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1 Introduction

The motion of a system of electromagnetic charges in special relativity in terms of multi-

poles is a well-known subject, see for example [1]. The motion could be described in terms

of the world line of the center of mass and the multipoles of the distribution of charges.1

The space-time symmetries of particles moving in an electro-magnetic background is

much less known. To our knowledge the first attempt to study these symmetries was in

the framework of kinematical algebras [3] and was done by Bacry-Combe-Richard (BCR)

in [22] for the case of a particle in a given fixed constant electromagnetic field Fab. The

Lorentz generators that leave Fab invariant are two combinations of Lorentz generators

G =
1

2
F abMab , ? G =

1

2
? F abMab . (1.1)

1For a single (monopole moment) charge, the problem was also studied in [2].
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The BCR algebra has 6 generators, four translations and two of the previous Lorentz

transformations. The algebra has two central charges

[Pa, Pb] = ZF abMab + Z ? F abMab (1.2)

and the two central charges are identified with electric and magnetic charge. Later, the

Maxwell algebra was introduced by Schrader [4], where the electro-magnetic field Fab was

allowed to transform with the Lorentz and the Poincaré algebra and then received six

non-central extensions2

[Pa, Pb] = Zab . (1.3)

This Maxwell algebra appears in [6] as the symmetry group of a particle moving in a

generic constant electro-magnetic background. The Maxwell algebra describes at same

time the particle and the constant electro-magnetic background where the particle moves.

In [6] an infinite extension of the Maxwell algebra (Maxwell∞) was also envisioned through

the process of extending by non-trivial two-forms in the Chevalley-Eilenberg Lie algebra

cohomology. This was done in an iterative procedure and the full mathematical structure

of Maxwell∞ was not uncovered.

In this paper, we find the mathematical structure underlying Maxwell∞. It turns out

to be the semi-direct product of the Lorentz algebra with a free Lie algebra generated

by the Poincaré translations and the algebra is Z-graded (with empty negative levels).

The finite level extensions found in [6] are easily reproduced and the associated Young

tableaux are identified. This construction works in any space-time dimension. We present

the lowest level generators of the algebra in table 1 for the four-dimensional case. From the

free algebra one can in principle compute any finite level extension and the corresponding

commutation relations. We also study possible quotients of Maxwell∞. As is clear from

table 1 and (1.3), the Maxwell algebra studied by Schrader [4] corresponds to the quotient

of Maxwell∞ where one only keeps levels ` = 0, ` = 1 and ` = 2.

We construct a dynamical system with Maxwell∞ symmetry. The model that we ana-

lyze is lowest order in derivatives and could therefore be considered as the first term of an ef-

fective description of an electro-magnetic interaction of particles. Possible higher derivative

extensions are not treated in this article. The basic tool that we use is the non-linear real-

isation in terms of the coset Maxwell∞/Lorentz and the associated Maurer-Cartan forms.

The coset can described in terms of the generalized coordinates xa, θab, ξab,c, σab,c,d1 , . . .

dual to the generators at levels ` > 0. Mathematically, these coordinates are just a lo-

cal parametrisation of the infinite-dimensional coset in a Lorentz gauge-fixed form. We

will also assign physical significance to them by thinking of xa as giving the space-time

coordinate (of the center of mass) of a charge distribution and the additional coordinates

could be considered either as describing higher inertial multipoles of a charge distribution

or as coordinates on some generalized space-time. This latter viewpoint has been taken

repeatedly [7–11] and is particularly pronounced in recent work on exceptional symmetries

in supergravity [12–18]. We also require the introduction of an infinite set new dynamical

variables fab, fab,c, f
1
ab,c,d, · · · that make it possible to write a manifest Lorentz invariant

2It is well-known that the D-dimensional Poincaré algebra admits non-central extensions [5].
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Level Young tableau Generator and some commutators coordinates

` = 0 Mab none

` = 1 Pa xa

` = 2 Zab = [Pa, Pb] θab

` = 3 Yab,c = [Zab, Pc] ξab,c

` = 4 S1
ab,c,d, see (2.15) σab,c,d1

S2
abc,d, see (2.15) σabc,d2

Table 1. Summary of the low level generators of Maxwell∞ in D = 4 dimensions. The Young

tableau describes the tensor type as a representation of the symmetric group. All generators are

Lorentz tensors under the anti-symmetric Mab. Levels ` = 0 and ` = 1 together constitute the

Poincaré algebra and the translation generators Pa generate the higher levels freely (in a Lie alge-

braic sense). We also display the coordinates that are associate with the generators in the non-linear

realisation of Maxwell∞/Lorentz.

Lagrangian for the system. These quantities are also the canonical momenta associated

to the generalized coordinates. By formal similarity of our equations to those of [1], the

extra dynamical variables are related to the higher electro-magnetic multipole moments

of the system of charges while the coordinates θab, ξab,c,. . . are similar to higher inertial

moments like angular momentum. However, this assignment is based only on similarity

and we consider further analysis of the precise interpretation of the higher coordinates and

dynamical variables to be necessary.

The dynamical equations of motion of our system relate the extra dynamical variables

with the coordinates on Maxwell∞/Lorentz. A universal equation motion that always is

present in our dynamical system is3

mẍa = fabẋ
b . (1.4)

This equation is the Lorentz force for our system. Note that our differential equations of mo-

tion are Maxwell∞ invariant. When we consider a particular solution of the equations of mo-

tion for fab, fab,c, f
1
ab,c,d, . . ., we can see that fab is now a function in general of the general-

ized coordinates fab → Fab(x, θ, . . .) and the symmetry Maxwell∞ is spontaneously broken.

It is not clear whether Fab can always be interpreted as an electro-magnetic field in

ordinary space-time that satisfies the integrability (or Bianchi) identity ∂[aFbc] = 0.4 We

confirm the finding of [6] that this is not always the case. The electro-magnetic field

3We have used the proper time of the center of mass as the evolution parameter.
4The violation of the Bianchi identity in ordinary configuration space could be associated with magnetic

monopoles.
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Fab(x, θ · · · ) appearing in the Lorentz equation is not necessarily integrable if one considers

all of Maxwell∞. Restricting the free Lie algebra to a suitable quotient renders the field

integrable and in fact the quotient just corresponds to the unfolding formalism for the

Maxwell field studied for example in [19, 20]. We can thus describe the motion of a charged

particle in a generic (analytic) background. Our formulation gives a different view on the

standard electro-dynamics of a point particle and potentially also describes generalizations

for systems of charges in terms of inertial moments.

Going beyond the quotient related to the unfolding formalism one encounters additional

dynamical equations and non-integrable solutions to the Maxwell equation. These appear

to correspond to the back-reaction of the multipoles on the motion of the center of mass.

The organisation of the paper is as follows: in section 2, we review the non-central

extension process for the Poincaré algebra. Section 3 contains the description of free Lie

algebras and the isomorphism of the free Lie algebra generated by the translations Pa to

the extension obtained in section 2. We also discuss quotients of Maxwell∞. In section 4,

we construct a dynamical point particle model with Maxwell∞ symmetry and analyse its

equations of motion. The relation to electrodynamics and unfolded dynamics is discussed.

We offer some concluding remarks in section 5 and collect some background material on

free Lie algebras in an appendix.

2 Extensions of the Poincaré algebra

In this section, we briefly review the extension of the Poincaré algebra based on Eilenberg-

Chevalley cohomology. The results of this section were obtained in [6].

The Poincaré algebra in D space-time dimensions is a semi-direct sum of the Lorentz

algebra so(1, D − 1) and the abelian algebra of space-time translations. We denote the

Lorentz generators by Mab = M[ab] for a = 0, . . . , D − 1 and the translation generators by

Pa. Their Poincaré Lie algebra is

[Mab,Mcd] = ηbcMad − ηbdMac − ηacMbd + ηadMbc ,

[Mab, Pc] = ηbcPa − ηacPb ,
[Pa, Pb] = 0 . (2.1)

Here, ηab = (−+. . .+) is the flat Minkowski metric. We will refer to the Lorentz generators

as level ` = 0 and the Poincaré generators as level ` = 1.5

In order to determine possible extensions of this Lie algebra one can study the

Chevalley-Eilenberg cohomology [21]. It turns out [6] that there is a sequence of extensions

of the algebra by generators that are Lorentz tensors and in fact can be viewed also as

tensors of the general linear algebra gl(D) and represented by Young tableaux. In this

representation, the translation generators Pa of level ` = 1 are written as a single box

Level ` = 1: Pa ←→ . (2.2)

We will also assign level ` = 0 to the Lorentz generators Mab.

5This terminology differs from the one in [6] but it turns out to be more convenient for the connection

to free Lie algebras discussed in the present paper.
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The Poincaré algebra has non-trivial cohomology that can be parametrised by the

anti-symmetric tensor Zab = Z[ab] [4, 6].6 Adding this generator to the Poincaré algebra

deforms the commutation relations in (2.1) to

[Pa, Pb] = Zab , [Zab, Zcd] = 0 , [Zab, Pc] = 0 . (2.3)

The tensorial nature of Zab is expressed by the commutation relation

[Mab, Zcd] = ηbcZad − ηbdZac − ηacZbd + ηadZbc (2.4)

with the Lorentz generators Mab. We will refer to the generator Zab as level ` = 2 and as

a Young tableaux it is given by

Level ` = 2: Zab ←→ . (2.5)

The algebra generated by (Mab, Pa, Zab) closes and is commonly called the Maxwell alge-

bra [4]. In view of the sequence of further extensions of the Poincaré algebra we will refer to

it as Maxwell2 as it used the generators up to level ` = 2. The connection between this al-

gebra and particle motion in a constant electro-magnetic background Fab = const. has been

well-studied [6], see also [4, 22, 23]. We note that the commutators (2.3) are consistent with

the level grading that we have assigned to the generators. The commutator [Pa, Pb] = Zab
has two generators of level ` = 1 on the left-hand side and the right-hand side a single gen-

erator of level ` = 2. The vanishing [Zab, Zcd] = [Zab, Pc] = 0 within the algebra Maxwell2
then is simply due to the fact that there are no generators of level ` > 2 in Maxwell2.

The cohomological analysis can be repeated and one finds that there is also a non-

trivial cohomology of the algebra Maxwell2 [6]. One can therefore extend Maxwell2 to an

algebra Maxwell3 by introducing new generators

Level ` = 3: Yab,c ←→ (2.6)

that we will call generators of level ` = 3 (since their Young tableaux has three boxes).

They can appear in the commutation relations consistently with the level grading and we

will see below how they change some of the commutators in (2.3).

The Young tableaux above has mixed symmetry and since we will encounter many

such Young tableaux we will now fix our conventions for labelling tensor generators as-

sociated with them: we transverse the Young tableau by column from left to right; each

column corresponds to an anti-symmetric set of indices. We separate the columns (=sets

of anti-symmetric indices) by commas. A tensor associated with such a Young tableau

is therefore automatically anti-symmetric in every set of indices. The irreducibility (as a

gl(D) representation) of the representation encoded in the Young tableaux is equivalent to

the requirement that the anti-symmetrization of the indices of one column with any single

index of a column to the right gives zero. If there are columns of equal length, the tensor is

symmetric under interchange of the sets of indices. A discussion of Young symmetrizers and

representations of the symmetric group based on tableaux can be found for example in [24].

6Here and everywhere in the paper we use (anti-)symmetrizations of strength one.
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In the example above this means that Yab,c has the following symmetry properties

Y[ab],c = Yab,c , Y[ab,c] = 0 . (2.7)

It arises in the commutator7

[Zab, Pc] = Yab,c . (2.8)

This commutator automatically satisfies that the totally anti-symmetric part vanishes by

the Jacobi identity upon substitution of (2.3). Moreover, Yab,c transforms as a tensor under

the Lorentz generators Mab in the standard way

[Mab, Ycd,e] = ηbcYad,e − ηacYbd,e + ηbdYca,e − ηadYcb,e + ηbeYcd,a − ηaeYcd,b . (2.9)

We will denote the Lie algebra generated by (Mab, Pa, Zab, Yab,c) by Maxwell3. The gen-

erator Yab,c of level ` = 3 commutes with all generators of levels ` ≥ 1 if one considers

Maxwell3. This is again due to the fact that our level assignment provides a consistent

grading of the Lie algebra Maxwell3.

Performing the cohomological analysis of Maxwell3 one finds again that it admits an

extension [6].8 This time the extending generators belong to two different irreducible

representations of gl(D). They are given by9

Level ` = 4: S1
ab,c,d ←→ and S2

abc,d ←→ . (2.10)

Even though the generators could be distinguished by their tensor structure, we have put

superscripts on them to make them easier to distinguish. In agreement with our rules

above, the generators have the following tensor properties

S1
[ab],c,d = S1

ab,c,d , S1
ab,(c,d) = S1

ab,c,d , S1
[ab,c],d = 0 (2.11)

and

S2
[abc],d = S2

abc,d , S2
[abc,d] = 0 . (2.12)

The new generators arise in the commutators as follows:

[Yab,c, Pd] = S1
ab,c,d + 2S2

abd,c − S2
bcd,a − S2

cad,b

= S1
ab,c,d + 3S2

dab,c − S2
abc,d , (2.13)

where we have written the right-hand side in two different ways using the irreducibility

constraint S2
[abc,d] = 0 of the second generator arising at level ` = 4. This relation fixes also

[Zab, Zcd] = 3S2
abd,c − S2

abc,d − 3S2
abc,d + S2

abd,c = −8S2
ab[c,d] (2.14)

7The order of indices on Yab,c and the normalisation of the generator differs (by 3) from the one used in [6].
8We assume D ≥ 4 here for simplicity.
9Also here the convention for the order of indices differs from [6]. The reason is that we want to maintain

our general labelling convention for Young tableaux.
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Level Young tableau Generator Dimension

` = 1 Pa 4

` = 2 Zab 6

` = 3 Yab,c 20

` = 4 S1
ab,c,d 45

S2
abc,d 15

Table 2. Summary of the positive level generators for Maxwell4 in D = 4 dimensions.

by Jacobi identities. All remaining commutators are also completely determined by the

level grading and the tensor structure of the generators. The Lie algebra that is generated

by (Mab, Pa, Zab, Yab,c, S
1
ab,c,d, S

1
abc,d) will be called Maxwell4. For completeness, we also

note the inverse relations

S2
abc,d = −3

8

[
Z[ab, Zc]d

]
= −3

8

[
P[c, Yab],d

]
,

S1
ab,c,d =

3

8
[Pd, Yab,c] +

3

8
[Pc, Yab,d]−

1

4

[
P[a, Yb]c,d

]
− 1

4

[
P[a, Yb]d,c

]
(2.15)

The tableaux and their dimensions are summarized for D = 4 in table 2.

This cohomological process could now be continued and [6] gives the tableaux for the

generators at level ` = 5. Rather than pursuing further the step by step cohomological

analysis, we now identify the full Lie algebraic structure in slightly different terms.

3 Free Lie algebras and their quotients

The sequence of Maxwell algebras Maxwelln reviewed in the previous section exhibits an

intriguing pattern: the generators at level 0 < ` ≤ n are given by tensors of gl(D) that

transform according to Young tableaux with ` boxes. The generators at level `+ 1 can be

obtained from the ones at level ` upon commutation with the ` = 1 generators Pa and all

commutators are consistent the level grading.

Inspection of the Young tableaux that arise up to Maxwell5 shows that the structure

is fully consistent with quotients of a free Lie algebra on D generators. These D generators

are precisely the translation generators Pa for a = 0, . . . , D − 1. This is one of the central

results of this paper. Before proving it we review for completeness some basic features of

free Lie algebras. More details can be found in appendix A and [25–27].

3.1 Free Lie algebras

For any (finite) set of independent generators Pa one can define a free Lie algebra f

as follows. One considers the linear space spanned by all possible multi-commutators

– 7 –
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[[
[Pa1 , Pa2 ] , . . . Pa`−1

]
, Pa`

]
and identifies all elements that are related to each other by the

relations of the Lie bracket, namely anti-symmetry and the Jacobi identity. When we refer

to this general `-fold multiple commutator we will sometimes denote it by Ya1...a` below

and in this case the tensorial symmetry properties of the generator are not specified. Since

no relations other than anti-symmetry and the Jacobi identity are used this is the minimal

requirement on a Lie algebra and the space spanned by all these multi-commutators is

therefore called the free Lie algebra f generated by the Pa. Since in particular, there are

no relations that change the number of the Pa in a multi-commutator one can consider the

free Lie algebra f for a fixed number ` of elements in the multi-commutator. This is called

the level ` part f` of the free Lie algebra that is a direct sum

f =
⊕
`>0

f` = f1 ⊕ f2 ⊕ . . . . (3.1)

More precisely, f1 is the D-dimensional vector space spanned by the Pa. The space f2 is the

space spanned by all commutators [Pa, Pb]. Due to the anti-symmetry of the Lie bracket

this space is of dimension D(D − 1)/2. We can write this also as f2 = [f1, f1]. As a vector

space, f2 is the exterior square of f1, but we prefer to use the bracket notation since this

extends to arbitrary level10

f`+1 = [f`, f1] . (3.2)

In appendix A, we review what is known about the dimensions of the space f` and how

free Lie algebras can be understood as special cases of generalized Kac-Moody algebras

introduced by Borcherds [28]. We note also that the grading (3.1) satisfies [f`, f`′ ] ⊂ f`+`′ .

3.2 Level decomposition

We now want to make closer contact to the explicit generators introduced above in section 2.

To this end we again notice that the generating set Pa spanning the D-dimensional space

f1 can be viewed as the fundamental of gl(D) and written as a Young tableau

f1 = 〈Pa〉 ←→ . (3.3)

As a representation of gl(D), the next level f2 is the anti-symmetric product of two

fundamental representations leading to11

f2 ←→ . (3.4)

Introducing the corresponding tensorial generators Zab of the free Lie algebra agrees with

[Pa, Pb] = Zab in (2.3). (This fixes a convenient normalization.)

10This statement contains non-trivial information: not all multi-commutators with ` elements are of

the form
[[

[Pa1 , Pa2 ] , . . . Pa`−1

]
, Pa`

]
but the commutators can also be nested in a different way, e.g.,

[[Pa1 , Pa2 ] , [Pa3 , Pa3 ]]. The statement here is that it is possible to find a basis of the iterated commutator

form given.
11Here, we assume D ≥ 4 for simplicity.
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Continuing to the next level of the free Lie algebra, we know that f3 has to be contained

in the gl(D) tensor product of f2 with f1 according to (3.2). This tensor product is

⊗ = ⊕ . (3.5)

The space f3 is a proper subset of the full tensor product since one has to impose the

Jacobi identity for three elements [[Pa, Pb] , Pc]. The Jacobi identity
[[
P[a, Pb

]
, Pc]

]
= 0

is completely anti-symmetric and therefore f3 does not contain the totally anti-symmetric

representation of gl(D), leading to

f3 ←→ . (3.6)

Introducing a corresponding tensorial generator Yab,c, it is obtained from the lower ones by

[Zab, Pc] = Yab,c in agreement with (2.8).

Four-fold commutators in the free Lie algebra must necessarily be contained in the

tensor product of f3 with f1 according to (3.2)

⊗ = ⊕ ⊕ . (3.7)

Again, not all these representation belong to f4 as one has to impose anti-symmetry and the

Jacobi identity of the Lie bracket. This eliminates the last Young tableau from the above

tensor product. This can be understood in general by considering the explicit multiplicities

of the generators as discussed in appendix A. In the present case it can also be seen by

realising that if this tableau were part of f4 it would arise also in the commutator [f2, f2]

which is anti-symmetric in the Zab and can therefore cannot produce a Young tableau with

shape in its commutator. Thus

f4 ←→ ⊕ . (3.8)

The corresponding generators are again those found in the cohomological approach, namely

S1
ab,c,d and S2

abc,d with commutation relations shown in (2.13).

This process can be continued and we give the generators up to f7 in appendix A.

We would like to make on important remark here. For classifying the generators of

the free Lie algebra f, or equivalently the ones of the extensions the Poincaré algebra, the

use of Young tableaux encoding irreducible representations of gl(D) is most convenient.

However, since the are tensors of Lorentz algebra so(1, D−1) ⊂ gl(D) one should properly

consider the decomposition of the tensors into irreducibles of so(1, D−1). This corresponds

to considering possible traces of the tensors. Starting from f3 such traces are possible.

We will use the notation that an irreducible tensor of so(1, D − 1) is also denoted

by a Young tableau giving the permutation symmetries of the indices. But in order to

emphasize the fact that all possible traces have been removed from the tensor we will put

– 9 –
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a tilde over the tableau. For example, for f3 the decomposition of the gl(D) tensor Yab,c
into tensors of so(1, D − 1) reads in tableau form

−→
˜

⊕ . (3.9)

As tensors we write this relation as

Yab,c = Ỹab,c +
1

D − 1
(ηbcYa − ηacYb) (3.10)

such that the trace of Yab,c gives Ya and Ỹab,c is traceless:

ηbcYab,c = Ya , ηbcỸab,c = 0 . (3.11)

The ` = 4 generators decompose similarly under the Lorentz group as

−→
˜

⊕ ˜ ⊕ ,

−→
˜

⊕ , (3.12)

We can use this decomposition to make contact with the algebras Bn studied in [29]. The

algebra B5 contains everything on ` = 2 and the vector generator on ` = 3. The algebra

B6 contains everything on ` = 2, the vector generator on ` = 3 and the second two-form

on ` = 4 (the one coming from (3,1)). Thus the Bn algebras are subalgebras of Maxwell∞.

3.3 Relation to Maxwell algebra

As we have seen in the previous section, there is a close relationship between the generators

appearing in the maximally extended Maxwell algebra Maxwell∞ and the those of the free

Lie algebra f. For levels ` = 1, . . . , 4 we have seen above that the correspondence is exact

not only for the generators but also for the commutation relations. We will now prove that

this continues to all levels. In other words, the central statement is that

Maxwell∞ ∼= so(1, D − 1)⊕ f , (3.13)

where the sum is semi-direct and f is the free Lie algebra generated by the translation gen-

erators Pa. The isomorphism above is an isomorphism of Lie algebras. The essential part

of the isomorphism is the ‘translation part’ where the Lorentz algebra so(1, D−1) is frozen

and we will restrict to this. We note that we could also introduce a dilatation operator D

on level ` = 0 that gives the level of the free Lie algebra generators as its eigenvalue:

[D, f`] = `f` . (3.14)

The Lorentz generators then have eigenvalue zero under D since they are at level ` = 0.

– 10 –
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The proof relies on studying the Eilenberg-Chevalley cohomology at level ` and goes

by induction. One way of studying the cohomology is to construct the Lie algebra valued

Maurer-Cartan one-form up to level `. We first need to introduce some notation. Let

Ω(`) = g−1dg =
∑̀
k=1

Ω(k) , (3.15)

be the Maurer-Cartan one-form up to level `, where

Ω(k) = Ωa1...akYa1...ak (3.16)

is the one-form at level k as signalled by the fact that the generator is a tensor with k

indices, meaning the generator is at level k in Maxwell∞. Here, the notation does not fix

the tableau structure of the indices on the level k generator Ya1...ak . As examples, we have

Ω(1) = ΩaPa , Ω(2) =
1

2
ΩabZab , Ω(3) =

1

2
Ωab,cYab,c . (3.17)

The Maurer-Cartan equation says that

dΩ(k) = −
k−1∑
m=1

Ω(m) ∧ Ω(k−m) , (3.18)

in particular dΩ(1) = 0.

For the Eilenberg-Chevalley cohomology H2 we have to study the non-trivial two-

forms inductively by level. Before discussing the general case, we consider as an illustrative

example ` = 2. All possible two-forms at this level are contained in Ωa1a2 ∧ Ωb and we

need to find the closed but non-exact invariant ones. The action of the differential on an

arbitrary two-forms is

d
(

Ωa1a2 ∧ Ωb
)

= −Ωa1 ∧ Ωa2 ∧ Ωb = −Ω[a1 ∧ Ωa2 ∧ Ωb] = d
(

Ω[a1a2 ∧ Ωb]
)
, (3.19)

where we have used the Maurer-Cartan equation dΩa1a2 = −Ωa1 ∧ Ωa2 and have shown

in the last steps that the differential of an arbitrary two-form is equal to that of the

anti-symmetrised projection. This projection occurs in the decomposition of the product

Ωa1a2 ∧ Ωb into irreducible representations according to (3.5)

Ωa1a2 ∧ Ωb = Ω[a1a2 ∧ Ωb]︸ ︷︷ ︸+
(

Ωa1a2 ∧ Ωb − Ω[a1a2 ∧ Ωb]
)

︸ ︷︷ ︸ . (3.20)

Applying the dfferential d to this equation and using (3.19) we deduce that the structure

with Young shape is closed. Moreover, the shape is not exact since Ωb is not

the differential of anything invariant. This last qualification is very important as we are

interested in the cohomology of invariant forms. We note also that representation can

be viewed as the Jacobi identity at this level.
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After this example, we now return to the general case. In order to study the cohomology

at level ` we need to consider all possible two-forms at exactly level ` + 1, that is linear

combinations of (the overcomplete set)

Ω(1) ∧ Ω(`) ,Ω(2) ∧ Ω(`−1) , . . . ,Ω(`) ∧ Ω(1) , (3.21)

and determine the ones that are closed but not exact. Let us focus on the last term to

start with and see when it is closed:

d
(
Ω(`) ∧ Ω(1)

)
= dΩ(`) ∧ Ω(1) = −

(
`−1∑
k=1

Ω(k) ∧ Ω(`−k)

)
∧ Ω(1) (3.22)

This double commutator vanishes exactly when one can arrange the terms such that they

correspond to the Jacobi identity in the free Lie algebra, similar to the example above. In

other words, projecting the equation to the Jacobi identity representation does not change

the result and therefore any term that satisfies the Jacobi identity will be closed while

terms that do not satisfy the Jacobi identity cannot be closed.

None of the two-forms that satisfy the Jacobi identity can be exact (i.e., are differentials

of an invariant one-form). If the closed two-form Ω(`)∧Ω(1)+. . . in question were exact, there

would be an invariant one-form Θ with dΘ = Ω(`)∧Ω(1) + . . .. However, the form Ω(`) is by

induction assumption not exact and neither is Ω(1), thus such a Θ cannot exist. This induc-

tion step for the cohomology of the Maxwell algebra mirrors the inductive statement (3.2).

Therefore we have shown that the Eilenberg-Chevalley cohomology computed level

by level generates exactly a free Lie algebra. This is maybe not surprising as the free Lie

algebra is the maximal Lie algebra one can construct over a generating set Pa and therefore

there cannot be any additional extensions provided by the cohomology.

3.4 Ideals and quotients

Free Lie algebras admit many non-trivial quotient Lie algebras that arise from non-trivial

ideals of the free Lie algebra. For example, the construction of standard semi-simple Lie

algebras of Kac-Moody type can be viewed in this language and the class of ideals relevant

there can be described in terms of Dynkin diagrams with the ideals being generated by the

Serre relations [30]. Here, we will consider three other classes of ideals of f.

The first family of ideals is defined as

i` =
⊕
k>`

fk (3.23)

and consists of all multi-commutators with more than ` basic generators. Since the grad-

ing (3.1) respects the commutator this clearly is an ideal of f, i.e., [f, i`] ⊂ i`. The associated

quotient Lie algebra q` is

q` = f/i` =
⊕̀
k=1

fk (3.24)

with the same commutators as f except for that all terms leading to generators contained

in fk with k > ` are set to zero. From this we conclude that the finite Maxwell extensions
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of the Poincaré algebra satisfy

Maxwell` = so(1, D − 1)⊕ q` . (3.25)

The second family of ideals is given for integers r > 0 by

sr = 〈Young tableaux in f with more than r rows〉 . (3.26)

This forms an ideal since the commutation relations of the free Lie algebra will never

remove boxes from a Young tableau and therefore sr is stable under the adjoint action of

f. We denote the associated quotient by

dr = f/sr . (3.27)

The third ideal u corresponds to

u=〈Young tableaux in f with more than 2 rows or more than one box in the second row〉 .
(3.28)

The quotient

w = f/u (3.29)

then consists only of tableaux of the shape

a , a
b
, a c1 c2 · · ·cn

b
(3.30)

for n > 0. Except for the first tableau corresponding to Pa these are exactly the tensors

needed to unfold the Maxwell field strength [20].

There are many other ideals that could be considered for quotients. For example,

any non-zero generator x of f generates a non-trivial principal ideal. Other options include

removing ideals generated by certain low-lying tableaux and the Serre relations of standard

(Kac-Moody) Lie algebras are of this type.

4 Point particle model with Maxwell∞ symmetry

In this section, we begin to consider a dynamical realisation of the symmetry algebra

Maxwell∞ studied in the previous sections in the terms of relativistic massive and massless

particle in an electro-magnetic background. For this we use the language of non-linear

realisations and Lagrangian formulation also used in [6, 31, 32].

4.1 Coset element, Maurer-Cartan forms and Lagrangian

We consider the coset Maxwell∞/SO(1, 3) and write a group element as12

g = ex
aPae

1
2
θabZabe

1
2
ξab,cYab,ce

1
4
σab,c,d
1 S1

ab,c,de
1
4
σabc,d
2 S2

abc,d · · · , (4.1)

12We note that our normalisations differ slightly from those employed in [6]. For mixed symmetry Young

tableau the choice of combinatorial coefficients is not fully canonical and our choice gives simple rational

coefficients in the equations.
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such that XM = (xa, θab, ξab,c, σab,c,d1 , σabc,d2 , . . .) are a choice of local coordinates on the

coset space and we have fixed a Lorentz gauge. The basic building block of the non-linear

realisation is the Maurer-Cartan one-form

Ω = g−1dg = dxaPa +
1

2

(
dθab + dxaxb

)
Zab +

1

2

(
dξab,c − θabdxc +

1

3
dxaxbxc

)
Yab,c

+
1

4

(
dσab,c,d1 − 2ξab,cdxd +

1

6
dxaxbxcxd

)
S1
ab,c,d

+
1

4

(
dσabc,d2 + 4θabdθcd − 6ξab,ddxc − 8dxaxbθcd

)
S2
abc,d + . . . . (4.2)

The form Ω is by construction invariant under all positive level elements of Maxwell∞
acting by global transformations from the left. If one wanted to keep the Lorentz

gauge invariance unfixed one would have to include a factor exp
(
1
2r
abMab

)
in the group

element (4.1). This could alternatively be accommodated by considering a covariant

extension of the differential d

d → D = d+MabMab , (4.3)

where the last term indicates the action of the Maurer-Cartan one-form MabMab coming

from the Lorentz piece in the group element [6]. As we work in the fixed Lorentz gauge

above, we will not require this in the sequel.

Note that the contraction with the generators automatically projects the coefficients

in (4.2) on the correct Young tableau symmetries. Defining the coefficients in general as

Ω = ΩaPa +
1

2
ΩabZab +

1

2
Ωab,cYab,c +

1

4
Ωab,c,d
1 S1

ab,c,d +
1

4
Ωabc,d
2 S2

abc,d + . . . (4.4)

one has the following expanded form of the projected coefficients

Ωa = dxa , (4.5a)

Ωab = dθab +
1

2

(
dxaxb − dxbxa

)
, (4.5b)

Ωab,c = dξab,c − 1

3

(
2θabdxc − θbcdxa − θcadxb

)
+

1

6

(
dxaxbxc − dxbxaxc

)
, (4.5c)

Ωab,c,d
1 = dσab,c,d1 − 3

4
ξab,cdxd − 3

4
ξab,ddxc +

1

4

(
ξbc,d + ξbd,c

)
dxa − 1

4

(
ξac,d + ξad,c

)
dxb

+
1

12

(
dxaxbxcxd − dxbxaxcxd

)
, (4.5d)

Ωabc,d
2 = dσabc,d2 − 6dx[aξbc],d + 4θ[abdθc]d − 4θ[abdθcd] − 8dx[axbθc]d + 8dx[axbθcd] . (4.5e)

Considering infinitesimal transformations generated by f on the lowest levels with rigid

generator

T = εaPa +
1

2
εabZab +

1

2
εab,cYab,c +

1

4
εab,c,d1 S1

ab,c,d +
1

4
εabc,d2 S2

abc,d + . . . , (4.6)
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we find that the coset fields XM = (xa, θab, ξab,c, σab,c,d1 , σabc,d2 , . . .) transform as

δTx
a = εa , (4.7a)

δT θ
ab = εab − 1

2

(
xaεb − xbεa

)
, (4.7b)

δT ξ
ab,c = εab,c +

1

3

(
2εabxc − εbcxa − εcaxb

)
+

1

3

(
εaxbxc − εbxaxc

)
, (4.7c)

δTσ
ab,c,d
1 = εab,c,d1 +

3

4
εab,cxd +

3

4
εab,dxc − 1

4

(
εbc,d + εbd,c

)
xa +

1

4

(
εac,d + εad,c

)
xb

+
1

2
εabxcxd − 1

4

(
εbcxaxd − εadxbxc − εacxbxd + εbdxaxc

)
+

1

4

(
εaxbxcxd − εbxaxcxd

)
, (4.7d)

δTσ
abc,d
2 = εabc,d2 +6x[aεbc],d+4θ[abεc]d−4θ[abεcd]+2ε[abxc]xd−4ε[axbθc]d+4ε[axbθcd] . (4.7e)

It is natural to think of these transformations as generalized translations in the extended

space spanned by all the XM . The Cartan-Maurer forms (4.5) are invariant under these

transformations.

Our next task will be to construct a (massive) particle model for motion on this coset.

For this we consider the coordinates XM = (xa, θab, ξab,c, σab,c,d1 , σabc,d2 , . . .) as functions of

a world-line parameter τ , i.e., XM ≡ XM (τ). Then the differential d becomes a derivative

with respect to the world-line parameter τ by the chain rule, for example Ωa = ẋadτ . An

invariant Lagrangian up to ` = 4 can be constructed from the pull-backs of the one-forms

Ω as [6]

Ldτ = m
√
−ΩaΩa +

1

2
fabΩ

ab +
1

2
fab,cΩ

ab,c +
1

4
f1ab,c,dΩ

ab,c,d
1 +

1

4
f2abc,dΩ

abc,d
2 + . . . , (4.8)

where indices are raised and lowered with the flat Minkowski metric. The new dynamical

quantities fab, fab,c, f
1
ab,c,d and f2abc,d multiply the invariant one-forms and should be thought

of as momentum like variables. They have the same symmetries as the corresponding

generators of the free Lie algebra.

The first Cartan form Ωa = ẋadτ associated with the space-time coordinates xa plays

a special role in the construction in that it is not set to zero by a Lagrange multiplier

but provides a kinetic term for the particle’s motion. One could also consider the case

of massless particles by changing the first term in the Lagrangian (4.8) to ẋaẋa
2e , where

e is the einbein variable on the world-line. If we assign as dilatation D-eigenvalues the

opposite dilatation weights compared to the coordinates, all terms in (4.8) are invariant

under D except for the first term. In the massless case one can make the whole Lagrangian

dilatation invariant by letting [D, e] = −2e.

4.2 Equations of motion

The Euler-Lagrange equations following from a Lagrangian of the type given in (4.8) take a

universal and simple form. To understand this we first consider an even simpler Lagrangian

of the form

Ldτ = fAΩA , (4.9)
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where ΩA are the components of a Maurer-Cartan form Ω = g−1dg = ΩAtA expanded in

a basis tA of a Lie algebra.The equations of motion of this system are then obtained by

considering variations g−1δg = ΣAtA of the coordinates on the group manifold. Varying

the Lagrangian above leads to (up to a total derivative)

δL dτ = δfAΩA + faδΩ
A = δfAΩA −

(
ḟA + cAB

CfCΩB
)

ΣA , (4.10)

in terms of the structure constants [tA, tB] = cAB
CtC of the algebra. Here, we have used

that the variation of the components of the Maurer-Cartan form is

δΩA = Σ̇A + cBC
AΩBΣC . (4.11)

The equations of motion of such a system are therefore

ΩA = 0 , ḟA = 0 . (4.12)

The Lagrangian (4.8) does not have Lagrange multipliers fA for all Maurer-Cartan

forms; the first component Ωa is treated differently. As a result there will be associated

contributions to the equations for all ḟA. The non-trivial Maurer-Cartan form at level

` = 1 is Ωa = ẋadτ and therefore all equations for ḟ... for levels ` > 1 will be proportional

to ẋa contracted into the Lagrange multiplier f... of level `+ 1.

To be more precise, our Lagrangian (4.8) is

Ldτ = m
√
−ΩaΩa +

∑
`>1

f` Ω` , (4.13)

where we have used a schematic notation for the Lagrange multipliers and Maurer-Cartan

forms at levels ` > 1. The variation of such a Lagrangian is then

δL dτ = mδ
√
−ΩaΩa +

∑
`>1

δf`Ω
` +

∑
`>1

f`δΩ
`

= mẍaδx
adτ +

∑
`>1

δf`Ω
` −

∑
`>1

ḟ`Σ
` −

∞∑
`,m=1

c`m
`+mf`+mΩmΣ` , (4.14)

where we have discarded total derivatives and employed proper time gauge. Moreover,

the Z-grading on the free Lie algebra was used to simplify the structure constants. The

equations of motion therefore imply

Ω` = 0 , ḟ`dτ = −c` 1`+1f`+1Ω
1 for ` > 1. (4.15)

Using the fact that Ω` = 0 for ` > 1, the last term in the variation simplifies and we see

that on-shell every f` only couples to the one on the next level (f`+1) multiplied by Ω1

that corresponds to Ωa = ẋadτ . The equations for the first level are

mẍa = fabẋ
b , (4.16)

where we have also used the commutator [Pa, Pb] = Zab to make the structure constant

explicit. Therefore the Lorentz equation (4.16) is universal for our Lagrangian (4.8) to all
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levels in the free Lie algebra. All the other equations (4.15) are similarly universal. As

an example we consider the equations of motion we work out the equation for ḟ2. From

the structure constant [Zab, Pc] = Yab,c we deduce ḟab = −fab,cẋc. In section 4.4, we will

address the question to what extent fab can be interpreted as an external electro-magnetic

field in ordinary space-time.

Since the Lagrangian is constructed from the Maxwell∞-invariant Maurer-Cartan

forms, our dynamical system has global Maxwell∞ symmetry.

4.3 Equations of motion up to level ` = 4

We now give the explicit form of the equations of motion up to level ` = 4 in proper

time gauge. These can be calculated most easily using the universal forms derived above

together with the explicit expressions (4.5) for the Maurer-Cartan forms.

σ̇ab,c,d1 =
3

4
ξab,cẋd +

3

4
ξab,dẋc − 1

4

(
ξbc,d + ξbd,c

)
ẋa +

1

4

(
ξac,d + ξad,c

)
ẋb

− 1

24

(
ẋaxbccxd − ẋbxaxcxd

)
, (4.17a)

σ̇abc,d2 = −27

4
ẋ[aξbc],d − 3θ[abθ̇c]d − 3θd[aθ̇bc] + 6θ[abxc]ẋd + 6θd[axbẋc] , (4.17b)

ξ̇ab,c =
1

3

(
2θabẋc − θcaẋb − θbcẋa

)
− 1

6

(
ẋaxbxc − ẋbxaxc

)
, (4.17c)

θ̇ab = −1

2

(
ẋaxb − ẋbxa

)
, (4.17d)

ḟ1ab,c,d = 0 , (4.17e)

ḟ2abc,d = 0 , (4.17f)

ḟab,c = −f1ab,c,dẋd +
(
f2abc,d − 3f2abd,c

)
ẋd , (4.17g)

ḟab = −fab,cẋc , (4.17h)

mẍa = fabẋ
b . (4.17i)

The first equations are simply the vanishing of the Maurer-Cartan forms (4.5) enforced by

the Lagrange multipliers f... for levels ` > 1. If one calculated these equations directly from

the Lagrangian (4.8) with all expressions substituted from (4.5) as Euler-Lagrange equa-

tions, one would of course arrive at the same result. However, the simple final expressions

might appear surprising if one did not know about the underlying symmetry structure and

the general considerations of the preceding section.

4.4 Relation to multipoles

Let us analyse in more detail equation (4.17i) that looks like a standard Lorentz equa-

tion. The field fab appearing on the right-hand side can be integrated explicitly using the

equations (4.17). First, we note from (4.17g) that

fab,c = −F 1
ab,c,dx

d +
(
F 2
abc,d − 3F 2

abd,c

)
xd + Fab,c , (4.18)

where F... are constants (along the world-line). When we consider any solution of the

equations of motion the Maxwell symmetry of the dynamical system is spontaneously
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broken. Substituting this into (4.17h) one finds

fab =
1

2
F 1
ab,c,dx

cxd +
(
F 2
abc,d − 3F 2

abd,c

)(
θcd − 1

2
xcxd

)
− Fab,cxc + Fab , (4.19)

where ẋcxd = − d
dτ

(
θcd − 1

2x
cxd
)

has been used. As already noted in [6], this ‘electro-

magnetic field’ depends on the new coordinate θab and is not integrable in the space-time

coordinates xa. It is useful to separate it into an integrable part (which is a genuine

electro-magnetic background) in ordinary configuration space and a non-integrable part:

fab = f intab + fnon−intab (4.20)

with

f intab =
1

2
F 1
ab,c,dx

cxd − Fab,cxc + Fab , (4.21a)

fnon−intab = 4F 2
abc,dθ

cd + F 2
abc,dx

cxd (4.21b)

The integrable part satisfies the Bianchi identity ∂[af
int
bc] = 0.We note that the non-

integrable part only depends on F 2
abc,d whereas the integrable part looks like a Taylor

expansion of an electro-magnetic field. The full equation for xa can then be written as

mẍa − 4F 2
abc,dẋ

bθcd − F 2
abc,dθ̇

bcxd = f intab ẋ
b . (4.22)

For F 2
abc,d = 0 one obtains the equation of motion for a particle moving in an electro-

magnetic field that depends up to quadratic order on the coordinates. The condition

F 2
abc,d = 0 is satisfied automatically when working in the quotient d2 defined in (3.27).

If we consider the particular solution f intab = 0 this would eliminate the coupling of the

world-line to the electro-magnetic field and therefore should be interpreted as vanishing

total charge of the system. We can, however, keep the non-integrable part in (4.22) where

the resulting equation then takes the form

mẍa = 4F 2
abc,dẋ

bθcd − F 2
abc,dθ̇

bcxd . (4.23)

This equation has similarity with the equation for the motion of an electric dipole studied

in [33].

4.5 Consistent truncation of the equations to quotients of Maxwell∞

As discussed in section 3.4, there are many quotients of Maxwell∞ that can be constructed.

The dynamical equations automatically truncate consistently to any such quotient. In view

of the non-integrable contributions to the Lorentz equation (4.22) we now consider two such

quotients.

The first is to work in the quotient d2 of equation (3.27) where one only keeps Young

tableaux with at most two rows. In this quotient up to level ` = 4, the non-integrable part

proportional to F 2
abc,d in (4.22) drops out and one has a standard Lorentz equation with

an electro-magnetic field that is at most cubic in the coordinate xa.
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We shall also extend the equations of motion to ` = 5 in the quotient d2. The level five

generators are given in appendix A.3. The new relevant equations in the quotient d2 are

ḟab,c,d,e = 0 , (4.24a)

ḟab,cd,e = 0 , (4.24b)

ḟab,c,d = −fab,c,d,eẋe − (fab,ce,d + fab,de,c) ẋ
e . (4.24c)

Integrating iteratively for fab then gives the following

fab,c,d = −Fab,c,d,exe − (Fab,ce,d + Fab,de,c)x
e + Fab,c,d , (4.25a)

fab,c =
1

2
Fab,c,d,ex

dxe − (Fab,ce,d + Fab,de,c)

(
θde − 1

2
xdxe

)
− Fab,c,dxd + Fab,c , (4.25b)

fab =
1

6
Fab,c,d,ex

cxdxe + (Fab,ce,d + Fab,de,c)

(
ξde,c − 1

6
xcxdxe

)
+

1

2
Fab,c,dx

cxd − Fab,cxc + Fab . (4.25c)

The correction to the ξ term in the last line comes from(
θde − 1

2
xdxe

)
ẋc + (c↔ d) =

d

dτ

(
ξde,c − 1

6
xcxdxe

)
+ (c↔ d) (4.26)

but seems to drop out when contracted with the F -terms. However, one is left with a

non-integrable contribution to fab given by

fnon−intab = (Fab,ce,d + Fab,de,c) ξ
de,c . (4.27)

This does not satisfy the Bianchi identity in the standard space-time and comes from

the tableau . We therefore conclude that the quotient d2 introduces new additions

to the Lorentz equation that are not just corresponding to the Taylor expansion of a

standard electro-magnetic field. We will comment more on this in the conclusion.

The second quotient we consider is the one give in (3.29) where one only keeps Young

tableaux with at most two rows such that the second row has at most one box. This will

also remove the non-integrable contribution above and it is straight-forward to see that

in this case one can extend the algebra and equations of motion to arbitrary level. The

resulting integrable electro-magnetic field takes the form

fab =
∑
`≥0

(−1)`Fab,i1...i`x
i1 · · ·xi` . (4.28)

(The alternating sign is a consequence of our convention of appending indices on the right

in the free algebra, cf. (3.2).) The Lorentz equation becomes simply

mẍa = fabẋ
b (4.29)

and this quotient then describes the Taylor expansion of an electro-magnetic field. One

might also refer to it as the unfolding of particle motion in an electro-magnetic field.
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5 Conclusions

The Maxwell algebra introduced in [4, 5] is an extension of the Poincare algebra with an

antisymmetric generator Zab. A particle moving in a generic constant electro-magnetic

background [6] is a realisation of this algebra. The Maxwell algebra describes at same time

the particle and the constant electro-magnetic background in which the particle moves.

In this paper, we have introduced a maximal infinite sequential extension of this algebra

that we call Maxwell∞. We have an infinite-dimensional free Lie algebra generated by the

translation generators Pa at level ` = 1 to which we join at level ` = 0 the Lorentz

generators Mab. The higher order levels corresponds to generators with a precise Young

tableau structure. The relation with the Eilenberg-Chevalley cohomology was elucidated.

The existence of different infinite Lie algebra ideals of Maxwell∞ allows construction of

different truncations of the Maxwell algebra. One of these truncations corresponds to the

finite Maxwell algebras of [6]. Another truncation gives the unfolding of the Maxwell field

given in [19, 20]. It will be interesting to study other possible truncations of Maxwell∞.

As a possible realisation of Maxwell∞ we have constructed a model at low order in

derivatives that tentatively describes the motion of a distribution of charged particles in

an generic electro-magnetic field. The motion is characterised in terms of the center of

mass coordinates and an infinite set of momenta, that are conjugate to the generalised

coordinates of the coset Maxwell∞/Lorentz. These equations take a universal form and

are invariant under the Maxwell∞ symmetry by construction. By contrast any solution will

break this symmetry spontaneously and the residual symmetry can be smaller, for example

agreeing with the BCR algebra (1.2) in the case of Maxwell2.

We see many avenues of future research. Our treatment of the dynamical system was in

Lagrangian form; for a proper analysis of the Killing symmetries of the system a transition

to a canonical Hamiltonian form along the lines of [32] will be useful. The dynamical

variables f... for ` > 1 will then play the roles of momenta while the conjugate momentum

πa to the position xa will take a more complicated form. The canonical formulation is also

crucial for considering the potential quantisation of the system.

Two possible generalisations of the present work are to study either the non-relativistic

Galilei (or Carroll) case [31, 34] or the supersymmetric extension [35]. In either case

only finite extensions of the standard kinematical algebra are known but we anticipate an

embedding of these structures in an appropriate free Lie algebra construction, possibly

with quotients. It would also be interesting to study the relation of the electro-magnetic

Maxwell∞ to other finite- or infinite-dimensional symmetries that involve gravity and/or

higher rank gauge fields [36–39].

In conclusion, we consider our construction as providing a very general framework

that can serve to analyse many physical different situations depending on which quotient

of Maxwell∞ one considers.
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A Background on free Lie algebras

In this appendix, we provide some more details on free Lie algebras f and how their Z-

graded decomposition

f =
⊕
`>0

f` (A.1)

can be analysed in terms of gl(D) representations, where D is the number of generators of

f such that dim f1 = D.

A.1 Roots and multiplicities for free Lie algebras

Before turning to the Z-grading (A.1) one can first introduce a finer ZD-grading of f which

resembles the root space decomposition of simple complex Lie algebras. Here, ZD will play

the role of the root lattice. For every one of the D generators Pa of f we introduce a simple

root αa. Then we want to write f in a root space decomposition as

f =
⊕
α∈ZD

fα . (A.2)

The simple roots spaces are one-dimensional and spanned by the Pa:

fαa = 〈Pa〉 . (A.3)

For a 6= b, the commutator [Pa, Pb] is non-trivial and spans the root space of αa + αb:

fαa+αb
= 〈[Pa, Pb]〉 (a 6= b) . (A.4)

For a general root α =
∑

amaαa with ma ≥ 0, the dimension of the root space fα is given

by the Witt formula [40] for the multiplicity of the root:

mult(α) ≡ dim fα =
∑

k|(m0,...,mD−1)

µ(k)

ht(α)

(
1
kht(α)

m0
k , . . . ,

mD−1

k

)
. (A.5)
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Here, k runs over all the common positive divisor of the ma and ht(α) =
∑

ama denotes

the height of the root. The function µ is the Möbius µ-function:

µ(k)=


+1 if k is the product of an even number of distinct prime factors (excluding 1)

−1 if k is the product of an odd number of distinct prime factors (excluding 1)

0 if k has a multiple prime factor (excluding 1)

(A.6)

The polynomial (or multinomial) coefficient appearing in the Witt formula is( ∑
ta

t0, . . . , tD−1

)
=

(
∑
ta)!

t0!t1! · · · tD−1!
. (A.7)

Due to the relation to Borcherds algebras alluded to above one derive the Witt formula

from the denominator of an appropriate Borcherds algebra [27]. This Borcherds algebra

consists solely of time-like (imaginary) simple roots without any relations among them; a

possible Cartan matrix is (−1)Di,j=1. The associated Borcherds denominator is

∏
α∈Q+

(1− eα)mult(α) = 1−
D−1∑
a=0

eαa . (A.8)

The set Q+ here denotes the set of all roots α =
∑

amaαa with ma ≥ 0.

As examples of the Witt formula, we work out the multiplicities mult(2α0) and

mult(α0 +α1) where the roots appearing are simple roots. For 2α0 formula (A.5) evaluates

to

mult(2α0) =
µ(1)

2

(
2

2, 0, 0, . . . , 0

)
+
µ(2)

2

(
1

1, 0, 0, . . . , 0

)
= +

1

2
− 1

2
= 0. (A.9)

This is of course expected since [P0, P0] = 0 by the anti-symmetry of the Lie bracket.

By contrast, for α0 + α1 we find

mult(α0 + α1) =
µ(1)

2

(
2

1, 1, 0, . . . , 0

)
= +

1

2
× 2 = 1 . (A.10)

This is in agreement with the non-vanishing commutator [P0, P1] in the free Lie algebra.

By specialising the denominator formula (A.8) one can obtain a generating function

for the Z-gradation of f: ∏
`>0

(1− t`)f` = 1− tf1. (A.11)

The notation here is the same as in [41] and means that one identifies the space f` inside

the ZD-gradation according to

f` =
⊕

α : ht(α)=`

fα , (A.12)
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sometimes called the principal grading of f. In order to make the notation of formula (A.11)

more transparent, we consider the first non-trivial term

(1− t)f1 = (1− teα0) · · · (1− teαD−1)

= 1− t(eα0 + . . .+ eαD−1) + t2
∑
i<j

eαi+αj +O(t3)

= 1− tf1 + t2
∑
i<j

eαi+αj +O(t3) . (A.13)

Multiplying this with (1 − t2)f2 all terms in t2 should cancel and therefore we conclude

that f2 consists of all the commutators in the root spaces αi +αj with i < j and each root

space has dimension one. This is of course in agreement with the fact that f2 = [f1, f2] and

consists of all the anti-symmetric combinations.

A.2 Weights and Young tableaux

It is easy to implement the Witt formula and to obtain all roots on a fixed level ` with their

multiplicities. We would like to present the space f` as a set of Young tableaux of gl(D)

in such a way that f1 ↔ . For this we use the correspondence of Young tableaux with

(dominant) weights of sl(D). We will do this very explicitly for D = 4 but the technique

generalizes in a straight-forward way to other D. The difference between sl(D) and gl(D)

only enters in the form of the constraint that all tableaux for gl(D) occuring in f` have

to have exactly ` boxes; thus we will explicitly show columns of D boxes that have no

meaning for sl(D) tensors but influence the tensor weight for gl(D) tensors.

In the following table, we list the four weights of the fundamental representation of

sl(4) in Dynkin label notation and line them up against the four simple roots αa of f1:

root α0 α1 α2 α3

weight [1, 0, 0] [−1, 1, 0] [0,−1, 1] [0, 0,−1]
(A.14)

Here, we have introduced the convention that α0 corresponds to the highest weight of the

representation. Using (A.14) we can easily assign sl(4) weights to any root α =
∑

amaαa
by linearity. For example, for we will have for the f2 root

α0 + α1 = [1, 0, 0] + [−1, 1, 0] = [0, 1, 0] (A.15)

and this is the highest weight of the anti-symmetric representation, as expected from the

generators Zab in .

One algorithmic way of determining the tableaux appearing at level ` in f is then to

find all roots of f` and to translate them to weights of sl(4). These will be the weights

of a certain (possibly reducible) representation of sl(4). To find out which one it suffices

to consider the dominant weights, i.e., those for which all entries are positive. In the f1
example above, this is only α0; for f2 it is only α0 + α1. The Witt formula (A.5) gives

the multiplicities of all the dominant weights and this fixes the representation of sl(4)

completely. Remembering the requirement that for f` all gl(4) Young tableaux should have

` boxes, the sl(4) representations can be easily converted to gl(4) representations.
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We will write these dominant characters of sl(4) as dom char(f`) in the following form

for example for f1 and f2

dom char(f1) = [1, 0, 0] , dom char(f2) = [0, 1, 0] . (A.16)

Performing the steps of the algorithm above for f3 leads to

dom char(f3) = [1, 1, 0] + [0, 0, 1]2 , (A.17)

where the power 2 for the second dominant weight indicates that it arises with multiplicity

2. It corresponds to the root α0+α1+α2 that can be checked from (A.5) to have mult(α0+

α1 + α2) = 2. The character (A.17) equals the dominant character of the irreducible sl(4)

representation with Young tableau

f3 ←→ . (A.18)

The dominant characters of irreducible representations of sl(4) can for example be gener-

ated using the LiE software [42].

For f4 one finds

dom char(f4) = [2, 1, 0] + [0, 2, 0] + [1, 0, 1]3 + [0, 0, 0]6 . (A.19)

This equals the dominant character of the reducible sl(4) representation with Young

tableaux

f4 ←→ ⊕ . (A.20)

To fix the decomposition it is easiest to peel off the dominant characters of the irreducible

representations by size.

Using the same method one finds the following representations

f5 ←→ ⊕ ⊕ ⊕ ⊕ , (A.21)

f6 ←→ ⊕ ⊕ ⊕ 2×

⊕ 3× ⊕ ⊕ 2× (A.22)
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and

f7 ←→ ⊕ 2× ⊕ 2× ⊕ 2×

⊕ 5× ⊕ 3× ⊕ 3× ⊕ 3×

⊕ 5× ⊕ 2× (A.23)

In the last two equations, some representations occur with non-trivial (outer) multi-

plicity. In (A.21) we see the first instance of a completion of an sl(4) representation to one

of gl(4): the last diagram has a column with four boxes that is trivial for sl(4) due to the

existence of the invariant εa1a2a3a4 ; for gl(4) including it or not makes a difference and in

the free Lie algebra it is necessary to include it.

As discussed at the end of section 3.2, one could consider the decomposition of the

gl(4) tensors under so(1, 3) if writing everything as Lorentz group tensors.

Using the Mathematica notebook uploaded to the preprint arXiv along with this paper,

one can easily find the generators at levels ` > 7. This notebook also makes use of the

program LieLink [43].

A.3 Commutation relations

We summarize the relevant commutation relations up to ` = 5 in the free Lie algebra for

convenience. Up to ` = 4 they were already presented in section 2; we denote the new

generators at ` = 5 listed in (A.21) as

T 1
ab,c,d,e ←→ ,

T 2
ab,cd,e ←→ ,

T 3
abc,d,e ←→ ,

T 4
abc,de ←→ ,

T 5
abcd,e ←→ . (A.24)

– 25 –



J
H
E
P
0
7
(
2
0
1
7
)
0
8
5

The defining relations of the free Lie algebra are then

[Pa, Pb] = Zab ,

[Zab, Pc] = Yab,c ,

[Yab,c, Pd] = S1
ab,c,d + 2S2

abd,c − S2
bcd,a − S2

cad,b ,[
S1
ab,c,d, Pe

]
= T 1

ab,c,d,e + T 2
ab,ce,d + T 2

ab,de,c + 4T 3
abe,c,d − 3T 3

e[ab,c],d − 3T 3
e[ab,d],c ,[

S2
abc,d, Pe

]
= (∗)T 3

abc,d,e + T 4
abc,de + T 5

abce,d + T 5
e[abc,d] . (A.25)

The free coefficient is fixed by Jacobi identities but not required here. All remaining

commutation relations are also fixed by Jacobi identities.
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