spectrum (β = 0) can be

unambiguously excluded, the model of power-law with a simple exponential

cutoff (β = 1) is not favourable either. It is excluded at the 3σ statistical

significance level. In summary, the combined Chandra and NuSTAR data are

best described by the index β ≈ 0.5 and ε0 ≈ 1.5 keV.

Whereas β = 1/2 seems to be a natural outcome (see below), the cut-

off energy around 1.5 keV is a rather unexpected result. Namely, it implies

that the acceleration of electrons in G1.9+0.3 proceeds significantly slower

than one would anticipate given the very large, 14,000 km/s shock speed

(Borkowski et al., 2010). This can be seen from the comparison of the SED of

G1.9+0.3 with one of the most effective particle accelerators in our Galaxy,

≈1600 year old SNR RX J1713.4-3946 (see Figure 4.2). The cutoff energy in

the synchrotron spectrum of shock-accelerated electrons is proportional

to the square of shock speed v2
sh (Aharonian & Atoyan, 1999). Therefore, in

order to exclude the difference in the cutoff energies caused by the differ-

ence in the shock speeds, we rescale the energies of the spectral points of



4.2 X-RAY OBSERVATIONS 91

RX J1713.4-3946 by the factor (vsh/14, 000 km/s)2, where the shock speed of

RX J1713.4-3946 is about vsh ' 4, 000 km/s (Uchiyama et al., 2007). After such

a normalisation, the cutoff energy of RX J1713.4-3946 becomes an order of

magnitude higher than the cutoff in G1.9+0.3. The acceleration of electrons

in RX J1713.4-3946 proceeds close to the Bohm diffusion limit thus providing

an acceleration rate close to the maximum value (Uchiyama et al., 2007;

Zirakashvili & Aharonian, 2010). Consequently, we may conclude that the

current acceleration rate of electrons in G1.9+0.3 is lower, by an order of

magnitude, compared to the maximum possible rate.

It should be noted that the physical meaning of Eq.(4.1) doesn’t be over-

estimated. Namely, it should be considered as a convenient analytical pre-

sentation of the given set of measured spectral points. Consequently, Γ, β, ε0

that enter into Eq.(4.1) should be treated as a combination of formal fit pa-

rameters rather than physical quantities. For example, ε0 in the exponential

term of Eq.(4.1) doesn’t necessarily coincide with the cutoff energy (or max-

imum in the SED). Indeed, in different (Γ, β, ε0) combinations describing

the same spectral points, the parameter ε0 could have significantly different

values. Analogously, Γ should not be treated as a power-law index but rather

a parameter which, in combination with Γ and β, determines the slope (the

tangential) of the spectrum immediately before the cutoff region.

The maximum acceleration rate of particles is achieved when it proceeds

in the Bohm diffusion limit. In the energy-loss-dominated regime, the spec-

tra of synchrotron radiation can be expressed by simple analytical formulae

(Zirakashvili & Aharonian, 2007). Because of compression of the magnetic

field, the overall synchrotron flux of the remnant is dominated by the radia-

tion from the downstream region (see Figure 4.3). The SED of the latter can

be presented in the following form (Zirakashvili & Aharonian, 2007)

ε2 dN
dε
∝ ε2(ε/ε0)−1[1 + 0.38(ε/ε0)0.5]11/4 exp[−(ε/ε0)1/2 . (4.2)

with

ε0 = ~ω0 =
2.2 keV

η(1 + κ1/2)2

( u1

3000 km s−1

)2
, (4.3)

where η takes into account the deviation of the diffusion coefficient from

its minimum value (in the nominal Bohm diffusion limit η = 1). In the

standard shock acceleration theory, the momentum index of accelerated

electrons γs = 4, and the ratio of the upstream and downstream magnetic

fields, κ = 1/
√

11.

In Figure 4.3 the spectral points of G1.9+0.3 are compared with the the-

oretical predictions for synchrotron radiation in the upstream and down-

stream regions (Zirakashvili & Aharonian, 2007), the asymptotic forms of the

electron spectra in the case of Bohm diffusion are given in Appendix C. The
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Figure 4.1: Images from the observation 40001015007 for the FPMA (top)
and FPMB (bottom) modules. The source and background regions are
indicated by the white and green contours, respectively.



4.2 X-RAY OBSERVATIONS 93

10
-13

10
-12

10
-11

10
-10

10
-9

 0.1  1  10  100

E
2
 d

N
/d

E
(e

rg
 s

-1
 c

m
-2

)

Energy/Vsh
2
(keV/(14000 km/s)

2
)

G1.9+0.3
RX J1713.7-3946

Figure 4.2: The spectral points of G1.9+0.3 (this work; black circles) and
RX J1713.4-3946 (red square) from Tanaka et al. (2008). The energies of the
points of RX J1713.4-3946 are rescaled by the factor of the square of the ratio
of shock speeds of J1713.4-3946 and G1.9+0.3: (14, 000 km/s/4000 km/s)2 =

12.25.

calculations are performed for two values of the parameter η characterising

the acceleration efficiency: η = 1 (Bohm diffusion regime) and 20 times

slower (η = 20). The good (better than 20 %) agreement of the spectral points

with the theoretical curves for η = 20 tells us that in G1.9+0.3 electrons are

accelerated only at the 5 % efficiency level.

Although in the paper of Zoglauer et al. (2015) the spectral points are

not explicitly presented, thus the direct comparison with our results is not

possible, the conclusions of our study on the energy spectrum of G1.9+0.3

seems to be in agreement with the results of Zoglauer et al. (2015).

Table 4.1: Spectral fitting results for G1.9+0.3

Model PL index Cutoff (keV) β χ2/d.o. f .
PL 2.54 (2.52 - 2.56) 1089.4/666
PL+ecut 2.04 (1.98 - 2.10) 11.8 (10.5 - 13.3) 697.7/665
PL+ecut (β=0.5) 1.65 (1.60 - 1.70) 1.68 ( 1.50 - 1.90) 0.5 686.2/665
PL+ecut (β free) 1.62(1.48 - 1.75) 1.41 (1.30-1.55) 0.48 (0.40-0.56) 685.8/664
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Figure 4.3: The spectral points of G1.9+0.3 (this work) compared to the
predictions of synchrotron radiation of the shock accelerated electrons in
the downstream and upstream regions (Zirakashvili & Aharonian, 2007) for
two regimes of diffusion: (1) Bohm diffusion, η = 1 and (2) 20 times faster
diffusion, that is, η = 20.

4.3 Relativistic Electrons and Magnetic Fields

The joint treatment of X-ray and γ-ray data, under the simplified assump-

tion that the same electron population is responsible for the broad-band

radiation through the synchrotron and inverse Compton channels, provides

information about the magnetic field and the total energy budget in rela-

tivistic electrons. G1.9+0.3 has been observed in VHE γ-ray band with the

H.E.S.S. Cherenkov telescope system. Although no positive signal has been

detected (H.E.S.S. Collaboration et al., 2014), the γ-ray flux upper limits allow

meaningful constraints on the average magnetic field in the X-ray and γ-ray

production region. For calculations of the broad-band SED, we adopt the

same background radiation fields used in the paper H.E.S.S. Collaboration

et al. (2014): the infrared component with a temperature of 48 K and energy

density of 1.5 eVcm−3, and the optical component with a temperature of

4300 K and the energy density of 14.6 eVcm−3. The comparison of model

calculations with observations (see Figure 4.4) gives a lower limit of the

magnetic field, B ≥ 17µG.

Under certain assumptions, the magnetic field can be constrained also

based only on the X-ray data. In the "standard" shock acceleration scenario,

electrons are accelerated with the power-law index α = 2. However because
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of the short radiative cooling time, their spectrum of highest energy electrons

(the X-ray producers) becomes steeper, α = 2 → 3. Consequently, in the

downstream region, where the bulk of the synchrotron radiation is produced,

X-rays have a photon index Γ = 2. The synchrotron cooling time can be

expressed through the magnetic field and the X-ray photon energy: tsynch '

50(B/100µG)−3/2(ε/1 keV)−1/2 years. Thus for ε ∼ 1 keV and the age of the SNR

∼ 150 yr, we find that the magnetic field should be larger than 50 µG.

The combined Chandra and NuSTAR data cover two decades in energy,

from sub-keV to tens of keV. This allows derivation of the energy distribution

of electrons, W(E) = E2dNe/dE in the most interesting region around the

cutoff. The results shown in Figure 4.5 are obtained using the Markov Chain

Monte Carlo (MCMC) code Naima developed by V. Zabalza 1. It is assumed

that the magnetic field is homogeneous both in space and time. The results

shown in Figure 4.5 are calculated for the fiducial value of the magnetic field

B = 100 µG, however they can be rescaled for any other value of the field. We

note that while the shape of the spectrum does not depend on the strength

of the magnetic field, the energies of individual electrons scale as E ∝ B−1/2,

and the total energy contained in electrons scales as ∝ B−2. Since, in the

"standard" diffusive shock acceleration (DSA) scenario the synchrotron X-

ray flux is contributed mainly by the downstream region, the results in Figure

4.5 correspond to the range of the energy distribution of electrons for the

same region. For comparison, the energy distribution of electrons calculated

using the formalism of Zirakashvili & Aharonian (2007) is shown.

4.4 Conclusions

SNRs are believed to be the major contributors to the Galactic CRs. The

recent detections of TeV emission from more than ten young SNRs (of the age

of a few thousand years or younger), demonstrates the ability of these objects

to accelerate particles, electrons and/or protons, to energies up to 100 TeV.

Yet, we do not have observational evidence of the extension of hard γ-ray

spectra well beyond 10 TeV. Therefore one cannot claim an acceleration of

protons and nuclei by SNRs to PeV energies. On the other hand, one cannot

claim the opposite either, given the possibility that the acceleration of PeV

protons and nuclei could happen at the early stages of evolution of SNRs

when the shock speeds exceed 10,000 km/s. Indeed, the theoretical studies

of recent years show that the best candidates for accelerators operating as

PeVatrons are very young (less than 100 years old) supernova remnants in

dense environments (see e.g. (Schure & Bell, 2013)). Then, the escape of the

1https://github.com/zblz/naima

https://github.com/zblz/naima
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Figure 4.4: X-ray SED as well as the VHE upper limit from H.E.S.S. Collabo-
ration et al. (2014). The curves are the synchrotron and IC emissions fitted
to derive the lower limit of the magnetic field.

highest energy particles at later stages of evolution of SNRs can explain the

spectral steepening of γ-ray spectra at multi-TeV energies from ≥ 1 thousand

year old remnants.

In this regard, the youngest known SNR in our Galaxy, G1.9+0.3, with

a measured shock speed of 14,000 km/s, seems to be a unique object in

our Galaxy to explore the potential of SNRs for acceleration of protons and

nuclei to PeV energies. Such measurements have been performed with the

H.E.S.S. array of Cherenkov telescopes. Unfortunately, no positive signal has

been detected. On the other hand, the recent observations of G1.9+0.3 in

hard X-rays by NuSTAR provide unique information about the acceleration

efficiency of electrons. Together with Chandra data at lower energies, these

data allow model-independent conclusions. Although the general shape of

the energy spectrum of X-rays is in a very good agreement with predications

of the diffusive shock-acceleration theory, the acceleration rate appears

an order of magnitude slower relative to the maximum acceleration rate

achieved in the nominal Bohm diffusion limit.

It should be noted that the deviation from the Bohm diffusion concerns

not only the larger absolute value of the diffusion coefficient, but also the

energy dependence of the latter. The diffusion coefficient written in the con-
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Figure 4.5: Electron spectrum from the X-ray data points (black curve and
shaded area) and theoretically predicted integrated electron spectrum in
young SNR (red curve) assuming a fast diffusion, i.e., η = 20 in Eq.1. Also
shown is the contribution from the downstream region.

ventional form D(E) ∝ Eλ, allows consideration of diffusion in a broad range

of acceleration regimes. Then, in the synchrotron-loss-dominated regime,

the energy distribution of electrons in the cutoff region has an exponential

form, N(E) ∝ exp[−(E/E0)βe] with βe = λ + 1 (see Eq.(19) from Zirakashvili

& Aharonian (2007)). Correspondingly, the index β characterising the spec-

trum of synchrotron radiation in the cutoff region, is β = (1 + λ)/(3 + λ). In

particular, the values of λ =0, 1/3, and 1, which correspond to the energy-

independent, Kolmogorov, and Bohm diffusion regimes, give β =1/3, 2/5,

and 1/2, respectively. We note that the energy-independent diffusion in the

synchrotron-loss-dominated regime results in a X-ray spectrum similar to

the one formed in the case of the Bohm diffusion but in the age-limited

regime. However, strictly speaking, because of the escape, the electrons in

the age-limited regime of acceleration should have a steeper spectrum2, that

is, βe ≥ 1. Although the results of the current analysis give a preference to the

2This statement is correct for the epochs when the electrons start to escape the shell.
The case of formation of the electron spectrum in the age-limited regime at the presence of
particle escape has not been yet quantitatively explored in the literature. However, since the
probability of the electron escape increases with energy, it is clear that the escape should
make the spectrum of particles inside the accelerator steeper.
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interval of β = 0.4 − 0.56, the value of 1/3 cannot be excluded (see Table 4.1).

To a certain extent, the relatively low acceleration rate of electrons in

G1.9+0.3, in terms of the nominal rate of acceleration in the Bohm diffusion

limit (for the given speed of the shock), is a surprise outcome, especially

when compared with SNRs in which the acceleration of electrons proceeds

in the regime close to the Bohm diffusion. For comparison, the detailed mod-

elling of young SNRs Cas A (Zirakashvili et al., 2014) and RX J1713.4-3946

(Zirakashvili & Aharonian, 2010) shows that the η parameter characterising

the acceleration efficiency cannot significantly deviate from η = 1. If the

acceleration of protons and nuclei proceeds in the same manner as the elec-

tron acceleration, this result would imply inability of G1.9+0.3 to operate as

a PeVatron. Apparently, the observations of G1.9+0.3 alone are not sufficient

to decide whether this conclusion can be generalised for other SNRs.
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In this thesis I have investigated the non-thermal phenomena of three indi-

vidual astrophysical objects: the radio galaxies Centaurus A and M87, and

the SNR G1.9+0.3. I analysed the broadband observational data and studied

the corresponding radiation mechanism and acceleration process.

In Chapter 2, we have analyzed the hundred kpc-scale giant lobes of the

closest radio galaxy Cen A in the γ-ray band with Fermi-LAT, and in the radio

band with Planck. The morphologies of the giant lobes at γ-ray and radio

frequencies are different, the probable reasons are the effects of the magnetic

field in the synchrotron radiation or the different electron populations that

responsible for the two energy bands. We have divided each lobe into three

regions, and extracted the corresponding spectra in γ-ray energy band. We

find significant spectral variations between regions. In addition, we find that

the power-law shape of the SED, which extends down to 100 MeV, couldn’t

be explained by hadronic origin of the emission. Combining Planck and

Fermi-LAT data, the radiation mechanism of the SED in each region has

been discussed. We find that the γ-ray emission for all regions, except for

the outermost region of south lobe S1, can be fitted with IC scattering of

electrons on the CMB photons and an non-negligible contribution from the

EBL photons. The radiation characteristics of region S1 are quite different

from the other regions. Although the SED of region S1 could also be explained

within a simple leptonic model, a magnetic field B ' 13 µG, an order of

magnitude larger than the average field, is required, and the derived total

energy of electrons is much smaller than that in the other regions. The p-p

collisions followed by pion decay could account for the data at higher γ-ray

energies for all regions, but the overall energy required in relativistic protons

is huge. This could be reduced if the interactions takes place primarily

in the filamentary structures of the lobes. The propagation length of the

relativistic electrons is far less than the size of the lobe, so the electrons need

to be accelerated in situ, e.g. by the stochastic acceleration in a turbulent

99
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magnetic field. By far, the signals of the giant lobes of Cen A from radio to

HE γ-ray energy band have been well detected and studied. However, for

the VHE emission, the localization is still uncertain and only an upper limit

can be given (Aharonian et al., 2005). On the other hand, the limited field of

view (FOV) of Imaging Atmospheric Cherenkov Telescopes (IACTs) prevent

the detection of such extended source in VHE band. The next-generation

γ-ray observatory Cherenkov Telescope Array (CTA)1, however, with wider

FOV (∼ 10◦), better angular and energy resolution, and better sensitivity

from 20 GeV to 300 TeV, would allow us to resolve the extended sources

in unprecedented details. CTA observations on the giant lobes of Cen A,

combining with Fermi-LAT data, would contain important information on

the spectra of IC emission in the cutoff region and provide unambiguous

diagnosis on the particle acceleration in such an environment.

M87 is the second closest radio galaxies and its kpc-scale jet, which has

been resolved by high-resolution Chandra telescope, carries important infor-

mation on the distributions of relativistic electrons and magnetic fields. In

Chapter 3, we have reanalyzed archival Chandra observations on the jet of

M87 from 2000 to 2016 with a total exposure of 1460 kiloseconds to explore

the X-ray emission characteristics along the jet. We investigate the variability

behaviours of the nucleus and the inner jet component HST-1, and confirm

the day-scale X-ray variability in the nucleus contemporaneous to the 2010

high TeV γ-ray state. HST-1 shows a general decline in X-ray flux over the last

few years which is consistent with its synchrotron interpretation. We extract

the X-ray spectra for the nucleus and all knots in the jet, showing that they

are compatible with a single power-law within the X-ray band. The resultant

X-ray photon indices reveal slight but significant index variations ranging

from ' 2.1 (e.g. in knot D) to ' 2.4 − 2.6 (in the outer knots F, A, and B). When

viewed in a multi-wavelength context, a more complex situation is arising.

Fitting the radio to X-ray SEDs assuming a synchrotron origin, we show

that a broken power-law electron spectrum with break energy Eb around

1 (300µG/B)1/2 TeV allows a satisfactorily description of the multi-band SEDs

for the knots HST-1, E, F, I, and A. The homogeneous broken power-law

model exhibits a change in indices exceeding that induced by simple cooling

effects. Perlman & Wilson (2005) have suggested that an energy-dependent

filling factor facc(γ) ∝ γ−ξ of the acceleration regions might account for these

breaks. Alternative explanations could be a spatial varied propagation of

the relativistic electrons or a different particle injection spectrum in differ-

ent energy band. For the case of knots B, C, and D, we find indications of

an additional electron contribution, in order to adequately reproduce the

1https://www.cta-observatory.org

https://www.cta-observatory.org
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multi-band SEDs. The additional electron component is consistent with a

bump or a spike-like feature at high energy. We find that the stochastic or

shear acceleration (e.g., Liu et al., 2017) could account for the spectral shape

and short cooling time of the relativistic electrons. The existence of a cocoon

structure at the jet boundary (Dainotti et al., 2012), combining the spectral

shape of the relativistic electrons, could indicate that efficient shear acceler-

ation indeed takes place along the jet in M87. Based on above implications,

we suggest that a stratified or spine-sheath jet model (e.g., Perlman et al.,

1999) may account for the differences. However, all of these explanations

are ad hoc and detailed modelling as well as an advanced morphological

analysis in different energy bands would be required to further qualify them.

In addition to the large scale outflows in AGNs, SNRs are also regarded as

the site of particle acceleration. In recent years, several theoretical studies

have suggested that the best candidates for accelerators operating as PeVa-

trons are very young SNRs in dense environments (Schure & Bell, 2013). The

youngest known SNR in our Galaxy G1.9+0.3 seems to be a favoured source to

investigate whether these objects are the sites of PeV Galactic CRs. Although

H.E.S.S. hasn’t detected a positive signal of G1.9+0.3 until now, recent obser-

vations in hard X-ray by NuSTAR can provide unique information about the

acceleration efficiency of electrons. In Chapter 4, we have exploited the X-

ray observations of NuSTAR and Chandra satellites to constrain the electrons

distributions by assuming a synchrotron origin. We have found that the

acceleration of electrons is an order of magnitude slower than the maximum

rate provided by shock acceleration in the nominal Bohm diffusion regime.

If the acceleration of protons and nuclei proceeds in the same manner as the

electron acceleration, this result would then imply inability of G1.9+0.3 to

operate as a PeVatron.
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Thermodynamic
Temperature and MJy/sr to
Jy/pix

A

We need to convert the Planck image to Jy/pix from the original units ther-

modynamic temperature T_thermo and MJy/sr. We will use the following

physical constants:

h = 6.62607004 × 10−34 J ∗ s, the Plank’s constant;

k = 1.38064852 × 10−23 J/K, the Boltzmann’s constant;

c = 2.99792458 × 108 m/s, the velocity of light;

TCMB = 2.7255 K, the temperature of the CMB.

Blackbody radiation is the radiative field inside a cavity in thermody-

namic equilibrium. Brightness temperature, T is defined as the temperature

of a blackbody that emits the same radiance as measured. So for a blackbody,

the brightness temperature T equals to thermodynamic (kinetic) tempera-

ture T_thermo. The spectral radiance emitted by a blackbody with a given

temperature is expressed by the Planck function:

B(ν) =
2hν3

c2

(
exp

(
hν
kT

)
− 1

)−1

(A.1)

Antenna temperature (TA) is a parameter that describes how much noise

an antenna produces in a given environment. For an antenna with a radia-

tion blackbody pattern, the antenna temperature (TA) is defined as:

TA =
1
2k

(c
v

)2
B(ν) (A.2)

Differentiate it with respect to temperature:

δTA =
c2

(2kν2)
dBν
dT

=
(x2ex)

(ex − 1)2 δT (A.3)

where x = hν/kT = 1.7605556 × 10−11 × ν, ν is in unit of Hz. Therefore the

conversion factor from T_thermo to TA is

f =
(x2ex)

(ex − 1)2 (A.4)
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The brightness of the source B(ν) is in unit of W/sr/m2/Hz = 1020 MJy/sr,
through Equation A.1, we can get the conversion factor from TA to MJy/sr

f1 = 0.03072387 ×
(
ν

109

)2
(A.5)

So the conversion factor from T_thermo to MJy/sr is

f2 = f × f1 (A.6)

We assume the size of the pixels in our image is x degrees per pixel, then the

size in square degrees per pixel is

x
deg
pix
× x

deg
pix

= x2 square deg
(square) pix

(A.7)

1 square deg = 3.0461184 × 10−4 sr, so the size of the pixel in steradian is

x2 square deg
(square) pix

× 3.0461184 × 10−4 sr
square deg

= 3.0461184 × 10−4x2 sr
pix

(A.8)

MJy
sr
× 3.0461184 × 10−4x2 sr

pix
= 304.61184x2 Jy

pix
(A.9)

So the conversion factor from MJy
sr to Jy

pix is

f3 = 304.61184 × x2 (A.10)

and the conversion factor from T_thermo to Jy
pix is

f4 = f2 × f3 (A.11)



βe and β Relation B

The cutoff region in the distribution of parent electrons F(E) has a shape

similar to the synchrotron spectrum given by Eq.(4.2), F(E) ∝ exp[−(E/E0)βe]
with the following simple relation between βe and β (Fritz, 1989):

β =
βe

2 + βe
. (B.1)

Thus the cutoff region in the spectrum of synchrotron radiation is much

smoother than the cutoff region of the spectrum of parent electrons. For

any electron distribution, the synchrotron cutoff cannot be sharper than

the simple exponential decline (β = 1), which can only be witnessed in the

case of an abrupt cutoff in the spectrum of parent electrons (βe → ∞). In

the case of a simple exponential cutoff in the electron spectrum (βe = 1),

the corresponding synchrotron cutoff region is very shallow with β = 1/3.

Formally, such spectra can be formed during the shock acceleration of elec-

trons in the Bohm diffusion regime when the maximum energy of electrons

is determined by the age of the source rather than by energy losses of elec-

trons. However, in the particular case of young SNRs, when the electrons

are accelerated up to 100 TeV and beyond (otherwise one cannot explain

the observed X-ray data), with any reasonable set of parameters (magnetic

field, age of the source, shock speed, etc.), the acceleration proceeds in the

electron energy-loss regime, and the maximum energy is determined from

the competition between the acceleration and energy loss rates. In this

case, the spectrum of electrons exhibits a super exponential cutoff, namely

βe = 2 (Zirakashvili & Aharonian, 2007). Correspondingly, the synchrotron

spectrum contains, in accordance with Eq.(4.3), a cutoff with β = 1/2.

The δ-functional approximation gives an incorrect relation between βe

and β, namely β = βe/2. For example, within this approximation, the cutoff

in the spectrum of synchrotron radiation with β = 1 can be interpreted as a

result of the cutoff in the electron spectrum with βe = 2. However, in reality,
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such a synchrotron spectrum can be formed, in accordance with Eq.(4.2), in

the case of an abrupt cutoff in the electron spectrum, that is, for βe → ∞.

Asymptotic Forms of the
Electron Spectra in the
Bohm Diffusion Regime

C

Asymptotic spectra of electrons

The asymptotic spectra of shock-accelerated electrons in the Bohm diffusion

regime are derived by Zirakashvili & Aharonian (2007) under the assumption

that the energy losses of electrons are dominated by synchrotron radiation.

The spectrum of the electrons in the high energy cut-off region has a "Gaus-

sian" type behavior, N0 ∝ exp(−E2/E2
0), where

E0 =
2.86 × 108mec2

γsη1/2(1 + κ1/2)

(
u1

3000 km s−1

) (
B

100 µG

)−1/2

(C.1)

In the case of standard shock acceleration in the Bohm diffusion regime,

γs = 4. u1 is the shock speed in the upstream. The factor η ≥ 1 which

is proportional to diffusion coefficient, in the case of Bohm diffusion η =

1. κ = B1/B2 is the ratio of the magnetic field upstream to the magnetic

field downstream, for the young supernova remnants, the magnetic field

downstream is stronger than magnetic field upstream, we use a practical

number κ = 1√
11

. The analytical approximation for the electron distributions

in the upstream region:

E2 dN1

dE
= 0.7lEE3

0

1 + 1.7
(

E
E0

)35/6

exp

−E2

E2
0

 (C.2)

For the downstream, the integrated energy spectrum of electrons is

E2 dN2

dE
= lE−1E5

0

1 + 0.523
(

E
E0

) 9
4

2

exp

−E2

E2
0

 − 0.09 × E2 dN1

dE
(C.3)

Here, l is just an adjustable parameter.
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Synchrotron spectra

In the case of the above asymptotic electron distributions, the following

spectra of synchrotron radiation produced by upstream and downstream

regions is given:

J1(ε) ∝ 0.58

1 + 1.27
(
ε

ε0

)3/41/2

exp
(
−

√
3.32

ε

ε0

)
, (C.4)

J2(ε) ∝
ε0

ε

[
1 + 0.38

√
ε

ε0

]11/4

exp
(
−

√
ε

ε0

)
. (C.5)

Where

ε0 =
2.2 keV

η(1 + κ1/2)2

( u1

3000 km s−1

)2 16
γ2

s
. (C.6)

is the energy of synchrotron photons in the cut-off region.
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