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Current efforts in computational historical linguistics are predominantly concerned with
phylogenetic inference. Methods for ancestral state reconstruction have only been applied
sporadically. In contrast to phylogenetic algorithms, automatic reconstruction methods
presuppose phylogenetic information in order to explain what has evolved when and
where. Here we report a pilot study exploring how well automatic methods for ancestral
state reconstruction perform in the task of onomasiological reconstruction in multilingual
word lists, where algorithms are used to infer how the words evolved along a given
phylogeny, and reconstruct which cognate classes were used to express a given meaning
in the ancestral languages. Comparing three different methods, Maximum Parsimony,
Minimal Lateral Networks, and Maximum Likelihood on three different test sets (Indo-
European, Austronesian, Chinese) using binary and multi-state coding of the data
as well as single and sampled phylogenies, we find that Maximum Likelihood largely
outperforms the other methods. At the same time, however, the general performance
was disappointingly low, ranging between 0.66 (Chinese) and 0.79 (Austronesian) for
the F-Scores. A closer linguistic evaluation of the reconstructions proposed by the best
method and the reconstructions given in the gold standards revealed that the majority
of the cases where the algorithms failed can be attributed to problems of independent
semantic shift (homoplasy), to morphological processes in lexical change, and to wrong
reconstructions in the independently created test sets that we employed.

ancestral state reconstruction – lexical reconstruction – computational historical
linguistics – phylogenetic methods



1 Introduction

Phylogenetic reconstruction methods are crucial for recent quantitative approaches in
historical linguistics. While many scholars remain skeptical regarding the potential
of methods for automatic sequence comparison, phylogenetic reconstruction, be it of
networks using the popular SplitsTree software (Huson, 1998), or family trees, using
distance- (Sokal and Michener, 1958: Saitou and Nei, 1987) or character-based approaches
(Edwards and Cavalli-Sforza, 1964: Fitch, 1971: Ronquist et al., 2012: Bouckaert et al.,
2014), has entered the mainstream of historical linguistics. This is reflected in a multitude
of publications and applications on different language families, from Ainu (Lee and
Hasegawa, 2013) and Australian (Bowern and Atkinson, 2012) to Semitic (Kitchen et al.,
2009) and Chinese (Ben Hamed and Wang, 2006). There is also a growing interest in the
implications of phylogenetic analyses for historical linguistics, as can be seen from the
heated debate about the dating of Indo-European (Gray and Atkinson, 2003: Atkinson
and Gray, 2006: Bouckaert et al., 2014: Chang et al., 2015), and the recent attempts to
search for deep genetic signals in the languages of the world (Pagel et al., 2013: Jäger,
2015).

Given the boom of quantitative approaches in the search for language trees and
networks, it is surprising that methods which infer the ancestral states of linguistic
characters have been rarely applied and tested so far. While methods for phylogenetic
reconstruction infer how related languages evolved into their current shape, methods
for ancestral state reconstruction (ASR) use a given phylogeny to infer the previous
appearance of the languages. This is illustrated in Fig. 1 for the reconstruction of lexical
conceptualization patterns (more on this specific kind of ancestral state reconstruction
below). What is modeled as ancestral state in this context is open to the researcher’s
interest, ranging from the original pronunciation of words (Bouchard-Côté et al., 2013),
the direction of sound change processes (Hruschka et al., 2015), the original expression
of concepts (List, 2016), or even linguistic and cultural aspects beyond the lexicon,
such as ancestral color systems (Haynie and Bowern, 2016), numeral systems (Zhou
and Bowern, 2015) or cultural patterns, e.g., matrilocality (Jordan et al., 2009). While
methods for ancestral state reconstruction are commonly used in evolutionary biology,
their application is still in its infancy in historical linguistics. This is in strong contrast
to classical historical linguistics, where the quest for proto-forms and proto-meanings is
often given more importance than the search for family trees and sub-groupings. In the
following, we will report results of a pilot study on ancestral state reconstruction applied
to lexicostatistical word list data. Our goal is to infer which words were used to express
a given concept in the ancestral languages.

This task is not to be confused with semantic reconstruction, where linguists try
to infer the original meaning of a given word. Our approach, in contrast, reflects the
onomasiological perspective on the linguistic sign, as we try to infer the original word that
expressed a given meaning. Since no commonly accepted name exists for this approach,
we chose the term “onomasiological reconstruction.”1 Classical semantic reconstruction
in historical linguistics starts from a set of cognate words and tries to identify the original
meaning of the ancestral word form (Wilkins, 1996). For this purpose, scholars try to
take known directional tendencies into account. These tendencies are usually based on

1 We chose this term for lack of alternatives, not because we particularly like it, and we are aware
that it may sound confusing for readers less familiar with discussions on semantic change and lexical
replacement, but we try to explain this in more detail below.

2



the author’s intuition, despite recent attempts to formalize and quantify the evidence
(Urban, 2011). Following the classical distinction between semasiology and onomasiology
in semantics, the former dealing with ‘the meaning of individual linguistic expressions’
(Bussmann, 1996:1050), and the latter dealing with the question of how certain concepts
are expressed (ibd.:834), semantic reconstruction is a semasiological approach to lexical
change, as scholars start from the meaning of several lexemes in order to identify the
meaning of the proto-form and its later development.
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Figure 1
Ancestral state reconstruction: The graphic illustrates the key idea of ancestral state
reconstruction. Given six words in genetically related languages, we inquire how these words
evolved into their current shape. Having inferred a phylogeny of the languages as shown on the
left of the figure, ancestral state reconstruction methods use this phylogeny to find the best
way to explain how the six words have evolved along the tree, thereby proposing ancestral
states of all words under investigation. The advantage of this procedure is that we can
immediately identify not only the original nature of the characters we investigate, but also the
changes they were subject to. Ancestral state reconstruction may thus yield important insights
into historical processes, including sound change and lexical replacement.

Instead of investigating lexical change from the semasiological perspective, one could
also ask which of several possible word forms was used to denote a certain meaning in a
given proto-language. This task is to some degree similar to proper semantic reconstruc-
tion, as it deals with the question of which meaning was attached to a given linguistic
form. The approach, however, is onomasiological, as we start from the concept and
search for the “name” that was attached to it. Onomasiological semantic reconstruction,
the reconstruction of former expressions, has been largely ignored in classical semantic
reconstruction.2 This is unfortunate, since the onomasiological perspective may offer
interesting insights into lexical change. Given that we are dealing with two perspectives
on the same phenomenon, the onomasiological viewpoint may increase the evidence for
semantic reconstruction.

This is partially reflected in the “topological principle in semantic [i.e. onomasio-
logical, GJ and JML] reconstruction” proposed by Kassian et al. (2015). This principle
uses phylogenies to support claims about the reconstruction of ancestral expressions in
historical linguistics, trying to choose the ‘most economic scenario’ (ibd.:305) involving

2 Notable exceptions include work by S. Starostin and colleagues, compare, for example, Starostin
(2016).

3



the least amount of semantic shifts. By adhering to the onomasiological perspective and
modifying our basic data, we can model the problem of onomasiological reconstruction
as an ancestral state reconstruction task, thereby providing a more formal treatment
of the topological principle. In this task, we (1) start from a multilingual word lists in
which a set of concepts has been translated into a set of languages (a classical “Swadesh
list” or lexicostatistic word list; Swadesh, 1955), (2) determine a plausible phylogeny for
the languages under investigation, and (3) use ancestral state reconstruction methods
to determine which word forms were most likely used to express the concepts in the
ancestral languages in the tree. This approach yields an analysis as the one shown in Fig.
1.

Although we think that such an analysis has many advantages over the manual
application of the topological principle in onomasiological reconstruction employed by
Kassian et al. (2015), we should make very clear at this point that our reformulation of the
problem as an ancestral state reconstruction task also bears certain shortcomings. First,
since ancestral state reconstruction models character by character independently from
each other, our approach relies on identical meanings only and cannot handle semantic
fields with fine-grained meaning distinctions. This is a clear disadvantage compared to
qualitative analyses, but given that models always simplify reality, and that neither algo-
rithms nor datasets for testing and training are available for the extended task, we think it
is justified to test how close the available ancestral state reconstruction methods come to
human judgments. Second, our phylogenetic approach to onomasiological reconstruction
does not answer any questions regarding semantic change, as we can only state which
words are likely to have been used to express certain concepts in ancestral languages. This
results clearly from the data and our phylogenetic approach, as mentioned before, and it is
an obvious shortcoming of our approach. However, since the phylogenetic onomasiological
reconstruction provides us with concrete hypotheses regarding the meaning of a given
word on a given node in the tree, we can take these findings as a starting point to further
investigate how words changed their meaning afterwards. By providing a formal and
data-driven way to apply the topological principle, we can certainly contribute to the
broader tasks of semantic and onomasiological reconstruction in historical linguistics. As
a third point, we should not forget that our method suffers from the typical shortcomings
of all data-driven disciplines, namely the shortcomings resulting from erroneous data
assembly, especially erroneous cognate judgments, such as undetected borrowings (Holm,
2007) and inaccurate translations of the basic concepts (Geisler and List, 2010) which
are investigated in all approaches based on lexicostatistical data. The risk that errors in
the data have an influence on the inferences made by the methods is obvious and clear.
In order to make sure that we evaluate the full potential of phylogenetic methods for
ancestral state reconstruction, we therefore provide an exhaustive error analysis not only
for the inferences made in our tests, but also for the data we used for testing.

In the following, we illustrate how ancestral state reconstruction methods can be
used to approximate onomasiological reconstruction in multilingual word lists. We test
the methods on three publicly available datasets from three different language families
and compare the results against experts’ assessments.
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2 Materials and methods

2.1 Materials
2.1.1 Gold standard
In order to test available methods for ancestral state reconstruction, we assembled lexical
cognacy data from three publicly available sources, offering data on three different
language families of varying size:

1. Indo-European languages, as reflected in the Indo-European lexical cognacy
database (IELex; Dunn, 2012, accessed on September 5, 2016),

2. Austronesian languages, as reflected in the Austronesian Basic Vocabulary
Database (ABVD; Greenhill et al., 2008, accessed on December 2, 2015),
and

3. Chinese dialect varieties, as reflected in the Basic Words of Chinese
Dialects (BCD; Wang, 2004, provided in List, 2016).

All datasets are originally classical word lists as used in standard approaches to phylo-
genetic reconstruction: They contain a certain number of concepts which are translated
into the target languages and then annotated for cognacy. In order to be applicable as
a test set for our analysis, the datasets further need to list proto-forms of the supposed
ancestral language of all languages in the sample. All data we used for our studies is
available from the supplementary material.

The BCD database was used by Ben Hamed and Wang (2006) and is no longer
accessible via its original URL, but it has been included in List (2015) and later revised
in List (2016). It comprises data on 200 basic concepts (a modified form of the concept
list by Swadesh, 1952) translated into 23 Chinese dialect varieties. Additionally, Wang
(2004) lists 230 translations in Old Chinese for 197 of the 200 concepts. Since Old Chinese
is the supposed ancestor of all Chinese dialects, this data qualifies as a gold standard for
our experiment on ancestral state reconstruction. We should, however, bear in mind that
the relationship between Old Chinese, as a variety spoken some time between 800 and
200 BC, and the most recent common ancestor of all Chinese dialects, spoken between
200 and 400 CE, is a remote one. We will discuss this problem in more detail in our
linguistic evaluation of the results in section 4. Given that many languages contain
multiple synonyms for the same concept, the data, including Old Chinese, comprises
5,437 words, which can be clustered into 1,576 classes of cognate words; 980 of these are
“singletons,” that is, they comprise classes containing only one single element. Due to
the large time span between Old Chinese and the most recent common ancestor of all
Chinese dialects, not all Old Chinese forms are technically reconstructible from the data,
as they reflect words that have been lost in all dialects. As a result, we were left with 144
reconstructible concepts for which at least one dialect retains an ancestral form attested
in Old Chinese.

For the IELex data,3 we used all languages and dialects except those marked as
“Legacy” and two creole languages (Sranan and French Creole Dominica, as lexical
change arguably underlies different patterns under creolization than it does in normal

3 IELex is currently being thoroughly revised as part of the Cognates in the Basic Lexicon (COBL)
project, but since this data has not yet been publicly released, we were forced to use the IELex data
which we retrieved from ielex.mpi.nl.
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language change). This left us with 134 languages and dialects, including 31 ancient
languages (Ancient Greek, Avestan, Classical Armenian, Gaulish, Gothic, Hittite, Latin,
Luvian, Lycian, Middle Breton, Middle Cornish, Mycenaean Greek, Old Persian, Old
Prussian, Old Church Slavonic, Old Gutnish, Old Norse, Old Swedish, Old High German,
Old English, Old Irish, Old Welsh, Old Cornish, Old Breton, Oscan, Palaic, Pali,
Tocharian A, Tocharian B, Umbrian, Vedic Sanskrit). The data contain translations
of 208 concepts into those languages and dialects (often including several synonymous
expressions for the same concept from the same language). Most entries are assigned a
cognate class label. We only used entries containing an unambiguous class label, which left
us with 26,524 entries from 4,352 cognate classes. IELex also contains 167 reconstructed
entries (for 135 concepts) for Proto-Indo-European. These reconstructions were used as
gold standard to evaluate the automatically inferred reconstructions.

ABVD contains data from a total of 697 Austronesian languages and dialects. We
selected a subset of 349 languages (all taken from the 400-language sample used in Gray
et al., 2009), each having a different ISO code which is also covered in the Glottolog
database (Hammarström et al., 2015). ABVD covers 210 concepts, with a total of 44,983
entries from 7,727 cognate classes for our 349-language sample. It also contains 170
reconstructions for Proto-Austronesian (each denoting a different concept) including
cognate-class assignments. An overview of the data used is given in Table 1.

Dataset Languages Concepts Cognate Classes Singletons Words
IELex 134 207 (135 reconstructible) 4,352 1,434 singletons 26,524
ABVD 349 210 (170 reconstructible) 7,727 2,671 singletons 44,983
BCD 24 200 (144 reconstructible) 1.576 980 singletons 5,437

Table 1
Datasets used for ancestral state reconstruction. “Reconstructible” states in the column
showing the number of concepts refer to the amount of concepts in which the proto-form is
reflected in at least one of the descendant languages. “Singletons” refer to cognate sets with
only one reflex, which are not informative for the purpose of certain methods of ancestral state
reconstruction, like the MLN approach, and therefore excluded from the analysis.

2.2 Methods
2.2.1 Reference phylogenies
All ASR methods in our test (except the baseline) rely on phylogenetic information when
inferring ancestral states, albeit to a different degree. Some methods operate on a single
tree topology only, while other methods also use branch lengths information or require
a sample of trees to take phylogenetic uncertainty into account. To infer those trees, we
arranged the cognacy information for each data set into a presence-absence matrix. Such
a data structure is a table with languages as rows and cognate classes occurring within
the data set as columns. A cell for language l and cognate class cc for concept c has entry

r 1 if cc occurs among the expressions for c in l,r 0 if the data contain expressions for c in l, but none of them belongs to cc,
andr undefined if l does not contain any expressions for c.
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Bayesian phylogenetic inference was performed on these matrices. For each data set,
tree search was constrained by prior information derived from the findings of traditional
historical linguistics. More specifically, we used the following prior information:

r IELex. We used 14 topological constraints (see Fig. 2), age constraints for
the 31 ancient languages, and age constraints for 11 of the 14 topological
constraints.
The age constraints for Middle Breton, Middle Cornish, Mycenaean Greek,
Old Breton, Old Cornish, Old Welsh, and Palaic are based on information
from Multitree (The LINGUIST List, 2014, accessed on October 14, 2016).
The age constraint for Pali is based on information from Encyclopaedia
Britannica (2010, accessed on October 14, 2016). The constraints for Old
Gutnish are taken from Wessen (1968) and those for Old Swedish and Old
High German from Campbell and King (2013). All other age constraints are
derived from the Supplementary Information of Bouckaert et al. (2012).
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Figure 2
Maximum Clade Credibility tree for IELex (schematic). Topological constraints are indicated
by red circles. Numbers at intermediate nodes indicate posterior probabilities (only shown if
< 1).

r ABVD. We only considered trees consistent with the Glottolog expert
classification (Hammarström et al., 2015). This amounts to 213 topological
constraints.
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r BDC. We only considered trees consistent with the expert classification
from Sagart (2011). This amounts to 20 topological constraints.

Analyses were carried out using the MrBayes software (Ronquist et al., 2012).
Likelihoods were computed using ascertainment bias correction for all-absent characters
and assuming Gamma-distributed rates (with 4 Gamma categories). Regarding the tree
prior, we assumed a relaxed molecular clock model (more specifically, the Independent
Gamma Rates model (cf. Lepage et al., 2007), with an exponential distribution with rate
200 as prior distribution for the variance of rate variation). Furthermore we assumed
a birth-death model (Yang and Rannala, 1997) and random sampling of taxa with a
sampling probability of 0.2. For all other parameters of the prior distribution, the defaults
offered by the software were used.4

For each dataset, a maximum clade credibility tree was identified as the reference
tree (using the software TreeAnnotator, retrieved on September 13, 2016; part of the
software suite Beast, cf. Bouckaert et al., 2014). Additionally, 100 trees were sampled
from the posterior distribution for each dataset and used as tree sample for ASR.

2.2.2 Ancestral state reconstruction
For our study, we tested three different established algorithms, namely (1) Maximum
Parsimony (MP) reconstruction using the Sankoff algorithm (Sankoff, 1975), (2) the
minimal lateral network (MLN) approach (Dagan et al., 2008) as a variant of Maximum
Parsimony in which parsimony weights are selected with the help of the vocabulary size
criterion (List et al., 2014b c), and (3) Maximum Likelihood (ML) reconstruction as
implemented in the software BayesTraits (Pagel and Meade, 2014). These algorithms are
described in detail below.

We tested two different ways to arrange cognacy information as character matrices:r Multistate characters. Each concept is treated as a character. The value
of a character for a given language is the cognate class label of that
language’s expression for the corresponding concept. If the data contain
several non-cognate synonymous expressions, the language is treated as
polymorphic for that character. If the data do not contain an expression for
a given concept and a given language, the corresponding character value is
undefined.r Binary characters. Each cognate class label that occurs among the
documented languages of a dataset is a character. Possible values are 1 (a
language contains an expression from that cognate class), 0 (a language
does not contain an exponent of that cognate class, but other expressions
for the corresponding concept are documented) or undefined (the data do
not contain an expression for the concept from the language in question).

All three algorithms rely on a reference phylogeny to infer ancestral states. To test
the impact of phylogenetic uncertainty, we performed ASR both on the reference tree

4 These defaults are: uniform distribution over equilibrium state frequencies; standard exponential
distribution as prior for the shape parameter α of the Gamma distribution modeling rate variation;
standard exponential distribution as prior over the tree age, measured in expected number of
mutations per character.
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and on the tree sample for all three algorithms. The procedures are now presented for
each algorithm in turn.

Maximum Parsimony (MP). A complete scenario for a character is a phylogenetic tree
where all nodes are labeled with some character value. For illustration, three scenarios
are shown in Fig. 3. The parsimony score of a scenario is the number of mutations, i.e.,
of branches where the mother node and the daughter node carry different labels. Now
suppose only the labels at the leaves of the tree are given. The parsimony score of such
a partial scenario is the minimal parsimony score of any complete scenario consistent
with the given leaf labels. In the example in Fig. 3, this value would be 2. The ASR
for the root of the tree would be the root label of the complete scenario giving rise to
this minimal parsimony score. If several complete scenarios with different root labels give
rise to the same minimal score, all their root labels are possible ASRs. This logic can be
generalized to weighted parsimony. In this framework, each mutation from a state at the
mother node to the state at the daughter node of a tree has a certain penalty, and these
penalties may differ for different types of mutations. The overall parsimony score of a
complete scenario is the sum of all penalties for all mutations in this scenario.5
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Figure 3
Complete character scenarios. Mutations are indicated by yellow stars.

The Sankoff algorithm is an efficient method to compute the parsimony score and
the root ASR for a partial scenario. It works as follows. Let states be the ordered set of
possible states of the character in question, and let n be the cardinality of this set. For
each pair of states i, j, w(i, j) is the penalty for a mutation from statesi to statesj .

5 There is a variant of MP called Dollo parsimony (Le Quesne, 1974: Farris, 1977) which is prima
facie well-suited for modeling cognate class evolution. Dollo parsimony rests on the assumption that
complex characters evolve only once, while they may be lost multiple times. If “1” represents
presence and “0” absence of such a complex character, the weight of a mutation 1 → 0 should be
infinitesimally small in comparison to the weight of 0 → 1. Performing ASR under this assumption
amounts to projecting each character back to the latest common ancestor of all its documented
occurrences. While this seems initially plausible since each cognate class can, by definition, emerge
only once, recent empirical studies have uncovered that multiple mutations 0 → 1 can easily occur
with cognate-class characters. A typical scenario is parallel semantic shifts. Chang et al. (2015),
among others, point out that descendent words of Proto-Indo-European *pod- ‘foot’ independently
shifted their meaning to ‘leg’ both in Modern Greek and in Modern Indic and Iranian languages. So
the Modern Greek πόδι and the Marathi pāy, both meaning ‘leg,’ are cognate according to IELex,
but the latest common ancestor language of Greek and Marathi (Nuclear Proto-Indo-European or a
close descendant of it) probably used a non-cognate word to express ‘leg.’ Other scenarios leading to
the parallel emergence of cognate classes are loans and incomplete lineage sorting; see the discussion
in Section 4. Bouckaert et al. (2012) test a probabilistic version of the Dollo approach and conclude
that a time-reversible model provides a better fit of cognate-class character data.
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r Initialization. Each leaf l of the tree is initialized with a vector wp(l) of
length n, with wp(l)i = 0 if l’s label is statesi, and ∞ else. (If l is
polymorphic, all labels occuring at l have the score 0.)r Recursion. Loop through the non-leaf nodes of the tree bottom-up, i.e.,
visit all daughter nodes before you visit the mother node. Each
non-terminal node mother with the set daughters as daughter nodes is
annotated with a vector wp(mother) according to the rule

wp(mother)i =
∑

d∈daughters
min
1≤j≤n

(w(i, j) + wp(d)j) (1)

r Termination. The parsimony score is min1≤i≤n wp(root)i and the root
ASR is arg min1≤i≤n wp(root)i.

If MP-ASR is performed on a sample of trees, the Sankoff algorithm is applied to
each tree in the sample, and the vectors at the roots are summed up. The root ASR is
then the state with the minimal total score. For our experiments, we used the following
weight matrices:r For multistate characters, we used uniform weights, i.e., w(i, i) = 0 and

w(i, j) = 1 iff i ̸= j.r For binary presence-absence characters, we assumed that the penalty of a
gain is twice as high as the penalty for a loss: w(i, i) = 0, w(1, 0) = 1, and
w(0, 1) = 2.6

For a given tree and a given character, the Sankoff algorithm produces a parsimony
score for each character state. If the cognacy data are organized as multi-state characters,
each state is a cognate class. The reconstructed states are those achieving the minimal
value among these scores. If a tree sample, rather than a single tree, is considered,
the parsimony scores are averaged over the results for all trees in the sample. The
reconstructed states are those achieving the minimal average score. If the cognacy data
are organized as presence-absence characters, we consider the parsimony scores of state
“1” for all cognate classes expressing a certain concept. The reconstructed cognate classes
are those achieving the minimal score for state “1.” If a tree sample is considered, scores
are averaged over trees.

Minimal Lateral Networks (MLN). The MLN approach was originally developed for the
detection of lateral gene transfer events in evolutionary biology (Dagan et al., 2008). In
this form, it was also applied to linguistic data (Nelson-Sathi et al., 2011), and later
substantially modified (List et al., 2014b c). While the original approach was based on
very simple gain-loss-mapping techniques, the improved version uses weighted parsimony
on presence-absence data of cognate set distributions. In each analysis, several parameters
(ratio of weights for gains and losses) are tested, and the best method is then selected,

6 The ratio between gains and losses follows from the experience with the MLN approach, which is
presented in more detail below and which essentially tests different gain-loss scenarios for their
suitability to explain a given dataset. In all published studies in which the MLN approach was
tested (List et al., 2014b c: List, 2015), the best gain-loss ratio reported was 2:1.
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using the criterion of vocabulary size distributions, which essentially states that the
amount of synonyms per concept in the descendant languages should not differ much
from the amount of synonyms reconstructed for ancestral languages. Thus, of several
competing scenarios for the development of characters along the reference phylogeny, the
scenario that comes closest to the distribution of words in the descendant languages is
selected. This is illustrated in Fig. 4. Note that this criterion may make sense intuitively,
if one considers that a language with excessive synonymy would make it more difficult
for the speakers to communicate. Empirically, however, no accounts on average synonym
frequencies across languages are available, and as a result, this assumption remains to be
proven in future studies.

While the improved versions were primarily used to infer borrowing events in
linguistic datasets, List (2015) showed that the MLN approach can also be used for the
purpose of ancestral state reconstruction, given that it is based on a variant of weighted
parsimony. Describing the method in all its detail would go beyond the scope of this
paper. For this reason, we refer the reader to the original publications introducing and
explaining the algorithm, as well as the actual source code published along with the
LingPy software package (List and Forkel, 2016). To contrast MLN with the variant of
Sankoff parsimony we used, it is, however, important to note that the MLN method does
not handle singletons in the data, that is, words which are not cognate with any other
words.7 It should also be kept in mind that the MLN method in its currently available
implementation only allows for the use of binary characters states: multi-state characters
are not supported and can therefore not be included in our test.

AA B C
Figure 4
Vocabulary Size Distributions as a criterion for parameter selection in the MLN approach. A
shows an analysis which proposes far too many words in the ancestral languages, B proposes
far to few words, and C reflects an optimal scenario.

Maximum Likelihood (ML). While the Maximum Parsimony principle is conceptually
simple and appealing, it has several shortcomings. As it only uses topological information
and disregards branch lengths, it equally penalizes mutations on short and on long
branches. However, mutations on long branches are intuitively more likely than those on
short branches if we assume that branch length corresponds to historical time. Also, MP
entirely disregards the possibility of multiple mutations on a single branch. It would go
beyond the scope of this article to fully spell out the ML method in detail; the interested
reader is referred to the standard literature on phylogenetic inference (such as Ewans

7 The technical question of parsimony implementations is here whether one should penalize the origin
of a character in the root or not. The parsimony employed by MLN penalizes all origins. As a result,
words that are not cognate with any other word can never be reconstructed to a node higher in the
tree. For a discussion of the advantages and disadvantages of this treatment, see Mirkin et al. (2003).
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and Grant, 2005, Section 15.7) for details. In the following we will confine ourselves to
presenting the basic ideas.

The fundamental assumption underlying ML is that character evolution is a Markov
process. This means that mutations are non-deterministic, stochastic events, and their
probability of occurrence only depends on the current state of the language. For simplic-
ity’s sake, let us consider only the case where there are two possible character states, 1
(for presence of a trait) and 0 (absence). Then there is a probability p01 that a language
gains the trait within one unit of time, and p10 that it loses it.

The probability that a language switches from state i to state j within a time interval
t is then given by the transition probability P (t)ij :8

α =
p01

p01 + p10
(2)

β =
p10

p01 + p10
(3)

λ = − log(1− p01 − p10) (4)

P (t) =

(
β + α · exp(−λt) α− α · exp(−λt)
β − β · exp(−λt) α+ β · exp(−λt)

)
(5)

α and β are the equilibrium probabilities of states 1 and 0 respectively, and λ is the
mutation rate. If t is large in comparison to the minimal time step (such as the time span
of a single generation), we can consider t to be a continuous variable and the entire process
a continuous time Markov process. This is illustrated in Fig. 5 for α = 0.2, β = 0.8, and
λ = 1. If a language is in state 0 at time 0, its probability to be in state 1 after time t
is indicated by the solid line. This probability continuously increases and converges to
α. This is the gross probability to start in state 0 and end in state 1; it includes the
possibility of multiple mutations, as long as the number of mutations is odd. The dotted
line shows the probability of ending up in state 1 after time t when a language starts in
state 1. This quantity is initally close to 100%, but it also converges towards α over time.
In other words, the absence of mutations (or a sequence of mutations that re-established
the initial state) is predicted to be unlikely over long periods of time. In a complete
scenario, i.e., a phylogenetic tree with labeled non-terminal nodes, the likelihood of a
branch is the probability of ending in the state of the daughter node if one starts in the
state of the mother node after a time interval given by the branch length.

The overall likelihood of a complete scenario is the product of all branch likelihoods,
multiplied with the equilibrium probability of its root state. The likelihood of a partial
scenario, where only the states of the leaves are known, is the sum of the likelihoods of
all complete scenarios consistent with it. It can efficiently be computed in a way akin to
the Sankoff algorithm. (L(x) is the likelihood vector of node x, and πi is the equilibrium
probability of state i.)r Initialization. Each leaf l of the tree is initialized with a vector L(↕) of

length n, with L(↕)⟩ = ∞ if l’s label is statesi, and 0 else. (If l is
polymorphic, all labels occuring at t have the same likelihood, and these
likelihoods sum up to 1.)

8 We assume that the rows and columns of P (t) are indexed with 0, 1.
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Figure 5
Gain and loss probabilities under a continuous-time Markov process.

r Recursion. Loop through the non-leaf nodes of the tree bottom-up, i.e.,
visit all daughter nodes before you visit the mother node. Each
non-terminal node mother with the set daughters as daughter nodes is
annotated with a vector L(mother) according to the rule

L(mother)i =
∏

d∈daughters

∑
1≤j≤n

(P (t)i,jL(d)j), (6)

where t is the length of the branch connecting d to its mother node.r Termination. The likelihood of the scenario is
∑

1≤i≤n L(root)i. The ASR
likelihood of state i is proportional to πiL(root)i.9

The likelihood of the scenario calculated this way is the sum of the likelihoods of all
scenarios compatible with the information at the leaves. The overall likelihood of a tree
for a character matrix is the product of the likelihoods for the individual characters.
(This captures the simplifying assumption that characters are mutually stochastically
independent.)

As the model parameters (λ and the equilibrium probabilities) are not known a
priori, they are estimated from the data. This is done by choosing values that maximize
the overall likelihood of the tree for the given character matrix, within certain constraints.
In our experiments we used the following constraints:

9 Note that this approach can only be used to compute the marginal likelihood of states at the root of
the tree. To perform ASR at interior nodes or joint ASR at several nodes simultaneously, a more
complex approach is needed. These issues go beyond the scope of this article.
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r For multistate characters, we assumed a uniform equilibrium distribution
for all characters, and identical rates for all character transitions.r For binary characters, we assumed equilibrium probabilities to be identical
for all characters. Those equilibrium probabilities were estimated from the
data as the empirical frequencies. We assumed gamma-distributed rates,
i.e., rates were allowed to vary to a certain degree between characters.

Once the model parameters are fixed, the algorithm produces a probability distribution
over possible states for each character. The reconstructed states are identified in a similar
way as for Sankoff parsimony. First these probabilities are averaged over all trees if more
than one tree is considered. For multistate characters, the state(s) achieving the highest
probability are selected. For binary presence-absence characters, those cognate classes
for a given concept are selected that achieve the highest average probability for state 1.

2.3 Evaluation
For all three datasets considered, the gold standard contains cognate class assignments for
a common ancestor language. For the Chinese data, these are documented data for Old
Chinese. For the other two datasets, these are reconstructed forms of the supposed latest
common ancestor (LCA), Proto-Indo-European and Proto-Austronesian respectively.
The Old Chinese variety is not identical with the latest common ancestor of all Chinese
dialects, but predates it by several hundred years. Due to the rather stable character of
the written languages as opposed to the vernaculars throughout the history of Chinese,
it is difficult to assess with certainty which exact words were used to denote certain basic
concepts, and Old Chinese as reflected in classical sources is a compromise solution as it
allows us to consider written evidence rather than reconstructed forms (see Section 4 for
a more detailed discussion).

For the evaluation, we only consider those concepts for which (a) the LCA data
identify a cognate class and (b) this cognate class is also present in one or more of the
descendant languages considered in the experiment. The gold standard defines a set of
cognate classes that were present in the LCA language. Let us call this set LCA. Each
ASR algorithm considered defines a set of cognate classes that are reconstructed for the
LCA. We denote this set as ASR. In the following we will deploy evaluation metrics
established in machine learning to assess how well these two sets coincide:

precision .
=

|LCA ∩ ASR|
|ASR|

(7)

recall .
=

|LCA ∩ ASR|
|LCA|

(8)

F-score .
= 2× precision × recall

precision + recall (9)

The precision expresses the proportion of correct reconstructions among all reconstruc-
tions. The recall gives the proportion of ancestral cognate classes that are correctly
reconstructed. The F-score is the harmonic mean between precision and recall.

Results for the various ASR algorithms are compared against a frequency baseline.
According to the baseline, a cognate class cc for a given concept c is reconstructed if
and only if cc occurs at least as frequently among the languages considered (excluding
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algorithm characters tree precision recall F-score
frequency baseline multi - 0.599 0.590 0.594
MLN bin single 0.568 0.729 0.638
MLN bin sample 0.568 0.729 0.638
Sankoff multi single 0.484 0.743 0.586
Sankoff multi sample 0.510 0.722 0.598
Sankoff bin single 0.596 0.688 0.639
Sankoff bin sample 0.651 0.660 0.655
ML multi single 0.669 0.660 0.664
ML multi sample 0.669 0.660 0.664
ML bin single 0.634 0.625 0.629
ML bin sample 0.641 0.632 0.636

Table 2
Evaluation results for Chinese

the LCA language) as any other cognate class for c. This baseline comes very close to
the current practice in classical historical linguistics, as presented in Starostin (2016),
although it is clear that trained linguists practicing onomasiological reconstruction may
take many additional factors into account. For IELex, we also considered a second
baseline, dubbed the sub-family baseline. A cognate class cc is deemed reconstructed if
and only if it occurs in at least two different sub-families, where sub-families are Albanian,
Anatolian, Armenian, Balto-Slavic, Celtic, Germanic, Greek, Indo-Iranian, Italic, and
Tocharian.

3 Results

The individual results for all datasets and algorithm variants are given in Tables 2, 3
and 4. Note that MLN does not offer a multi-state variant, so for MLN, only results for
binary states are reported. The effects of the various design choices — coding characters
as multi-state or binary; using a single reference tree or a sample of trees — as well as the
differences between the three ASR algorithms considered here are summarized in Fig. 6.
The bars represent the average difference in F-score to the frequency baseline, averaged
over all instances of the corresponding category across datasets.

It is evident that there are major differences in the performance of the three
algorithms considered. While the F-score for MLN-ASR remains, on average, below the
baseline, Sankoff-ASR and ML-ASR clearly outperform the baseline. Furthermore, ML-
ASR clearly outperforms Sankoff-ASR. Given that both MLN-ASR and Sankoff-ASR deal
with Maximum Parsimony, the rather poor performance of the MLN approach shows that
the basic vocabulary size criterion may not be the best criterion for penalty selection in
parsimony approaches. It may also be related to further individual choices introduced in
the MLN algorithm or our version of Sankoff parsimony. Given that the MLN approach
was not primarily created for the purpose of ancestral state reconstruction, our findings do
not necessarily invalidate the approach per se, yet they show that it might be worthwhile
to further improve on its application to ancestral state reconstruction.

The impact of the other choices is less pronounced. Binary character coding provides
slightly better results on average than multistate character coding, but the effect is minor.
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algorithm characters tree precision recall F-score
frequency baseline multi - 0.607 0.497 0.547
sub-family baseline bin - 0.402 0.885 0.553
MLN bin single 0.781 0.303 0.437
MLN bin sample 0.781 0.303 0.437
Sankoff multi single 0.367 0.739 0.491
Sankoff multi sample 0.566 0.594 0.580
Sankoff bin single 0.542 0.630 0.583
Sankoff bin sample 0.597 0.503 0.546
ML multi single 0.741 0.606 0.667
ML multi sample 0.763 0.624 0.687
ML bin single 0.778 0.636 0.700
ML bin sample 0.785 0.642 0.707

Table 3
Evaluation results for IELex

algorithm characters tree precision recall F-score
frequency baseline multi - 0.618 0.618 0.618
MLN bin single 0.843 0.412 0.553
MLN bin sample 0.882 0.394 0.545
Sankoff multi single 0.688 0.849 0.760
Sankoff multi sample 0.726 0.816 0.768
Sankoff bin single 0.723 0.771 0.746
Sankoff bin sample 0.757 0.749 0.753
ML multi single 0.788 0.788 0.788
ML multi sample 0.788 0.788 0.788
ML bin single 0.776 0.776 0.776
ML bin sample 0.771 0.771 0.771

Table 4
Evaluation results for ABVD

Likewise, capturing information about phylogenetic uncertainty by using a sample of trees
leads, on average, to a slight increase in F-scores, but this effect is rather small as well.

To understand why ML is superior to the two parsimony-based algorithms tested
here, it is important to consider the conceptual differences between parsimony-based and
likelihood-based ASR. Parsimony-based approaches operate on the tree topology only,
disregarding branch lengths. Furthermore, the numerical parameters being used, i.e. the
mutation penalties, are fixed by the researcher based on intuition and heuristics. ML,
in contrast, uses branch length information, and it is based on an explicit probabilistic
model of character evolution.

This point is illustrated in Fig. 7, which schematically displays ASR for the concept
eat for the Chinese dialect data. The left panel visualizes Sankoff ASR and the right
panel shows Maximum-Likelihood ASR. The guide tree identifies two sub-clades, shown
as the upper and lower daughter of the root node. The dialects in the upper part of the
tree represent the large group of Northern and Central dialects, including the dialect
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Figure 6
Average differences in F-score to frequency baseline

of Beijing, which comes close to standard Mandarin Chinese. The dialects in the lower
part of the tree represent the diverse Southern group, including the archaic Mǐn 闽
dialects spoken at the South-Eastern coast as well as Hakka and Yuè 粤 (also referred
to as Cantonese), the prevalent variety spoken in Hong Kong. All Southern dialects
use the same cognate class (eat.Shi.1327, Mandarin Chinese shí 食, nowadays only
reflected in compounds) and all Northern and Central dialects use a different cognate
class (eat.Chi.243, Mandarin Chinese chī 吃, regular word for ‘eat’ in most Northern
varieties). Not surprisingly, both algorithms reconstruct eat.Shi.1327 for the ancestor
of the Southern dialects and eat.Chi.243 for the ancestor of the Northern and Central
dialects. Sankoff ASR only uses the tree topology to reconstruct the root state. Since the
situation is entirely symmetric regarding the two daughters of the root, the two cognate
classes are tied with exactly the same parsimony score at the root. Maximum-Likelihood
ASR, on the other hand, takes branch lengths into account. Since the latest common
ancestor of the Southern dialects is closer to the root than the latest common ancestor of
the Northern and Central dialects, the likelihood of a mutation along the lower branch
descending from the root is smaller than along the upper branch. Therefore the lower
branch has more weight when assigning probabilities to the root state. Consequently,
eat.Shi.1327 comes out as the most likely state at the root – which is in accordance
with the gold standard. Our findings indicate that the more fine-grained, parameter-
rich Maximum-Likelihood approach is generally superior to the simpler parsimony-based
approaches.

The parameters of the Maximum-Likelihood model, as well as the branch lengths,
are estimated from the data. Our findings underscore the advantages of an empirical,
stochastic and data-driven approach to quantitative historical linguistics as compared to
more heuristic and methods with few parameters.

4 Linguistic evaluation of the results

The evaluation of the results against a gold standard can help us to understand the
general performance of a given algorithm. Only a careful linguistic evaluation, however,
helps us to understand the specific difficulties and obstacles that the algorithms have
to face when being used to analyze linguistic data. We therefore carried out detailed
linguistic evaluations of the results proposed for IELex and BCD: we compared the
results of the best methods for each of the datasets (Binary ML Sample for IELex, and
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Figure 7
Maximum-Likelihood ASR and Sankoff Parsimony ASR for the concept eat for Chinese dialect
data

Multi ML for BCD) with the respective gold standards, searching for potential reasons for
the differences between automatic method and gold standard. The results are provided
in Appendix B. In each of the two evaluations, we compared those forms which were
reconstructed back to the root in the gold standard but missed by the algorithm, and
those forms proposed by the algorithm but not by the gold standard. By consulting
additional literature and databases, we could first determine whether the error was due
to the algorithm or due to a problem in the gold standard. In a next step, we tried
to identify the most common sources of errors, which we assigned to different error
classes. Due to the differences in the histories and the time depths, the error classes
we identified differ slightly, and while a rather common error in IELex consisted in
erroneous cognate judgments in the gold standard,10 we find many problematic meanings
that are rarely expressed overtly in Chinese dialects in BCD.11 Apart from errors which
were hard to classify and thus not assigned to any error class, problems resulting from
the misinterpretation of branch-specific cognate sets as well as problems resulting from
parallel semantic shift (homoplasy) were among the most frequent problems in both
datasets.

Fig. 8 gives detailed charts of the error analyses for missed and erroneously proposed
items in the two datasets. The data is listed in such a way that mismatches between
gold standard and algorithms can be distinguished. When inspecting the findings for
IELex, we can thus see that the majority of the 59 cognates missed by the algorithm
can be attributed to cognate sets that are only reflected in one branch in the Indo-
European languages and therefore do not qualify as good candidates to be reconstructed
back to the proto-language. As an example, consider the form *pneu̯- (cognate class
breathe:P), which is listed as onomasiological reconstruction for the concept ‘to breathe’

10 See Appendix B1 for details
11 Examples include meanings for ‘if’, ‘because’, etc., which may be expressed but may as well be

omitted in normal speech, see Appendix B2 for details.
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Detailed error analysis of the algorithmic performance on IELex and BCD. If a certain error
class is followed by an asterisk, this means that we attribute the error to the gold standard
rather than to the algorithm. For a detailed discussion of the different error classes mentioned
in this context, please see the detailed analysis in the supplementary material.

in the gold standard. As it only occurs in Ancient Greek and has no reflexes in any
other language family, this root is highly problematic, as is also confirmed by the
Lexicon of Indo-European Verbs, where the root is flagged as questionable (Rix et al.,
2001:489). Second, the error statistics for Indo-European contain cognate sets whose
onomasiological reconstruction is not confirmed by plausible semantic reconstructions in
the gold standard. As an example for this error class, consider the form *dhōg̑h-e/os-
(cognate class day:B) proposed for the meaning slot ‘day.’ While Kroonen (2013:86f)
confirms the reconstruction of the root, as it occurs in Proto-Germanic and Indo-Iranian,
the meaning ‘day’ is by no means clear, as the PIE root *die̯u̯- ‘heavenly deity, day’ is a
more broadly reflected candidate for the ‘day’ in PIE (Meier-Brügger, 2002:187f.).

Of the 29 cognates missed, the majority cannot be readily classified, as these comprise
cases where a reconstruction back to the proto-language in the given meaning slot seems
to be highly plausible. Thus, the form *kr-̥m-i- (cognate class worm:A) is not listed in
the gold standard, but proposed by the Binary ML approach. The root is reflected in
both Indo-Iranian and in Slavic (Derksen, 2008:93f) and generally considered a valid
Indo-European root with the meaning ‘worm, insect’ (Mallory and Adams, 2006:149).
Given that ‘worm’ and ‘insect’ are frequently expressed by one polysemous concept in
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the languages of the world (see the CLICS database of cross-linguistic polysemies, List
et al., 2014a), we see no reason why the form is not listed in the gold standard. Second in
frequency of the items proposed by the algorithm are cases of clear homoplasy that were
interpreted as inheritance by the ML approach. As an example, consider the form *serp-
(cognate class snake:E), which the algorithm proposes as a candidate for the meaning
‘snake.’ While the cognate set contains the Latin word serpens, as well as reflexes in Indo-
Iranian and Albanian, it may seem like a good candidate. According to Vaan (2008:558),
however, the verbal root originally meant ‘to crawl,’ which would motivate the parallel
denotation in Latin and Albanian. Instead of assuming that the noun already denoted
‘snake’ in PIE times, it is therefore much more likely that we are dealing with independent
semantic shift.

Turning to our linguistic evaluation of the results on the Chinese data, we also find
branch-specific words as one of the major reasons for the 49 forms which were proposed
in the gold standard but not recognized by the best algorithm (Multi ML). However, here
we cannot attribute these to questionable decisions in the gold standard, but rather to the
fact that many Old Chinese words are often reflected only in some of the varieties in the
sample. As an example for a challenging case, consider the form 口 kǒu ‘mouth’ (cognate
class mouth-Kou-222, # 31). The regular word for ‘mouth’ in most dialects today is 嘴 zuǐ,
but the Mǐn dialects, the most archaic group and the first to branch off the Sinitic family,
have 喙 huì as an innovation, which originally meant ‘beak, snout’. While kǒu survives in
many dialects and also in Mandarin Chinese in restricted usage (compare 住口 zhùkǒu
‘close’ + ‘mouth’ = ‘shut up’) or as part of compounds (口水 kǒushuǐ ‘mouth’ + ‘water’
= ‘saliva’), it is only in the Yuè dialect Guǎngzhōu that it appears with the original
meaning in the BCD. Whether kǒu, however, is a true retention in Guǎngzhōu is quite
difficult to say, and comparing the data in the BCD with the more recent dataset by Liú
et al. (2007), we can see that zuǐ, in the latter, is given for Guǎngzhōu instead of kǒu. The
differences in the data are difficult to explain, and we see two possible ways to account
for them: (1) If kǒu was the regular term for ‘mouth’ in Guǎngzhōu in the data by Wang
(2004), and if this term is not attested in any other dialect, we are dealing with a retention
in the Yuè dialects, and with a later diffusion of the term zuǐ across many other dialect
areas apart from the Mǐn dialects, which all shifted the meaning of huì. (2) If kǒu is just a
variant in Guǎngzhōu as it is in Mandarin Chinese, we are dealing with a methodological
problem of basic word translation and should assume that kǒu is completely lost in its
original meaning. In both cases, however, the history of ‘mouth’ is a typical case of
inherited variation in language history. Multiple terms with similar reference potential
were already present in the last common ancestor of the Chinese dialects. They were
later individually resolved, yielding patterns that remind of incomplete lineage sorting in
evolutionary biology (see List et al., 2016 for a closer discussion of this analogy).

The problem of inherited variation becomes even more evident when we consider the
largest class of errors in both the items missed and the items proposed by the algorithm:
the class of errors due to compounding. Compounding is a very productive morphological
process in the Chinese dialects, heavily favored by the shift from a predominantly
monosyllabic to a bisyllabic word structure in the history of Chinese (see Sampson, 2015
and replies to the article in the same volume for a more thorough discussion on potential
reasons for this development). This development led to a drastic increase of bisyllabic
words, which is reflected in almost all dialects, affecting all parts of the lexicon. Thus,
while the regular words for ‘sun’ and ‘moon’ in Ancient Chinese texts were 日 rì and
月 yuè, the majority of dialects nowadays uses 日頭 rìtóu (lit. ‘sun-head’) and 月光
yuèguāng (lit. ‘moon-shine’). These words have developed further in some dialect areas

20



and yield a complex picture of patterns of lexical expression that are extremely difficult
to resolve historically. Given that we find the words even in the most archaic dialects,
but not in ancient texts of the late Hàn time and later (around 200 and 300 CE), the time
when the supposed LCA of the majority of the Chinese dialects was spoken, it is quite
difficult to explain the data in a straightforward way. We could either propose that the
LCA of Chinese dialects already had created or was in the stage of creating these ancient
compound words, and that written evidence was too conservative to reflect it; or we could
propose that the words were created later and then diffused across the Chinese dialects.
Both explanations seem plausible, as we know that spoken and written language often
differed quite drastically in the history of Chinese. Comparing modern Chinese dialect
data, as provided by Liú et al. (2007), with dialect surveys of the late 1950s, as given in
Běijīng Dàxué (1964), we can observe how quickly Mandarin Chinese words have been
diffusing recently: while we find only rìtóu12 as a form for ‘sun’ in Guǎngzhōu, Liú et
al. only list the Mandarin form 太陽 tàiyáng, and Hóu (2004), presenting data collected
in the 1990s, lists both variants. We can see from these examples that the complex
interaction between morphological processes like compounding and intimate language
contact confronts us with challenging problems and may explain why the automatic
methods perform worst on Chinese, despite the shallow time depths of the language
family.

5 Conclusion

What can we learn from these experiments? One important point is surely the striking su-
periority of Maximum Likelihood, outperforming both parsimony approaches. Maximum
Likelihood is not only more flexible, as parameters are estimated from the data, but in
some sense, it is also more realistic, as we have seen in the reconstruction of the scenario
for ‘eat’ (see Fig. 7) in the Chinese dataset, where the branch lengths, which contribute
to the results of ML analyses, allow the algorithm to find the right answer. Another
important point is the weakness of all automatic approaches and what we can learn from
the detailed linguistic evaluation. Here, we can see that further research is needed to
address those aspects of lexical change which are poorly handled by the algorithms. These
issues include first and foremost the problem of independent semantic shift, but also the
effects of morphological change, especially in the Chinese data. List (2016) uses weighted
parsimony with polarized (directional) transition penalties for multi-state characters for
ancestral state reconstruction of Chinese nouns and reports an increased performance
compared to unweighted parsimony. However, since morphological change and lexical
replacement are clearly two distinct processes, we think it is more promising to work
on the development of stochastic models, which are capable of handling two or more
distinct processes and may estimate transition tendencies from the data. Another major
problem that needs to be addressed in future approaches is the impact of language contact
on lexical change processes, as well as the possibility of language-internal variation,
which may obscur tree-like divergence even if the data evolved in a perfectly tree-like
manner. These instances of incomplete lineage sorting (List et al., 2016) became quite
evident in our qualitative analysis of the Chinese and Indo-European data. Given their
pervasiveness, it is likely that they also have a major impact on classical phylogenetic
studies, which only try to infer phylogenies from the data. As a last point, we should
mention the need for increasing the quality of our test data in historical linguistics. Given

12 In the Yuè dialects, this form has been reinterpreted as ‘hot-head’ 熱頭 rètóu instead of ‘sun-head.’
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the multiple questionable reconstructions we found in the test sets during our qualitative
evaluation, we think it might be fruitful, both in classical and computational historical
linguistics, to intensify the efforts towards semantic and onomasiological reconstruction.

Appendices

The appendices contain a list of all age constraints for Indo-European that were used
in our phylogenetic reconstruction study (Appendix A) as well as a detailed, qualitative
analysis of all differences between the automatic and the gold standard assessments
in IElex (Appendix B1) and BCD (Appendix B2). They are submitted as part of our
supplementary material.

Supplementary Material

All data used for this study, along with the code that we used and the results we produced,
are available at https://dx.doi.org/10.5281/zenodo.1173120.

The appendices A and B are submitted as supplementary material of this paper
along with the publisher.
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A Age Constraints for Indo-European

Age constraints for IELex used in Bayesian phylogenetic inference (in years before present). Prior probabilities are

uniform distributions over the interval [Minimum,Maximum].

taxon/clade minimum age maximum age

Ancient Greek 2,300 2,500

Avestan 2,400 2,600

Classical Armenian 1,300 1,600

Gaulish 1,400 2,600

Gothic 1,600 1,700

Hittite 3,100 3,600

Latin 1,900 2,200

Luvian 3,200 3,500

Lycian 2,300 2,500

Middle Breton 400 900

Middle Cornish 400 700

Mycenaean Greek 3,000 3,500

Old Breton 1,000 1,200

Old Church Slavonic 900 1,100

Old Cornish 600 1,150

Old English 900 1,100

Old Gutnish 480 1,100

Old Swedish 380 800

Old High German 1,000 1,300

Old Irish 1,100 1,400

Old Norse 695 855

Old Persian 2,300 2,600

Old Prussian 400 600

Old Welsh 800 1,100

Oscan 2,000 2,400

Palaic 3,000 4,000

Tocharian A 1,225 1,525

Tocharian B 1,200 1,500

Umbrian 2,000 2,400

Vedic Sanskrit 2,800 3,200

Pali 200 2,300

taxon/clade minimum age maximum age

Balto-Slavic 1,100 3,400

Brythonic 1,500 2,500

Celtic 2,500 10,000

French/Iberian 1,200 1,600

Indic 2,200 2,900

Indo-Iranian 3,001 10,000

Iranian 2,500 10,000

Latin/Romance 1,901 2,200

Northwest Germanic 1,700 2,000

Tocharic 1,375 2,135

West Germanic 1,600 1,700

1



B Linguistic Evaluation

B.1 Comments on the IELex Gold Standard

In this appendix, we provide our detailed qualitative error-analysis of the results of the Binary ML Sample method compared to the Gold Standard

as reflected in IELex. In the following table, we list two general types of errors: Forms proposed by the Gold Standard which are not proposed as

root-forms by the method (section A), and forms proposed as PIE roots by the methods which are not given in the Gold Standard (section B). Our

critical analysis of the forms proposed in the Gold Standard and proposed by the Binary ML Sample method was done by comparing the proposed

forms and the reflexes of the cognate sets in the data with the proposals we could find in the standard literature on PIE. Thus, when dealing with

predominantly Slavic and Balto-Slavic forms, we consulted Derksen (2008), when dealing with Germanic forms, we consulted Kroonen (2013), and

Vaan (2008) for Latin forms. For classical examples of PIE reconstructions, we compared with Meier-Brügger (2002), for PIE nouns we compared

Wodtko et al. (2008), and for verbs we compared Rix et al. (2001). In addition, we consulted Mallory and Adams (2006), since this source is

useful in so far as the authors try to provide a classical onomasiological reconstruction by comparing the distribution of cognate sets, and their

meaning in the descendant languages. Where available, we also compared the data with the database of Cross-Linguistic Colexifications (CLICS,

http://clics.lingpy.org, List et al. 2014), which lists frequently recurring polysemy relations for more than 220 different languages and 1280

different concepts. Based on this comparison, we try to identify the sources of the error (column ES in the table) as either originating from the

Gold Standard (GS) or from the automatic method (ASR). We further classify general causes of errors (column EC in the table) by distinguishing

branch-specific cognates which are erroneously reconstructed back to the root (B in column EC), obvious instances of semantic shift which allow us

to assume that the form had another meaning in PIE (S in column EC), erroneous or dubious cognate judgments (C in column EC), parallel semantic

shift (H in column EC, meaning homoplasy), and problematic representations of complex morphology (M in column EC). We further clarify our

decisions in a note accompanying each of the errors.

B.1.1 Words proposed by the gold standard but not by the algorithm

# CC PIE FORM ES EC NOTE

1 at:R *h₂ed GS B Doubtful root which is only reflected in Germanic and Romance with a rather

vague meaning.

2 bad:U *uba GS B IELex mentions itself that this root is only attested in Germanic languages.

3 black:B *su̯ordos GS B This root is only reflected in Germanic, and the reconstruction back to PIE is

based on the proposed cognacy with Latin sordes ‘dirt’. Assuming that the word

had the same meaning in PIE is by no means straightforward.

2



4 blood:I *kreu̯h₂- ASR ? This seems to be a clear-cut example of an algorithmic failure, as the root is

reflected in the meaning in Slavic, and in only slightly derived meanings in Latin

and Sanskrit. Here, we can see that ASR algorithms, being deprived of additional

information on words with similar meanings, can only reconstruct what they find

in the narrow windows of concept slots.

5 blow:A *bʰleh₁-,
*bʰlh̥₁-

GS S This root is reconstructed back to Indo-European, but not necessarily in this

meaning, as Rix et al. (2001: 87) give ‘to cry’ (‘heulen’) as the reconstructed

meaning.

6 breathe:P *pneu̯- GS B Highly questionable root, as it only occurs in Ancient Greek and has no reflexes

in any other language family. It is also flagged as questionable in the Lexikon

Indogermanischer Verben (Rix et al. 2001: 489) and should be discarded.

7 burn:O *su̯el- GS B Not to be reconstructed in this meaning, as Mallory and Adams (2006: 89) also

only reconstruct the word *dʰegʷʰ- ‘to burn’. Rix et al. (2001: 609) recon-

struct this in the meaning of ‘schwelen, brennen’ (‘to smolder’), but they only

list Lithuanian and Germanic examples.

8 burn:U *h₁eu̯s- GS S Apparently reflected in Latin, Sanskrit, and Greek, but not consistently with the

same meaning.

9 cold:B *kalda- GS B The IELex mentions itself that the root has no cognates outside the Germanic

branch.

10 day:B *dʰōg̑ʰ-e/os- GS S Kroonen (2013: 86f) confirms the reconstruction of the root in Proto-Germanic

and Indo-Iranian. The meaning, however, is by no means clear, as the PIE root

*die̯u̯- ‘heavenly deity, day’ is a more broadly reflected candidate for the mean-

ing ‘day’ in PIE.

11 drink:H *h₁egʷʰ- GS B Given that this root is only reflected in Tocharian and Anatolian, it is by nomeans

clear whether it reflects a PIE root. Mallory and Adams (2006) also do not re-

construct this root, but prefer *peh₃(i)- ‘to drink’, which is much more widely

reflected.

12 dry:D *trs̥-ú-,
*tērs-o-

GS B This is in clear contradictionwithMallory andAdams (2006), who list PIE *saus-
‘dry’. The root is also only reflected in Albanian and Germanic.

13 dust:H *prs-o- GS B This root occurs only in Balto-Slavic, as already indicated in IELex itself.

14 far:G *u̯i-itós GS B This root occurs only in Germanic.

15 fat:U *smer-u- GS B This root occurs only in Germanic.

16 father:B *atta- GS H This root is labelled as an onomatopoetic word in IELex, so it reflects a parallel

development rather than a valid word for PIE.

3



17 fire:E *h₁ngʷ-ni- ASR ? Mallory and Adams only list PIE *péh₂ur ‘fire’ for the concept ‘fire’, but given
that this word occurs as reflex in Slavic, Sanskrit, and Latin without any change in

meaning, it is straightforward to reconstruct it back to PIE. The problem remains

for IE reconstruction, that one has to explain why there were two different words

for fire, namely *péh₂ur and *h₁ngʷ-ni- (see discussion in Wodtko et al. 2008:

540-545).

18 fire:J *h₂eh₁-t(e)r- GS B Reconstructing this word in the meaning ‘fire’ back to PIE is not justified, given

that it only occurs in Indo-Iranian, also in shifted meanings.

19 fish:B *pisk-,
*peisk-

GS B Mallory and Adams (2006) reconstruct only *dʰĝʰuh₂- in this meaning, as the

form *pisk- is only reflected in Romance and Germanic.

20 flow:I *sreu̯- ASR ? Rix et al. (2001: 588) reconstruct this root as ‘strömen, fließen’ (‘to stream, to

flow’.

21 fog:T *(s)neu̯dʰ-,
*(s)nou̯dʰ-

GS B Only reflected in Avestan.

22 good:Ae *bʰedró- GS M This is the suppletive stem for ‘good’ in the Germanic languages, and apparently

also reflected in Vedic Sanskrit. Reconstructing it as a root itself does not seem

to be justified, especially since the normal root for ‘good’ in PIE would be the

widely reflected *h₁(e)su- (see Mallory and Adams 2006).

23 hair:Q *pulo- GS S Mallory and Adams (2006: 97) reconstruct *kr̂ipo- for ‘hair’, and the word

shows a much better distribution, as it is only reflected in Romance, and in a

shifted meaning in Vedic Sanskrit. Given the multiple possibilities for semantic

S involving ‘hair’, as it is also reflected in the CLICS database (List et al. 2014),

it is much more likely that this is an instance of semantic S of a word that meant

something different in PIE.

24 hand:E *mon-u- GS S No reason to assume that this Romance cognate meant anything close to ‘hand’

in PIE, where the more common root *ĝʰes-r- would be the best candidate for

this meaning (Mallory and Adams 2006).

25 hold:M *seg̑ʰ- GS C Cognacy with Portuguese as the only reflex of this root apart from Old Greek is

quite doubtful. Rix et al. (2001: 515f) further reconstruct a different meaning

for the term, ‘in den Griff bekommen’ (‘to get hold off’) rather than ‘to hold’.

26 I:D *me- GS M Complex paradigm for ‘I’ in PIE. Handling this as two cognate sets is not straight-

forward in the Gold Standard, as the paradigm developed in one set, rather than

independently.

4



27 know:A *g̑neh₃- GS S A clear case of parallel semantic S of an extremely well-attested root in PIE. The

common term for ‘to know’ in PIE was *weid- (Mallory and Adams 2006), and

this root meant something like ‘to recognize’ rather than ‘to know’.

28 lake:L *h₂ep- GS S There is no clear-cut reason to assume that this root, which is reflected in many

different languages, meant exactly ‘lake’ in PIE (see Mallory and Adams 2006,

127).

29 laugh:D *g̑elh₂- GS B Only reflected in Armenian and Greek in this meaning, and given the supposed

closeness of both branches, it is by no means straightforward to reconstruct it

back in exactly this meaning into PIE.

30 laugh:H *smei-̯ GS B This root is only reflected in the Balto-Slavic branch, and in the meaning ‘to

smile’ in Sanskrit smáyate (Derksen 2008: 456). Following Mallory and Adams

(2006: 359f), it is furthermore much more likely that the original word for ‘to

laugh’ in PIE was *kʰa-, with reflexes in Latin, Sanskrit, and Greek.

31 leg:P *koḱso- GS B Only reflected in Celtic languages, a much better candidate for ‘leg’ in PIE would

be *sókwt- (Mallory and Adams 2006: 182f) with reflexes in Hittite and San-

skrit.

32 lie:A *legʰ- ASR ? Mallory and Adams reconstruct *kêi- for ‘to lie’ (Old Greek κει�μαι, Sanskrit

śāyayati ‘to lay down’, see Pokorny 1959), but given how widely this candidate

is reflected, it is at least equally good for the meaning ‘to lie’ as the one proposed

by Mallory and Adams.

33 man:F *h₂nḗr ASR ? Mallory and Adams reconstruct the same root, and given its wide distribution in

the meaning of ‘man’ it seems the best candidate for PIE.

34 not:F *meh₂ GS S As IELex notes, the root reconstructed to PIE is not the regular term for ‘not’, as

it is used in specific grammatic constructions (as, for example, in Old Greek).

35 one:A *(H)óin̯os,
*(H)óik̯os,
*(H)óiu̯̯os

ASR ? This is a regular candidate for the word of ‘one’ in PIE, as also given in Mallory

and Adams, who give the form *h�oin- (97).

36 river:O *h₂ekʷ-eh₂- GS S Form in GSmeant ‘water’ in PIE. Although a shift from ‘water’ to ‘river’ is likely

according to CLICS (List et al. 2014), this meaning is an innovation in Germanic.

37 rub:L *melh₁- GS C Form in GS is not reflected in the standard literature (LIV and LIN).

38 scratch:B *gerbʰ- GS B Form in GS is only reflected in few Germanic languages, probably with a wrong

cognate assignment.
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39 see:D *derḱ- GS S Form is also reflected as the valid form for ‘to see’ in Mallory and Adams (2006:

98), but it is not clear whether ‘to see’ reflects the original meaning, as Rix et

al. (2001, 122) reconstruct it as ‘to catch sight of’. Given the strong polysemy

relations between verbs for ‘to look’, ‘to see’, and ‘to find’, as reflected in CLICS

(List et al. 2014), it is quite likely that this form originally reflected anothermean-

ing, especially given that the form *u̯eid̯- is a widely reflected good candidate

for ‘to see’ in PIE.

40 short:M *mrg̥̑ʰ-ú- ASR ? Form is only reflected in Celtic, Romance, and Greek, and in shifted form in Ger-

manic, but Mallory and Adams (2006: 317) also reconstruct the same meaning.

41 sit:B *sed- ASR ? Clear root for PIE, widely attested in Slavic, Romance, Germanic, and Sanskrit.

42 skin:B *pel-ni- ASR ? Form in GS is a good PIE root, but not necessarily with the meaning ‘skin’, as the

meaning of the reflexes differs greatly. The GSR form derives from a PIE verb

meaning ‘to cover’, so independent semantic S is likewise possible. Mallory and

Adams (2006), however, also propose *péln- for ‘skin’ in PIE.

43 sleep:E *drem- GS B This form is only reflected in Romance and Vedic Sanskrit, while the form

*swep- has a much better distribution (Mallory and Adams 2006).

44 small:H *mei-̯ GS C Wrong cognate judgments in the database, since neither Russian malenkij nor

English small go back to this root (see Derksen 2008: 308).

45 snake:D *h₂engu̯i ASR ? Mallory and Adams reconstruct *h₁ógʷʰis, but they list the same reflexes for the

word and propose this as the basic word for the meaning ‘snake’.

46 snow:B *sneig̯ʷʰ- ASR ? It is surprising that the algorithm missed this root, which is one of the classical

roots which was recognized very early in the history of PIE. Yet remembering

that the root is not necessarily reconstructed as ‘snow’ in PIE, but, given its verbal

reflexes in Vedic Sanskrit, as ‘to be sticky’ (Meier-Brügger 2002: 173f), we may

as well deal with an independent semantic shift in some PIE languages, as the

root itself occurs only in Romance, Slavic, and Germanic in the meaning ‘snow’.

47 think:B *tong- GS B Root only reflected in Germanic languages with spurious reflexes in semantically

shifted form in other branches. A better candidate for PIE would be *men- “the

mind or to think”.

48 this:G *kos, *koh₂,
*kod

GS H Given the complex structure of pronouns in PIE, it is not straightforward, to only

reconstruct this form in the meaning of ‘this’ back to PIE, as also reflected in

Mallory and Adams (2006), who propose the widely reflected form *so- instead.
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49 tooth:C *ĝembʰ- GS H There is no reason to assume that this word meant ‘tooth’ in PIE, given that there

is the excellent candidate *h₁dónt- (Mallory and Adams 2006). The original

meaning of this word must have been something else, so that its distribution

across some PIE languages can be explained.

50 vomit:S *h₁reug- GS H No need to reconstruct this form back to PIE, since it is only reflected in two

languages of Romance and Serbo-Croatian. It is more likely that this is indepen-

dent semantic semantic shift (original meaning ‘to throw out’), if the words are

cognate at all.

51 walk:G *gʰredʰ- GS B Not clear why this form is reconstructed as the PIE root, given that it is only

reflected inGermanic in thismeaning. More likely is the root *h₁ei-, as suggested
by Mallory and Adams (2006), as it has more reflexes in PIE.

52 warm:D *tep- GS B Mallory and Adams (2006) propose *gʷʰermós for ‘hot’. This root has a much

wider distribution, while *tep is mostly reflected in Slavic and in derived variants

in Latin and Sanskrit (Derksen 2008: 496). The cognates with Celtic in IELex

seem doubtful.

53 wash:C *leh₂u̯- GS C Wrong cognate assignment in the source since Romance and Albanian reflexes

are not annotated.

54 water:A *h₂ekʷ-eh₂- GS B Mallory and Adams (2006) list *wódr̥ as the root for ‘water’ in PIE, and this

seems to be a much better candidate than this one, which is only in Romance

reflected in this meaning, and may have easily shifted from another meaning, if

one reconstructs it back to PIE.

55 water:E *h₂ep- GS S As mentioned above, this root is also reconstructed as ‘lake’ in IELex, but it

is more likely, following Mallory and Adams (2006: 127) that the word meant

‘body of water’ originally and then shifted into the meaning.

56 wet:I *u̯ed GS B Semantic change from ‘water’ to ‘wet’ is likely according to CLICS, but it is not

clear why this should have already happened in PIE times.

57 white:E *h₂elbʰós GS B The IELex form is only reflected in Romance in this meaning and as meaning

‘cloud’ in Hittite.

58 worm:B *u̯rm̥i- GS B The IELex form is only reflected in Germanic and Romance

59 year:B *ie̯Hr- GS S Mallory and Adams (2006: 300) reconstruct a specified meaning for this root,

namely ‘season’, rather than ‘year’, which already has a good candidate with

*wet-.
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B.1.2 Words proposed by the algorithm but not by the gold standard

# CC PIE FORM ES EC NOTE

1 bad:Ac Ø ASR ? Only in Hittite, Luwian, and Tocharian.

2 black:P Ø ASR ? Only in Anatolian.

3 breathe:O *h₂énh₁mi GS ? Reflected in Germanic and Sanskrit in the data, and also reconstructed in this

meaning by Mallory and Adams (2006: 189).

4 cold:A Ø GS C Usually, and Indian form, but IELex also lists cognates in the Baltic languages,

which do not seem very likely.

5 dry:F *h₁sou̯s-o- GS ? Mallory and Adams (2006) list *sau̯s- as the PIE root for the meaning ‘dry’,

which finds regular reflexes in a widre range of languages and sub-branches.

6 dust:Q *dʰuns-to- GS C The root is spuriously reflected in Germanic, Celtic, Tocharian, and Lituanian.

It is quite likely that we are dealing with wrong cognate assessments here, as the

forms in Celtic are obviously borrowed, and the Baltic forms are obscure. The

Germanic form goes probably back ot a PIE form, but in another meaning (see

Kroonen 2013: 109).

7 far:B *per-n-oi ̯ ASR C The reflexes all represent partial cognates of the PIE root *per, which is reflected
in the Germanic reflexes (Kroonen 2013: 137), but also in other branches. The

inability to handle partial cognacy here leads to the algorithmic error.

8 fat:X *poi, pī- ASR ? Root only reflected in Old Greek, Avestan, and Old Prussian.

9 flow:H *tek- GS C Root *tek- is a classical example for Slavic, perhaps going back to PIE (Derksen

2008: 489f), but in a slightly shifted meaning, but IELex also lists unrelated

forms, namely reflexes of Germanic *rinnan (Kroonen 2013: 413), which are

completely unrelated.

10 fog:A *h₃migʰ-leh₁ ASR H Root is reflected in Proto-Slavic and can be reconstructed to PIE (Derksen

2008:338f), but here it probably reflected another meaning, such as ‘soft rain’

(Mallory and Adams 2006: 127).

11 hair:J *u̯ol-o- GS ? Root is reflected in Slavic and Indo-Iranian, also with similar meanings (Derksen

2008: 526), and IELex lists also Celtic cognates. The alternative word for ‘hair’

*pel- (see hair:Q) is also not an extremely good candidate.

12 hold:E *der- GS ? IELex lists Slavic and Indo-Iranian cognates for this cognate set, which may well

go back to PIE, in a meaning, also very close to ‘to hold’ (Derksen 2008: 137f).

13 lake:E Ø GS ? Root is only reflected in Celtic and Romance, and as a borrowing in English

‘lake’, so no reason to assume that it goes back to PIE (not to even speak of

keeping the same meaning there).
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14 laugh:A *kʰa- GS ? Mallory and Adams propose this root for the meaning ‘to laugh’ in PIE.

15 river:L *h₂ep- GS ? The form is reflected across multiple branches and may be a much better candi-

date than *h2ekweh2 as proposed as PIE word for ‘river’ in IELex.

16 rub:H *terh₁- GS ? Form is reflected in the meaning ‘to rub, to bore’ across Slavic and Greek.

17 scratch:T *(s)kʷer- GS ? IELex lists the PIE root for this word, but in a note rather than in a specific field

for the PIE language. The etymology of the words listed in the cognate sets itself,

however, is not necessarily clear, as the word shows reflexes in Slavic, which are,

however, not among the traditionally acknowledge roots for Proto-Slavic.

18 short:D *(s)ker- ASR H The form may be an independent innovation in both Slavic and Germanic.

19 skin:E Ø GS C Wrong cognate assignment between reflexes of Slavic *skorà- (Derksen 2008:

452) and Germanic hūdi- (Kroonen 2013: 251f). This seems to be a technical

error, as it seems unlikely that a human would come up by assuming cognacy for

the two words.

20 small:A Ø ASR ? Not clear why the algorithm would reconstruct the forms back to the root, as

they only occur in Hittite and Waziri. This reflects another problem of auto-

mated ASR: The algorithms lack the knowledge regarding the importance of the

evidence.

21 snake:E *serp- ASR H The cognate set contains the Latin word serpens and its reflexes in Indo-Iranian

languages and Albanian. According to Vaan (2008: 558), the verbal root meant

‘to crawl’, which would motivate the denotation in Latin and Albanian. Instead

of assuming that the noun already denoted ‘snake’ in PIE times, it is, however,

much more likely that we are dealing with independent semantic shift.

22 snow:D *ĝʰéi-mn̥- ASR H The form has probably independently shifted from the original meaning ‘frost,

cold’, which is a very likely shift according to CLICS.

23 think:S Ø ASR ? Cognate class only reflected in Indo-Iranian.

24 this:B *so (*to) GS ? This form is also preferred by Mallory and Adams (2006).

25 walk:S *h₁ei-̯ GS ? This is the form also proposed by Mallory and Adams (2006).

26 water:B *u̯ódr̥ GS ? This form is also recommended by Mallory and Adams (2006).

27 wet:K Ø ASR ? This form is only reflected in Greek and Latin, and independent semantic shift is

as likely as an unrecognized instance of borrowings.

28 white:L *h₂erĝ- GS ? This form surely reflects a PIE root (Wodtko et al. 2008: 317-322), and the

meaning can also be closely reconstructed as ‘white, shining’. Given the word’s

distribution in the most ancient languages of PIE further supports the reconstruc-

tion.
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29 worm:A *kr-̥m-i- GS ? Mallory and Adams (2006: 149) gloss the root as ‘worm, insect’, and Derksen

(2008: 93f) gives the same reflexes for this root which is reflected in Indo-Iranian

and in Slavic.

B.2 Comments on the BCD Gold Standard

In the following tables we list detailed comments regarding the differences between the MultiML analysis and the gold standard as given in the BCD

for the Chinese dialects. The structure of the tables is identical with the structure we gave for the comment on the data in IELex, but our codes for

the classes of errors (column EC) have changed, and we distinguish now between errors due to the misinterpretation of branches in the data (B),

meanings in the sample which are hard to translate or erroneously translated (M), patterns of compounding (C) which cannot be handled by the

methods, cases of homoplasy (H), and instances of diffusion (D). Instead of proto-forms, we list Chinese characters (column CF). Our comments

draw from an inspection of alternative resources, like the dataset by Liú et al. (2007), and the alternative interpretation of Old Chinese translations

provided in Sagart (2008), and by inspecting corpora of Classical Chinese texts (as provided by the Chinese Text Project, http://ctext.org/) in

order to check the Old Chinese translations proposed for the concepts in the gold standard.

B.2.1 Words proposed by the Gold Standard but not by the algorithm

# CC CF ES EC NOTE

1 back-Bei-1082 背 ASR B See note on 背脊 bèijì below.

2 because-Wei-69 為 Ø M A bad concept for reconstruction which would better be excluded, as causal rela-

tions are not necessarily expressed with conjunctions.

3 belly-Fu-1124 腹 ASR C See note on 肚 dù below.

4 bite-Nie-309 啮 ASR C See note on 咬 yǎo below.

5 black-Hei-1349 黑 ASR B Not at all clear how the algorithm could miss this word.

6 cold-Han-458 寒 GS ? See note on 冷 below.

7 correct-Shi-679 是 GS ? It seems unlikely that this is the correct word for ‘correct’ in Old Chinese.

8 cut-Zhuo-664 斫 GS ? Sagart (2008) does not propose this word for ‘to cut’, and it is not clear which is

the right form for Old Chinese.

9 day-Tian-373 天 GS ? Sagart (2008) gives 日 rì which seems to be the better choice for translation.

10 dog-Quan-875 犬 ASR B Given the distribution of狗 gǒu during Hàn times (around 100 CE), it seems likely

that this word was not the only form present in Old Chinese.

11 drink-Yin-1328 飲 ASR B Due to an innovation in the Mǐn dialects, the algorithm has difficulties to uncover

this as the ancient form.
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12 dry-Zao-850 燥 GS ? Sagart (2008) gives 乾 as the correct form.

13 dull-Yu-552 愚 GS M See note on 笨 bèn below.

14 ear-Er-1058 耳 ASR C See explanation to耳朵 ěrduō below.

15 eye-Mu-926 目 ASR C See explanation to目珠 mùzhū below.

16 fall-Luo-1161 落 ASR B Difficult to explain why the algorithm failed here, as the word is reflected in the

ancient dialect groups.

17 fear-Wei-913 畏 ASR B See note to 怕 pà below.

18 float-Piao-823 漂 ASR B Word is difficult to reconstruct due to its distribution.

19 freeze-Dong-179 凍 ASR C See note to 結冰 jiébīng below.

20 fruit-Guo-715 果 ASR C See note to 水果 shuǐguǒ below.

21 give-Yu-64 與 ASR B Word only reflected in one Mǐn dialect in this form, therefore difficult for the algo-

rithm to identify it as the retention.

22 if-Ruo-1152 若 Ø M A bad concept for reconstruction which would better be excluded, as conditions

were and are not necessarily overtly marked in Chinese.

23 knee-Xi-1134 膝 ASR C See note to 膝頭 xītóu below.

24 leaf-Xie-236 葉 ASR C See note to 葉子 yèzǐ below.

25 leftside-Zuo-491 左 ASR C See note to 左邊 zuǒbiān below.

26 leg-Jiao-1101 腳 ASR B There are problems with the concept, as there are multiple transitions between ‘leg’

and ‘foot’ in Chinese dialects.

27 live-Sheng-897 生 ASR B Only reflected in Guǎngzhōu, therefore difficult to identify as retained form.

28 louse-Shi-1171 虱 ASR C See note to 虱子 shīzǐ below.

29 man-Nan-902 男 ASR C See note to 男個 nángè below.

30 moon-Yue-690 月 ASR C See note on 月光 yuèguāng below.

31 mouth-Kou-222 口 ASR B Word only occurs in Guǎngzhōu and it is therefore hard to reconstruct it.

32 name-Ming-249 名 ASR C See note on 名字 míngzì below.

33 night-Ye-361 夜 ASR C See note on 夜裡 yèlǐ below.

34 nose-Bi-1353 鼻 ASR C See note on 鼻頭 bítóu below.

35 push-Tui-637 推 ASR ? Clear failure of the algorithm.

36 red-Chi-1215 赤 ASR D See note on 紅 hońg below.

37 rightside-You-226 右 ASR C See note on 左邊 zuǒbiān below.

38 rope-Sheng-1016 繩 ASR C See note on 繩子 shéngzǐ below.
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39 small-Xiao-461 小 ASR B Clear failure of the algorithm.

40 smell-Xiu-320 嗅 ASR B Clear failure of the algorithm.

41 stand-Li-979 立 ASR B Difficult to reconstruct, as not many dialects retain the form.

42 stone-Shi-967 石 ASR C See note to 石頭 shítóu below.

43 suck-Xi-257 吸 GS ? See note on 吮 shǔn below.

44 sun-Ri-668 日 ASR C See note on 日頭 rìtóu below.

45 tongue-She-1140 舌 ASR C See note on 舌頭 shétóu below.

46 tooth-Ya-869 牙 ASR C See note on 牙齒 yáchǐ below.

47 who-Shui-1208 誰 ASR B Difficult to reconstruct, as not many dialects retain the form.

48 woman-Nu-399 女 ASR C See note to 女個 nǚgè below.

49 you-Ru-766 汝 ASR B Clear failure of the algorith, but difficult, due to sparse reflexes.

B.2.2 Words proposed by the algorithm but not by the gold standard

# CC CF ES EC NOTE

1 back-BeiJi-1086 背脊 GS C Almost all dialects in the data show bisyllabic forms for ‘back’, while we assume

the monosyllabic form背 bèi for Old Chinese. This may, however, well be a sam-

pling error, as the more recent data by Liú et al. (2007), for example, lists only

sporadically bisyllabic forms for some of the Mandarin dialects.

2 because-YinWei-334 因為 Ø M It is extremely difficult to identify the exact words that were used for this meaning

in Classical Chinese, as causal sentences are differently constructed in the language.

It seems to make more sense to exclude the word completely from lexicostatistical

datasets of Chinese dialects.

3 belly-Du-1069 肚 ASR C The original Classical Chinese word for ‘belly’,腹 fú is still reflected in the ancient

Mǐn dialects, but has innovated in all other dialect groups. The Mǐn dialects, how-

ever, retain the word in compounds, which makes it impossible to reconstruct the

word with methods that do not take partial cognacy into account. Reconstructing

肚 for ‘belly’, however, is wrong, as the word only occurs in Post-Hàn times (after

200 CE) in the ancient literature.
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4 bite-Yao-272 咬 ASR ? The gold standard lists 嚙 niè as the basic word for ‘to bite’ in Ancient Chinese,

Sagart (2008), on the other hand, lists 噬 shì. Both forms are possible words for

‘to bite’, occuring in early sources of Hàn times. The word 嚙 niè is still reflected

in the Hakka dialects in the sample, and Liú et al. (2007) give the same word for

Měixiàn Hakka. Nowadays, however, most dialects have innovated the word to

the form 咬 yǎo which is also reflected in all Mǐn dialects. If the word form in the

Hakka dialects indeed reflects the ancient Chinese character, this would suggest

that the modern word for bite, which occurs first in post-Hàn sources (around 300

CE) of ancient texts, spread across all dialects after the separation of Hakka. An

alternative scenario might be an innovation in the Hakka dialects which is now

erroneously treated as a reflex from Ancient Chinese嚙 niè.

5 black-Wu-79 烏 ASR H This form is a clear innovation in some dialects and was probably reconstructed by

the algorithm due its presence across multiple dialects. From Old Chinese sources,

however, we know that the original word for ‘black’ was黑 hēi.

6 cold-Leng-178 冷 GS ? The gold standard only lists寒 hán as possible word for ‘cold’. However, the word

冷 lěng also occurs in early Hàn texts.

7 correct-Zhao-944 對 ASR H The form is probably an independent innovation, but it may also have been assem-

bled due to wrong sampling, as all dialects in Liú et al. (2007) only show the form

對 duì. Sagart (2008) further proposes 正 zhèng as the original word for ‘correct’.

This may, however, also be due to recent borrowings, as the meaning of this word

in ancient texts was almost exclusively ‘to answer’.

8 cut-Zhan-663 斬 ASR M The form 斬 zhǎn can be found in the meaning ‘to cut’ in texts from Hàn-time.

The concept ‘to cut’, however, is notoriously difficult, especially in Chinese, as the

meaning is not sufficiently specified. As a result, scholars differ regarding their

preferred form, and while the gold standard lists 斫 zhé, Sagart (2008) gives 斷

duàn.

9 day-Ri-668 日 GS ? The gold standard lists天 tiān for ‘day’, while Sagart (2008) gives日 rì. While天

tiān originally means ‘sky’, 日 rì originally means ‘sun’. That the latter was used

already early to denote the ‘day’ (opposed to the ‘night’) is reflected in ancient

texts.

10 dog-Gou-877 狗 GS ? Although 犬 quǎn is the earliest Chinese word for dog, 狗 gǒu also occurs rather

early, although the meaning seems to be more specific.

11 drink-Chi-243 吃 ASR H This is a semantic shift from the word 吃 chī for ‘to eat’ to ‘to drink’ in some

dialects.

12 dry-Gan-505 乾 GS ? Sagart (2009) lists the form 乾 gān as the regular form to denote ‘dry’ in Old Chi-

nese.
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13 dull-Ben-982 笨 GS M 笨 bèn ‘stupid’ reflects a mistranslation in the gold standard, as ‘stupid’ is clearly

not a basic word, opposed to ‘dull’.

14 ear-ErDuo-1064 耳朵 ASR B The older form was clearly monosyllabic耳 ěr, yet the compound form耳朵 ěrduō

is reflected across many dialects, and not restricted ot the Mandarin group alone.

The fact that the Mǐn dialects show innovations, however, confirms that the com-

pound form must be secondary.

15 eye-MuZhu-927 目珠 ASR H TheMǐn dialects come closest to the ancient form目mù for ‘eye’, yet they show an

innovation in the compound form目珠mùzhū ‘eye-pearl’ which is also reflected in

dialects of the Hakka group. This is most likely an independent innovation, as the

motivation is rather clear-cut. It shows, however, how difficult it is to distinguish

between the likelihood of independent motivations for compound word creation

and inherited forms.

16 fall-Die-1219 跌 GS H The word跌 diē os rather an (independent) innovation in some of the dialects than

a retention in the meaning ‘to fall’. Its original meaning is ‘to stumble’, rather than

‘to fall’.

17 fear-Pa-539 怕 ASR D The classical word for ‘to fear’ is 畏 wèi. This is only reflected in Maixian Hakka

and therefore very difficult to reconstruct.

18 freeze-JieBing-1008 結冰 ASR C The verb-noun compound結冰 jiébīng is reflected in most of the dialect varieties.

However, since compound verbs of this form were not present in Old Chinese, the

original form 凍 dòng is hard to reconstruct.

19 fruit-ShuiGuo-716 水果 ASR C The compound 水果 shǔiguǒ is reflected in a multitude of dialects.

20 give-Fen-188 分 ASR H The form 分 fēn for ‘to fear’ is clearly an innovated form.

21 if-YaoShi-1187 要是 Ø M It is extremely difficult to identify the exact words that were used for this meaning in

Classical Chinese, as conditional sentences are not necessarily overtly constructed.

It seems to make more sense to exclude the word completely from lexicostatistical

datasets of Chinese dialects.

22 knee-XiTou-1135 膝頭 ASR C 膝頭 xītóu is a frequently occurring word in the Chinese dialects, but as with other

compound words, like for ‘stone’, ‘moon’, ‘sun’, it is difficult to say, when com-

pounding exactly started, and whether this word would qualify as an ancestral form

to all dialects.

23 leaf-XieZi-240 葉子 ASR C 葉子 yèzǐ is a frequently occurring word in the Chinese dialects, but as with other

compound words, like for ‘stone’, ‘moon’, ‘sun’, it is difficult to say, when com-

pounding exactly started, and whether this word would qualify as an ancestral form

to all dialects.
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24 leftside-ZuoBian-496 左邊 ASR C This is a clear example for compounding problems and the difficulties to handle

them in phylogenetic analyses using only gain and loss models. The first element of

the compound左邊 zuǒbiān ‘left side’ is clearly a retention from Ancient Chinese.

However, the second element was later introduced in a wide range of languages

who went through stages of disyllabification in the history of Chinese and therefore

added new element to monosyllabic words (especially nouns and verbs). Without

the proper external knowledge, this phenomenon is very difficult to handle.

25 leg-Tui-1128 腿 ASR B 腿 tuǐ is a clear later innovation.

26 live(alive)-Huo-793 活 ASR B 活 huó seems like a clear later innovation, as the original word was生 shēng.

27 louse-ShiMu-1175 虱母 ASR C Not likely to be the original word, given that Old Chinese tended to be monosyl-

labic.

28 man-NanGe-903 男個 ASR C 男個 nángè is a rather rare form of the word for ‘man’. Given the tendency of

monosyllabicity, this form is also not likely to have been used to denote ‘man’ in

the ancestor of the Chinese dialects.

29 moon-YueGuang-693 月光 ASR C 月光 yuèguāng is a rather pervasive innovation which is reflected in very different

Chinese dialect varieties (see also scenario in List 2016: 132).

30 mouth-Hui-315 喙 ASR B 喙 huì is an innovation in theMǐn dialects (the word originally meant ‘beak’). How-

ever, the real Old Chinese word for ‘mouth’,口 kǒu has been replaced in all dialects

and can therefore not be reconstructed (yet it survives as measure word and in ab-

stract constructions).

31 name-MingZi-251 名字 ASR C 名字 míngzì is the normal form in most dialects. This reflects general questions of

compounding, as also illustrated in the comments to ‘stone’, ‘sun’, ‘moon’, etc.

32 night-YeLi-367 夜裡 ASR H Words for ‘night’ find many different expressions in the Chinese dialects, and it is

difficult to trace their origin. 夜裡 yèlǐ, however, is a clearly secondary reconstruc-

tion.

33 nose-BiGong-1355 鼻公 ASR C 鼻公 bígōng reflects a clear later innovation.

34 push-Sang-644 搡 ASR B 搡 sāng is not likely to be an ancestral form.

35 red-Hong-995 紅 ASR D 赤 chí is the original word for ‘red’, and 紅 hóng is a later innovation, which is,

however, reflected in almost all Chinese dialects, and is therefore almost impossible

for the algorithm to be reconstructed.

36 rightside-YouBian-231 右邊 ASR C See above the entry for ‘leftside-ZuoBian’.

37 small-Xi-997 細 ASR H The original word for ‘small’ is小 xiǎo, so this is a clear independent innovation.

38 smell-Bi-1353 鼻 ASR H Most frequent word for ‘to smell’ is now 聞 wén. The form 鼻 bí is derived from

the identical noun meaning ‘nose’.
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39 stand-Qi-528 企 ASR H 企 qǐ has a specified meaning ‘to stand on the toes’, so we are dealing with parallel

semantic shift here.

40 stone-ShiTou-968 石頭 ? C Here, we find a typical problem for compound words in the history of Chinese.

Given that all dialects reflect the form石頭 shítóu, we need to ask ourself whether

the compound form might not really have been the original form in the ancestor of

all Chinese dialects. In the literature, the word occurs in Post-Hàn times (after 300

CE), which might coincide with the supposed separation of Chinese dialects.

41 suck-Shun-256 吮 GS ? It seems that the word 吮 shǔn is regularly reflected in early sources of Hàn time

(around 100 CE) in the meaning ‘to suck’, and it is thus much likely that this is a

correct reconstruction.

42 sun-RiTou-669 日頭 ASR C 日頭 rìtóu occurs in almost all dialect groups in this form. Similar to forms like

石頭 shítóu ‘stone’ or月光 yuèguāng ‘moon’, we can ask ourself whether the late

occurrence of these words in Chinese texts reflects linguistic reality.

43 tongue-SheTou-1143 舌頭 ASR C 舌頭 shétóu is similar to the above-mentioned pervasive compound forms for ‘sun’,

‘moon’, ‘stone’, etc.

44 tooth-YaChi-871 牙齒 ASR C 牙齒 yáchǐ is similar to the pervasive compound forms for ‘sun’, ‘moon’, etc.,

mentioned above.

45 who-ShaRen-305 啥人 ASR H 啥人 shǎrén, literally ‘what person’ is extremely frequent in the Chinese dialects

and has apparently been independently developed in different groups.

46 woman-NuGe-401 女個 ASR C 女個 nǚgè is a rather rare form of the word for ‘woman’. Given the tendency of

monosyllabicity, this form is also not likely to have been used to denote ‘woman’

in the ancestor of the Chinese dialects.

47 you-Ni-124 你 ASR B 你 nǐ is not reflected in the archaic Mǐn dialects and generally an innovative form.
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