Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Experimental Study and Modeling of the UV−Vis and Infrared Spectra of the [VO(O2)Hheida] Complex Dissolved in Water

MPG-Autoren
/persons/resource/persons71845

Noack,  Johannes
Inorganic Chemistry, Fritz Haber Institute, Max Planck Society;

/persons/resource/persons22071

Schlögl,  Robert
Inorganic Chemistry, Fritz Haber Institute, Max Planck Society;

/persons/resource/persons22181

Trunschke,  Annette
Inorganic Chemistry, Fritz Haber Institute, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)

2492834_SI.pdf
(Ergänzendes Material), 351KB

Zitation

Klokishner, S., Reu, O., Noack, J., Schlögl, R., & Trunschke, A. (2017). Experimental Study and Modeling of the UV−Vis and Infrared Spectra of the [VO(O2)Hheida] Complex Dissolved in Water. The Journal of Physical Chemistry A, 121(38), 7157-7164. doi:10.1021/acs.jpca.7b07128.


Zitierlink: https://hdl.handle.net/11858/00-001M-0000-002E-2400-7
Zusammenfassung
Combined theoretical and experimental studies of the [VO(O2)Hheida] anion dissolved in water that may serve as a functional model for vanadium haloperoxidase enzymes have been performed. The geometrical structure and absorption and vibrational spectra of this system have been evaluated within the framework of density functional theory (DFT). The obtained theoretical results on the equilibrium structure and optical spectra are in quite good agreement with the experimental data. With the aid of the combination of UV−visible spectroscopy and electronic structure calculations, it has been revealed that, in the apparent absorption spectra of the [VO(O2)Hheida] anion, the highest in energy band corresponds to a ligand to metal electron excitation, while the band with a maximum at 430 nm arises from the peroxo group. The calculations also reproduce quite well the positions, intensities and the grouping of frequencies in the near-infrared (NIR) spectra. The visualization of the calculated vibrations in the energy range of 400−1100 cm−1 has been presented.