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Abstract: The numerical analysis of linear quadratic regulator design problems for parabolic partial differ-
ential equations requires solving Riccati equations. In the finite time horizon case, the Riccati differential
equation (RDE) arises. The coefficient matrices of the resulting RDE often have a given structure, e.g., sparse,
or low-rank. The associated RDE usually is quite stiff, so that implicit schemes should be used in this situa-
tion. In this paper, we derive efficient numerical methods for solving RDEs capable of exploiting this struc-
ture, which are based on amatrix-valued implementation of the BDF and Rosenbrockmethods.We show that
these methods are suitable for large-scale problems by working only on approximate low-rank factors of the
solutions. We also incorporate step size and order control in our numerical algorithms for solving RDEs. In
addition, we show that within a Galerkin projection framework the solutions of the finite-dimensional RDEs
converge in the strong operator topology to the solutions of the infinite-dimensional RDEs. Numerical exper-
iments show the performance of the proposed methods.

Keywords: Riccati differential equation, Rosenbrock method, BDF method, LQR problem, parabolic control
problem

Classification: 65L06, 65N12, 49N05, 93C20, 93D15

1 Introduction
The Riccati differential equation (RDE) is one of the most deeply studied nonlinear matrix differential equa-
tions arising in optimal control, optimal filtering, H∞ control of linear-time varying systems, differential
games, etc. [1, 42]. In the literature, there is a large variety of approaches to compute the solution of the RDE
(see, e.g., [3, 22, 25]). However, none of these methods seems to be suitable for large-scale control problems,
since the computational effort grows like n3, where n is the dimension of the state of the control system. In
this paper, we consider the numerical solution of large-scale RDEs arising in optimal control problems for
linear parabolic partial differential equations. A variational formulation of the equation leads to an abstract
Cauchy problem for a linear evolution equation of the form

ẋ = Ax + Bu, x(0) = x0 ∈ H, y = Cx (1.1)

for linear operators A : dom(A) ⊂ H → H, B : U→ H, C : H → Y; where the state spaceH, the observation
space Y, and the control space U are assumed to be separable Hilbert spaces. Additionally, U is assumed to
be finite-dimensional, i.e., there is only a finite number of independent control inputs to (1.1). Here C maps
the states of the system into its outputs, i.e., y = Cx. We also assume that the cost functional is given in a
quadratic form, i.e.,

J(x0, u) =
1
2 ∫

Tf

0
⟨x,Qx⟩H + ⟨u,Ru⟩U dt + ⟨xTf ,GxTf ⟩H (1.2)
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whereQ,G are self-adjoint operators on the state spaceH,R is a self-adjoint positive definitive operator on the
control spaceU, xTf denotes x(⋅, Tf ) and Tf < ∞. Usually, only a fewmeasurements of the state are available
as the outputs of the system, the operator Q := C∗Q̃C generally is only positive semidefinite as well as G. If
the standard assumptions are:
– A is the infinitesimal generator of a strongly continuous semigroup T(t);
– B, C are linear bounded operators;
– for every initial value there exists an admissible control u ∈ L2(0,∞;U);

then, the solution of the abstract LQR problem can be obtained analogously to the finite-dimensional case
[24, 27, 36, 50] as a feedback control

u∗(t) = −R−1B∗X(t)x∗(t) (1.3)

where X(t) represents the unique nonnegative solution of the differential operator Riccati equation

Ẋ(t) = −(C∗QC + A∗X(t) + X(t)A − X(t)BR−1B∗X(t)) (1.4)

with terminal condition X(Tf ) = G. The rather restrictive assumption that B is bounded can be weakened
[35, 36, 43].

In order to solve the infinite-dimensional LQR problem numerically, we use a Galerkin projection of
the variational formulation onto a finite-dimensional space HN spanned by a finite set of basis functions
and then solve the discrete problem. Hence, we need to solve the large-scale RDEs resulting from the semi-
discretization. The task of solving large-scale RDEs also arise in nonlinear optimal control problems in the
context of receding horizon andmodel predictive control. There, linear problems have to be solved on certain
time frames [30–32]. We provide a convergence theory for the approximation of the solution to the infinite-
dimensional RDE by solutions of finite-dimensional RDEs following the seminal work by Gibson [27] and
Banks and Kunisch [5]. This part of the paper is an abbreviated and revised version of the results first pre-
sented in [14, 38]. Similar results have recently also been reported in [49].

Typically, the coefficient matrices of the RDE have a given structure, e.g. sparse, symmetric, or low-rank.
Moreover, we expect to treat stiff RDEs, so we will focus on methods that can efficiently deal with stiffness.
We derive numerical methods capable of exploiting this structure. Particularly, we propose efficient matrix
valued implementations of the backward differentiation formulae (BDF) andRosenbrock typemethods based
on a low-rank approximation of the solution. Step size and order control strategies are also implemented
based only on the solution factors.

This paper is organized as follows: in the next section, we present the approximation framework for the
computation of Riccati operators. Then, efficient matrix valued algorithms of the BDF and Rosenbrock meth-
ods for large-scale DREs are proposed in Section 3. In Section 4 numerical examples show the performance
of the proposed methods. Finally, conclusions and outlook are summarized in Section 5.

2 Theoretical aspects
The linear-quadratic control problem for infinite-dimensional systems has been deeply studied [18, 19, 36].
Particularly, approximation schemes for Riccati equations in infinite-dimensional spaces have beenproposed
in the last decades. Chronologically, the first reference is Gibson [27], who presented an approximation tech-
nique to reduce the inherently infinite-dimensional problems tofinite-dimensional onesusingRiccati integral
equations. The result proposed by Gibson requires the approximating problems to be defined on the entire
original state space, this leads to some technical difficulties. Assuming that the dynamics is modeled by an
analytic semigroup, Banks/Kunisch [5] avoid these difficulties for the infinite-time horizon case. Moreover,
convergence rates for some types of problems have been proved [33, 36].

In the following, we show that the solutions of the finite-dimensional RDEs converge in the strong oper-
ator topology to the solutions of the infinite-dimensional RDEs for the autonomous and the non-autonomous
case. We use the same framework and assumptions as in [5, 27] and the generalization to the RDE case is to
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some extent straightforward. Nevertheless, we emphasize that the available approximation results refer only
to solutions of the Riccati integral equations. There are no explicit results for RDEs in the literature so far.
Thus, we present the convergence results with short proofs for completeness and future reference.

2.1 Autonomous case

We consider the autonomous case, i.e., the case in which the coefficients of the partial differential equation
are time-invariant.

LetH and U be Hilbert spaces and assume that A: dom(A)⊂ H → H is the infinitesimal generator of a
strongly continuous semigroup T(t) onH, B ∈ L(U,H).

We consider a control system inH given by (1.1) and the cost functional (1.2). We assume that (1.1) has a
unique solution for a givenuwhich is true, for example under the assumptions given in Section 1 (see [24, 36]).
Here Q := C∗Q̃C, G ∈ L(H), R ∈ L(U) are self-adjoint with Q̃ ⩾ 0, R > 0, G ⩾ 0 and xTf denotes x(⋅, Tf ).

We will say that a function u ∈ L2(0, Tf ;U) is an admissible control for the initial state x0 ∈ H if J(x0, u)
in (1.2) is finite. Let us consider the operator differential Riccati equation, then a solution of (1.4) in the interval
[0, Tf ] is an operator Π(t) such that Π(Tf ) = G and for all φ, ψ ∈ dom(A), ⟨φ, Π(⋅)ψ⟩ is differentiable in [0, Tf ]
and satisfies the equation,

d
dt
⟨φ, Π(t)ψ⟩ = −(⟨φ,Qψ⟩ + ⟨Aφ, Π(t)ψ⟩ + ⟨Π(t)φ,Aψ⟩

−⟨Π(t)BR−1B∗Π(t)φ, ψ⟩) (2.1)

as is defined in [18, Def. 2.1, p. 142]. Note that any solution of (1.4) is self-adjoint, and thatΠ(⋅) is nonnegative if
G is. In order to solve numerically the operator Riccati differential equation for practical problems, we have to
find suitable finite-dimensionapproximations to its solution. Therefore, letHN ,N = 1, 2 . . . , be a sequenceof
finite-dimensional linear subspaces ofH and PN : H→ HN be the canonical orthogonal projections. Assume
that TN(t) is a sequence of continuous semigroups on HN with infinitesimal generator AN ∈ L(HN). Given
operators BN ∈ L(U,HN), GN , QN ∈ L(HN), GN ⩾ 0, we consider the family of linear-quadratic regulator
problems onHN :

Minimize:

J(xN0 , u) :=
Tf

∫
0

⟨xN , QNxN⟩HN + ⟨u,Ru⟩U dt + ⟨xNTf , G
NxNTf ⟩HN .

with respect to
ẋN(t) = ANxN(t) + BNu(t), t > 0
xN(0) = xN0 := PNx0.

(RN)

(RN) is a linear regulator problem in the finite-dimensional state spaceHN . If QN ⩾ 0,R > 0, then the optimal
control for (RN) is given in feedback form by

uN∗ (t) = −R−1BN∗ΠN(t)xN∗ (t)
where ΠN(t) ∈ L(HN) is the unique nonnegative self-adjoint solution of the Riccati differential equation:

Π̇N(t) = −(QN + AN∗ΠN(t) + ΠN(t)AN − ΠN(t)BNR−1BN∗ΠN(t))
ΠN(Tf ) = GN

(2.2)

and xN∗ (t) is the corresponding solution of the state equation with u(t) = uN∗ (t), see [1].
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Let us now consider a related family of regulator problems, in which the operators are defined on the
whole space,

Minimize:

J(xN0 , u) :=
Tf

∫
0

⟨xN , Q̄NxN⟩H + ⟨u,Ru⟩U dt + ⟨xNTf , Ḡ
NxNTf ⟩H

with respect to
ẋN(t) = ĀNxN(t) + BNu(t), t > 0
xN(0) = xN0 := PNx0

(R̄N)

where ḠN := GNPN , Q̄N := QNPN , ĀN := ANPN onH. The problem (R̄N) is considered as a problem inH even
though we note that xN(t) ∈ HN for each t, so that Q̄NxN(t) = QNxN(t) and ḠNxN(tf ) = GNxN(tf ).

The optimal control is given in terms of the solution of

˙̄Π
N
(t) = −(Q̄N + ĀN∗Π̄N(t) + Π̄N(t)ĀN − Π̄N(t)BNR−1BN∗Π̄N(t))

Π̄N(Tf ) = ḠN .
(2.3)

Note that
Π̄N(t) = ΠN(t)PN . (2.4)

In fact, if in (2.2) we replace QN , AN , and GN by QNPN , ANPN , and GNPN , respectively, then it can be con-
sidered as an equation onH. Moreover, (2.3) and (2.2) are the same equation and ΠN(t)PN is an extension of
ΠN(t) ∈ L(HN) to the whole spaceH, so (2.4) holds.

The convergence result of this section follows from [27]. The difference here, similar to [5], is that each of
the finite-dimensional approximation problems are defined in a subspace of the state space, whereas in [27]
the approximation problems have to be defined in the entire state space. Then, the result is formulated using
(RN) rather than (R̄N). This avoids some technical difficulties as explained in [5].

We will assume, similar to [5, (H2)], for N →∞:

(i) For all φ ∈ H it holds that TN(t)PNφ → T(t)φ uniformly
on any bounded subinterval of [0, Tf ];

(ii) For all φ ∈ H it holds that TN(t)∗PNφ → T(t)∗φ uniformly
on any bounded subinterval of [0, Tf ];

(iii) For all v ∈ U it holds BNv → Bv and for all φ ∈ H it holds
that BN∗PNφ → B∗φ;

(iv) For all φ ∈ H it holds that QNPNφ → Qφ;
(v) For all φ ∈ H it holds that GNPNφ → Gφ.

(H)

Assumption (ii) implies that PNφ → φ for all φ ∈ H, in this sense the subspacesHN approximateH.

Theorem 2.1. Let (H) hold, then for N →∞

uN → u uniformly on [0, Tf ]
xN → x uniformly on [0, Tf ]

and for φ ∈ H,
ΠN(t)PNφ → Π(t)φ uniformly in t ∈ [0, Tf ]. (2.5)

Here uN , u, xN , x denote optimal controls and trajectories of the problems (RN) and the infinite dimensional
problem, respectively.

Proof. Let Π(t) be the unique element of B∞(0,Tf ;H,H), the set of all such functions essentially bounded
on [0, Tf ], which satisfies the Riccati integral equation,

Π(t)φ = T∗(Tf , t)GT(Tf , t)φ + Tf∫
t

T∗(η, t)[Q(η) − Π(η)B(η)R−1B∗(η)Π(η)]T(η, t)φ dη
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for t ∈ [0, Tf ] and φ ∈ H. By calculations in [27, pp. 544–546], Π(t) is also the unique solution of the Riccati
integral equation of Curtain and Pritchard [23]:

Π(t)φ = S∗(Tf , t)GS(Tf , t)φ + Tf∫
t

S∗(η, t)[Q(η) + Π(η)B(η)R−1B∗(η)Π(η)]S(η, t)φ dη
for t ∈ [0, Tf ] and φ ∈ H, where

S(t, s)φ = T(t, s)φ −
Tf

∫
t

T(t, η)B(η)R−1B∗(η)Π(η)S(η, t)φdη
for s, t ∈ [0, Tf ], 0 ⩽ s ⩽ t ⩽ Tf and φ ∈ H. Thus, Π(t) uniquely satisfies the infinite-dimensional Riccati
differential equation (2.1). Moreover, let Π̄N(t) be the Riccati operator related to the problem (R̄N). By (2.4),
the theorem is a direct consequence of the result proposed in [27, Theorem 5.1, p. 560].

We point out that it is possible to prove an analogue to Theorem 2.1 without the requirementHN ⊆ H. If we
assume that (H, ‖⋅‖), (HN , ‖⋅‖N) are Hilbert spaces (in generalHN ⊈ H), with T(t), TN(t) strongly continuous
semigroups onH andHN , respectively, and if we modify hypotheses (H), for N →∞, to:

(0) There exist bounded linear operators PN : H→ HN

satisfying 󵄩󵄩󵄩󵄩󵄩P
Nφ󵄩󵄩󵄩󵄩󵄩N →

󵄩󵄩󵄩󵄩φ
󵄩󵄩󵄩󵄩 for all φ ∈ H;

(i) There exist constants M, ω such that 󵄩󵄩󵄩󵄩󵄩T
N(t)󵄩󵄩󵄩󵄩󵄩N ⩽ Me

ωt

for all N and for each φ ∈ H, 󵄩󵄩󵄩󵄩󵄩T
N(t)PNφ − PNT(t)φ󵄩󵄩󵄩󵄩󵄩N → 0

as N →∞, uniformly on any bounded subinterval of [0, Tf ];
(ii) For all φ ∈ H it holds 󵄩󵄩󵄩󵄩󵄩T

N∗(t)PNφ − PNT∗(t)φ󵄩󵄩󵄩󵄩󵄩N → 0 as
N →∞, uniformly on any bounded subinterval of [0, Tf ];

(iii) For all v ∈ U, the operators B ∈ L(U,H), BN ∈ L(U,HN)
satisfy 󵄩󵄩󵄩󵄩󵄩B

Nv − PNBv󵄩󵄩󵄩󵄩󵄩N → 0 and for all φ ∈ H it holds
that 󵄩󵄩󵄩󵄩󵄩B

N∗PNφ − B∗φ󵄩󵄩󵄩󵄩󵄩U → 0;
(iv) There exist operators QN ∈ L(HN) with 󵄩󵄩󵄩󵄩󵄩Q

N󵄩󵄩󵄩󵄩󵄩N
N = 1, 2, . . . , bounded and for all φ ∈ H it holds that
󵄩󵄩󵄩󵄩󵄩Q

NPNφ − PNQφ󵄩󵄩󵄩󵄩󵄩N → 0;
(v) There exist operators GN ∈ L(HN) with 󵄩󵄩󵄩󵄩󵄩G

N󵄩󵄩󵄩󵄩󵄩N
N = 1, 2, . . . , bounded and for all φ ∈ H it holds that
󵄩󵄩󵄩󵄩󵄩G

NPNφ − PNGφ󵄩󵄩󵄩󵄩󵄩N → 0;
(vi) For all N, the operators QN , GN are nonnegative self-adjoint.

(H’)

Given these assumptions, we can state a similar result as in Theorem 2.1, where the convergence in (2.5) is
attained in norm, i.e.,

󵄩󵄩󵄩󵄩󵄩Π
N(t)PNφ − PNΠ(t)φ󵄩󵄩󵄩󵄩󵄩N → 0 uniformly in t ∈ [0, Tf ]. (2.6)

The proof of this result follows very close to the one of Theorem 2.1 once an analogue to [27, Theorem 5.1,
p. 560], which permits HN ⊈ H, has been proven. Note that [27, Theorem 5.1, p. 560] relies directly on [27,
Lemma 5.1, p. 560]. This lemma can be modified as follows.

Lemma 2.1. Let X be a Banach space, let {XN}N⩾2 be a sequence of Banach spaces and let PN : X → XN be
bounded linear operators satisfying Assumption (H’)(0). Let Ω be a compact subset of ℝn and let A(⋅) : Ω →
L(X), and for N ⩾ 2, let AN(⋅) : Ω → L(XN , X). Suppose that 󵄩󵄩󵄩󵄩AN(ξ)

󵄩󵄩󵄩󵄩 is uniformly bounded in N and ξ, and
that, for each x ∈ X, AN(ξ)PNx converges to PNA(ξ)x uniformly in ξ . Let g(⋅) : Ω → X be continuous and sup-
pose there is a sequence of functions gN(⋅) which converge uniformly to g(⋅). Then, the sequence {AN(⋅)PNgN(⋅)}
converges uniformly to PNA(⋅)g(⋅).
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Proof. Let ξ ∈ Ω and ‖ ⋅ ‖N a norm on XN . Note that

󵄩󵄩󵄩󵄩󵄩AN(ξ)P
NgN(ξ) − PNA(ξ)g(ξ)

󵄩󵄩󵄩󵄩󵄩N ⩽
󵄩󵄩󵄩󵄩󵄩AN(ξ)P

NgN(ξ) − AN(ξ)PNg(ξ)
󵄩󵄩󵄩󵄩󵄩N +
󵄩󵄩󵄩󵄩󵄩AN(ξ)P

Ng(ξ) − PNA(ξ)g(ξ)󵄩󵄩󵄩󵄩󵄩N
⩽ 󵄩󵄩󵄩󵄩AN(ξ)

󵄩󵄩󵄩󵄩
󵄩󵄩󵄩󵄩󵄩P

N󵄩󵄩󵄩󵄩󵄩
󵄩󵄩󵄩󵄩gN(ξ) − g(ξ)

󵄩󵄩󵄩󵄩X +
󵄩󵄩󵄩󵄩󵄩AN(ξ)P

Ng(ξ) − PNA(ξ)g(ξ)󵄩󵄩󵄩󵄩󵄩N

then, by the hypotheses assumed the lemma holds.

The repeated application of Lemma 2.1, and Lemma 5.1 [27, p. 560] allows also to prove an analogous result
for the non-autonomous case which permits HN ⊈ H. This version of the theorem could be very useful for
developing certain types of approximation schemes, e.g., finite differences or spectral methods.

2.2 Non-autonomous case

In this sectionwe extend the approximation results to the non-autonomous case, i.e., the case inwhichpartial
differential equations with time-varying coefficients are considered. Thus, the system dynamics is modeled
by an evolution operator.

LetH and U be real Hilbert spaces and consider an evolution process defined by

x(t) = U(t, s)x(s) +
t

∫
0

U(t, ν)B(ν)u(ν)dν (2.7)

where 0 ⩽ s ⩽ t ⩽ Tf < ∞, U(⋅, ⋅) is a strong evolution operator on H, u ∈ L2(0, Tf ;U), x0 ∈ H, and
B ∈ B∞(0, Tf ;H,H).

Note that (2.7) can be differentiated using

∂
∂t
⟨y, U(t, s)x⟩ = ⟨y,A(s)U(t, s)x⟩, x ∈ DA, y ∈ H, t > s

where A(⋅) is the generator of U(⋅, ⋅) andDA is the domain, in which U(⋅, ⋅) is a mild evolution family. We use
the integral form of (2.7) in our presentation following [23, 27]. We consider the cost functional

J(u, x0) =
Tf

∫
0

(⟨x(s),Q(s)x(s)⟩ + ⟨u(s),Ru(s)⟩)ds + ⟨x(Tf ),Gx(Tf )⟩

where x(t) is givenby (2.7),G ∈L(H) is self-adjoint andnonnegative,Q ∈ B∞(0,Tf ;H,H),R ∈ B∞(0,Tf ;U,U)
and for each t, Q(t), R(t) are nonnegative and self-adjoint and R(t) satisfies

⟨y,R(t)y⟩ ⩾ µ ‖y‖2 a.e. for some µ > 0.

Then, the quadratic cost problem is:

Find the optimal control u0 ∈ L2(T;U)
which minimizes J(u; t0, x0).

(NAR)

Again letHN , N = 1, 2 . . . , be a sequence of finite-dimensional linear subspaces ofH and PN : H → HN be
the corresponding canonical orthogonal projections. Assume that {UN(⋅, ⋅)} is a sequence of evolution oper-
ators onHN with generator AN(⋅) ∈ L(HN) and that {BN(⋅)}, {QN(⋅)}, {RN(⋅)}, and {GN} are sequences of oper-
ators in B∞(t0, T;U,HN), B∞(t0, T;HN ,HN), B∞(t0, T; U,U), and L(HN), respectively, with QN(⋅), RN(⋅),
and GN semidefinite and self-adjoint. As in the last section we consider the sequences of optimal control
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problems corresponding to these sequences of operators. Suppose that, for each φ ∈ H and v ∈ U,

(i) UN(t, s)PNφ → U(t, s)φ strongly, t0 ⩽ s ⩽ t ⩽ T
(ii) UN∗(t, s)PNφ → U∗(t, s)φ strongly, t0 ⩽ s ⩽ t ⩽ T
(iii) BN(t)v → B(t)v strongly a.e.,
(iv) BN∗(t)PNφ → B∗(t)φ strongly a.e.,
(v) QN(t)PNφ → Q(t)φ strongly a.e.,
(vi) RN(t)v → R(t)v strongly a.e.,
(vii) GNPNφ → Gφ strongly,

as N →∞.

(G’)

In addition we require
󵄩󵄩󵄩󵄩󵄩U

N(t, s)󵄩󵄩󵄩󵄩󵄩 ,
󵄩󵄩󵄩󵄩󵄩B

N󵄩󵄩󵄩󵄩󵄩B∞ , 󵄩󵄩󵄩󵄩󵄩QN󵄩󵄩󵄩󵄩󵄩B∞ , 󵄩󵄩󵄩󵄩󵄩RN󵄩󵄩󵄩󵄩󵄩B∞ , 󵄩󵄩󵄩󵄩󵄩GN󵄩󵄩󵄩󵄩󵄩 (G”)

to be uniformly bounded in N, t, and s and require a constant m such that for each N, QN(t) ⩾ m > 0 for
almost all t.

We call the previous assumptions (G’) and (G”) because they are a slight modification of the hypothesis
formulated by Gibson in [27]. Specifically, in (G’) the evolution operators corresponding to the approximating
problems are defined in subspaces of the original state space of the original problem, whereas in [27] they are
defined in the whole space.

As before the subspacesHN approximateH in the sense that PNφ → φ for all φ ∈ H.

Theorem 2.2. Let (G󸀠) and (G󸀠󸀠) hold. For our sequence of control problems, denote the initial states by xN(0),
and let xN(0) → x(0); denote the optimal controls by uN(⋅), the optimal trajectories by xN(⋅), and the solutions
of the differential Riccati equations by ΠN(⋅). For the problem (NAR), denote the corresponding quantities by
x(0), u(⋅), x(⋅), and Π(⋅). Then we have

uN(t) → u(t) strongly a.e. and in L2(0, Tf ;U)
xN(t) → x(t) strongly pointwise and in L2(0, Tf ;H)

(2.8)

and for φ ∈ H,
ΠN(t)PNφ → Π(t)φ strongly pointwise and in L2(0, Tf ;H). (2.9)

If U(⋅, ⋅) is strongly continuous and B(⋅), B∗(⋅), Q(⋅), and R(⋅) are piecewise strongly continuous, uniform conver-
gence in (G󸀠) implies uniform convergence in (2.8)–(2.9).

Proof. As for the autonomous case the sequence of control problems are defined in subspaces of the original
state space similar to (RN). Let us denote these problems as (NARN). If we consider a related family of control
problems (NARN) which are defined in the whole space analogous to (R̄N), and assuming similar arguments
on Π(t) to the ones in the proof of Theorem 2.1, the proof of Theorem 2.2 follows directly from [27, Theorem
5.1, p. 560].

Like in the autonomous case, it is possible to prove an analogue to Theorem 2.2 without the requirement
HN ⊆ H. Let us assume that (H, ‖⋅‖), (HN , ‖s⋅‖N) areHilbert spaces (in generalHN ⊈ H), withU(t, s),UN(t, s)
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8 | P. Benner and H. Mena, Numerical solution of the infinite-dimensional LQR problem

strongly continuous evolution operators onH andHN , respectively. For this, we modify (G’) to:

(0) There exist bounded linear operators PN : H→ HN

satisfying 󵄩󵄩󵄩󵄩󵄩P
Nφ󵄩󵄩󵄩󵄩󵄩N →

󵄩󵄩󵄩󵄩φ
󵄩󵄩󵄩󵄩 for all φ ∈ H;

(i) There exist M, ω such that 󵄩󵄩󵄩󵄩󵄩U
N(t, s)󵄩󵄩󵄩󵄩󵄩N ⩽ Me

ω(t−s), t ⩾ s
for all N and for each φ ∈ H, 󵄩󵄩󵄩󵄩󵄩U(t, s)

NPNφ − PNU(t, s)φ󵄩󵄩󵄩󵄩󵄩N → 0
as N →∞, uniformly on any bounded subinterval of [0, Tf ];

(ii) For all φ ∈ H it holds 󵄩󵄩󵄩󵄩󵄩U
N∗(t, s)PNφ − PNU∗(t, s)φ󵄩󵄩󵄩󵄩󵄩N → 0 as

N →∞, uniformly on any bounded subinterval of [0, Tf ];
(iii) For all v ∈ U, the operators B ∈ L(U,H), BN ∈ L(U,HN)

satisfy 󵄩󵄩󵄩󵄩󵄩B
Nv − PNBv󵄩󵄩󵄩󵄩󵄩N → 0 and for all φ ∈ H it holds

that 󵄩󵄩󵄩󵄩󵄩B
N∗PNφ − B∗φ󵄩󵄩󵄩󵄩󵄩U → 0;

(iv) There exist operators QN ∈ L(HN) with 󵄩󵄩󵄩󵄩󵄩Q
N󵄩󵄩󵄩󵄩󵄩N

N = 1, 2, . . . , bounded and for all φ ∈ H it holds that
󵄩󵄩󵄩󵄩󵄩Q

NPNφ − PNQφ󵄩󵄩󵄩󵄩󵄩N → 0;
(v) There exist operators GN ∈ L(HN) with 󵄩󵄩󵄩󵄩󵄩G

N󵄩󵄩󵄩󵄩󵄩N
N = 1, 2, . . . , bounded and for all φ ∈ H it holds that
󵄩󵄩󵄩󵄩󵄩G

NPNφ − PNGφ󵄩󵄩󵄩󵄩󵄩N → 0;
(vi) For all N, the operators QN , GN are nonnegative self-adjoint.

We can state a similar result as in Theorem 2.2, where the convergence is attained in norm. As in the previous
section this can be proved as a consequence of the repeated application of Lemma 2.1 and Lemma 5.1 [27, p.
560].

Remark 2.1. The results in this subsection are particularly useful solving nonlinear problems in model pre-
dictive control and receding horizon context. There the LQG approach is applied to a linearization around a
reference trajectory. This requires the solution of RDEs, in which the coefficient matrices are time dependent
[7–9, 30, 32].

Remark 2.2. Note that the solution of the RDE is suboptimal in terms of the optimal cost which is of interest
in applications. The optimal cost for the infinite ̄J and finite dimensional ̄JN control problems, can be found
as

̄J(x, u) = x0∗Π(0)x0, ̄JN(x, u) = xN0
∗ΠN(0)xN0 . (2.10)

With an established convergence scheme, we will now discuss the numerical solution of finite-dimensional
RDEs arising from the semi-discretizations obtained from the Galerkin projection framework. In the calcula-
tions shown later in Section 5, the Galerkin projections are obtained by using linear finite elements.

3 Numerical methods for large-scale RDEs
Although the RDEs have to be solved backward in time, making a change of variables we can solve RDEs
forward in time and afterwards recover the original solution. Thus, let us consider time-varying symmetric
RDEs of the form

Ẋ(t) = Q(t) + X(t)A(t) + AT(t)X(t) − X(t)S(t)X(t)
X(t0) = X0

(3.1)

where t ∈ [t0, tf ] and Q(t), A(t), S(t), ∈ ℝn×n, X(t) ∈ ℝm×n. We assume that the coefficient matrices are
piecewise continuous locally bounded matrix-valued functions, which ensure existence of the solution and
uniqueness of (3.1), see, e.g., [1, Theorem 4.1.6].

Note also that using FEM, we obtain an linear system of the form

Mẋ = −Sx + Bu
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whereM is the positive definite mass matrix and S is the stiffness matrix corresponding to the FEM applied to
the spatial differential operator. In many situations, S is symmetric positive definite and hence, A := −M−1S
is stable, also A := −M−1B. But of course, in computations we avoid forming A explicitly since A is usually a
dense matrix. There are several approaches that can be used to treat this problem [6].

3.1 BDF methods

In the following we briefly describe the BDF methods for RDEs in matrix-valued form similar to [22, 25] and
discuss an efficient implementation for large-scale problems following [13]. Let us define

F(t, X(t)) ≡ Q(t) + X(t)A(t) + AT(t)X(t) − X(t)S(t)X(t). (3.2)

The fixed-coefficients BDF methods applied to the RDE (3.1) yield

Xk+1 = p
∑
j=1−αj+1Xk−j + hβF(tk+1, Xk+1)

where h is the step size, tk+1 = h + tk, Xk+1 ≈ X(tk+1) and αj, β are the coefficients for the p-step BDF formula
(see, e.g., [4]). Hence, noting Qk+1 ≈ Q(tk+1), Ak+1 ≈ A(tk+1), Sk+1 ≈ S(tk+1), we obtain the Riccati-BDF
difference equation

−Xk+1 + hβ(Qk+1 + ATk+1Xk+1 + Xk+1Ak+1 − Xk+1Sk+1Xk+1) − p
∑
j=1 αj+1Xk−j = 0.

Re-arranging terms, we see that this is an algebraic Riccati equation (ARE) for Xk+1,
(hβQk+1 − ∑p−1j=0 αjXk−j) + (hβAk+1 − 1

2 I)
T
Xk+1

+ Xk+1(hβAk+1 − 1
2 I) − Xk+1(hβSk+1)Xk+1 = 0 (3.3)

that can be solved via anymethod for AREs. In large-scale applications it is not possible to construct explicitly
the matrices Xk, because they are in general dense. However, Xk is usually of low numerical rank [2, 28, 40,
45], i.e., it can be well approximated by a low-rank factor Zk with zk ≪ n for all times. Moreover, usually Qk
and Sk can also be represented in factored form. Thus, assuming that

Qk = CTk Ck , Ck ∈ ℝp×n
Sk = BkBTk , Bk ∈ ℝn×m (3.4)
Xk = ZkZTk , Zk ∈ ℝn×zk

the ARE (3.3) can be written as

ĈTk+1Ĉk+1 + ÂTk+1Zk+1ZTk+1 + Zk+1ZTk+1Âk+1 − Zk+1ZTk+1B̂k+1B̂Tk+1Zk+1ZTk+1 = 0 (3.5)

where

Âk+1 = hβAk+1 − 12 I
B̂k+1 = √hβBk+1
ĈTk+1 = [√hβCTk+1,√−α1Zk , . . . ,√−αpZk+1−p] .

If zk ≪ n for all times and (3.5) can be solved efficiently by exploiting sparsity in Ak+1 as well as the low-
rank nature of the constant and quadratic terms, this can serve as the basis for a RDE solver for large-scale
problems.
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10 | P. Benner and H. Mena, Numerical solution of the infinite-dimensional LQR problem

In ournumerical implementation,webenefit from recent algorithmic progress in solving large-scaleAREs
and Lyapunov equations [10, 11]. There the main idea is to solve AREs using Newton’s method as a one step
iteration. It results in solving one Lyapunov equation in each step. The structure of the coefficient matrix in
this equation has the form ‘sparse + low-rank perturbation’. So, we need a solver, which exploits efficiently
this structure. For a detailed explanation about the implementation of the BDFmethods for large-scale RDEs
we refer the reader to [13] and references therein.

3.1.1 Lyapunov equation solver

Efficient numerical methods for solving large and sparse Lyapunov equations have been proposed in recent
years. A common approach is based on the low-rank alternating direction implicit (ADI) iteration [11, 37, 39].
In our implementation we use recent advances of ADI based solvers [10, 11]. The low-rank representation of
the solution relies on the decay of the singular values. This phenomenon has been deeply studied and it is
frequent in applications [2, 28, 40, 45]. Methods based on extended and rational Krylov subspace have also
proved to be practical alternatives [47], however, we do not consider this approach here. A state-of-the-art
survey of the methods is presented in [17].

3.1.2 Adaptive step size and order control

For varying the step size and order, an estimate of the error is needed. The local truncation error for the BDF
methods can be written as:

hkω̇k(tk)[xk , xk−1, . . . , xk−p] (3.6)

where ωk(t) = ∏
p
i=0(t − tk−i), and [xk , xk−1, . . . , xk−p] represents the divided differences, then

ω̇k(tk) =
p
∏
i=1(tk − tk−i) = p

∏
i=1(h + ψi−1(k))

for ψj(k) := tk − tk−j, see [26]. This allow us to compute the error directly for low-rank factors of the solution
of the RDEs, see Algorithm 3.3.

Note that, in addition the solution values at past times on an equidistant mesh are needed. For the BDF
methods we can approximate these values using an interpolating polynomial described by Neville’s algo-
rithm, which in matrix valued form can be expressed as in Algorithm 3.1.

Algorithm 3.1 Neville’s algorithm
Require: {(ti , Xi)}0⩽i⩽n, ti ∈ I ⊂ ℝ, Xi ≈ X(ti) ∈ ℝn×n.
1: Ti,o := Xi , 0 ⩽ i ⩽ n.

2: Ti,k :=
(t − ti−k)Ti,k−1 − (t − ti)Ti−1,k−1

ti − ti−k , 0 ⩽ i < k ⩽ n.

Assuming that
Xi = ZiZTi , Zi ∈ ℝn×zi
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we get

Zi,kZTi,k :=
(t − ti−k)Zi,k−1ZTi,k−1 − (t − ti)Zi−1,k−1ZTi−1,k−1

ti − ti−k
= [√

t − ti−k
ti − ti−k Zi,k−1 √ t − ti

ti−k − ti Zi−1,k−1]
×[√

t − ti−k
ti − ti−k Zi,k−1 √ t − ti

ti−k − ti Zi−1,k−1]T
so that

Zi,k = [√
t − ti−k
ti − ti−k Zi,k−1 √ t − ti

ti−k − ti Zi−1,k−1].
Hence Algorithm 3.1 can be written in terms of the low-rank factors LRFs (see Algorithm 3.2).

Algorithm 3.2 LRF Neville’s algorithm
Require: {(ti , Zi)}0⩽i⩽n, ti ∈ I ⊂ ℝ and Zi ≈ Z(ti) ∈ ℝn×zi .
1: Zi,o := Zi , 0 ⩽ i ⩽ n.
2: Zi,k := [√ t−ti−kti−ti−k Zi,k−1 √ t−ti

ti−k−ti Zi−1,k−1], 0 ⩽ i < k ⩽ n.

Since the size of Zi,k increases in every step, the computation becomes expensive. We can avoid the re-
cursion formula expressing the final value given by the algorithm like

Zk,k = [√λ0Z0,0 √λ1Z1,0 . . . √λkZk,0] .

For instance, if we consider {(ti , Zi)}1⩽i⩽2, then
Z2,2 = [√α220α110Z0,0 √−(α020α221 + α220α010)Z1,0 √α020α121Z2,0]

where
αijk =

t − ti
tj − tk

, i, j, k = 0, 1, 2.

Algorithm 3.2 will in general generate complex factors. However, we can still get real factors as solutions of
the RDE in every step rewriting

Zk,k = [Zp ıZn]

where Zp and Zn are formed by grouping the positive and negative λ’s, respectively, and computing the op-
erations involving Zk,k separately for Zp and Zn, i.e., never forming Zk,k explicitly.

Once the solution values at past times are approximated,we are ready to apply step size andorder control.
For this we need to compute local error estimators, this can be done using (3.6) and computing the divided
differences directly for the factors, see Algorithm 3.3.

Algorithm 3.3 LRF divided differences
Require: {(ti , Zi)}0⩽i⩽n, ti ∈ I ⊂ ℝ and Zi ≈ Z(ti) ∈ ℝn×zi .
1: Zi,o := Zi , 0 ⩽ i ⩽ 0.
2: Zi,k := [√ 1

ti−ti−k Zi,k−1 √ 1
ti−k−ti Zi−1,k−1], 0 ⩽ i < k ⩽ 0.

Analogous to Algorithm 3.2, Algorithm 3.3 can be implemented avoiding the recursive formula. Moreover,
it generates, in general, complex factors which is not a problem here, because we are interested in the norm
of the resulting factor to estimate the local truncation error using (3.6).
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12 | P. Benner and H. Mena, Numerical solution of the infinite-dimensional LQR problem

Another option to efficiently implement an adaptive algorithm is to consider a variable-coefficient for-
mula of the method. Thus, changing the step size and order of the method is performed as for the one step
methods for solving ODEs.

3.1.3 Variable-coeflcient BDF methods

By using the variable-coefficient BDF methods (3.7), we avoid to compute the solution values at past times
on an equidistant mesh. The application of this method to (3.1) yields an equation similar to (3.5) in which
Âk+1, B̂k+1 and Ĉk+1 depend on α̃i(hn , hn−1, . . . , hn−k+1), β̃(hn , hn−1, . . . , hn−k+1). The computation of these
coefficients is cheap and does not outweigh the iteration.

Working onunequally spacedmeshes,we canderive the variable-coefficient BDFby rewriting themethod
as a general multistep like

p
∑
i=0 α̃ixk−i = hk β̃f(tk , xk) (3.7)

where the coefficients α̃i, β̃ depend on the p − 1 past steps, i.e.

α̃i = α̃i(hk , hk−1, . . . , hk−p+1), β̃ = β̃(hk , hk−1, . . . , hk−p+1).
The variable coefficients for the second and third order BDF methods can be found in [38, p. 50].

3.2 Rosenbrock methods

Linearmulti-stepmethods require fewer function evaluations per step than one stepmethods, and they allow
a more simple streamlined method design from the point of view of order and error estimation. However,
the associated overhead is higher, e.g., for changing the step size. Runge–Kutta methods work well for the
numerical solution of ODEs that are non-stiff. When stiffness becomes an issue: diagonally implicit Runge–
Kutta methods or collocationmethods offer an alternative to the BDFmethods. In particular, linearly implicit
one-step methods (better known as Rosenbrock methods) give satisfactory results [21, 29]. The idea of these
methods can be interpreted as the application of one Newton iteration to each stage of an implicit Runge–
Kutta method and the derivation of stable formulae by working with the Jacobian matrix directly within the
integration formulae. In the following we focus on solving autonomous RDEs by an efficient implementation
of Rosenbrock methods based on a low-rank version of the ADI iteration. We describe the linearly implicit
Euler method and the second order method, the main ideas can be straightforwardly applied to higher order
Rosenbrock methods.

3.2.1 Linearly implicit Euler method

The one-stage Rosenbrock method applied, as a matrix valued algorithm, to autonomous RDEs of the form
(3.1) can be written as

ĀTkK1 + K1Āk = −F(Xk) − hFtk
Xk+1 = Xk + K1 (3.8)

where Āk = Ak − RkXk − 1
2h I and F are defined as in (3.2). Moreover, (3.8) can be re-written such that the next

iterate is computed directly from the Lyapunov equation, i.e.,

ĀTk Xk+1 + Xk+1Āk = −Q − XkSXk − 1h Xk . (3.9)
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The right-hand side of (3.9) is simpler to evaluate than the one in (3.8), so the implementation of (3.9) is more
efficient [15]. If we assume,

Q = CTC, C ∈ ℝp×n
S = BBT , B ∈ ℝn×m (3.10)
Xk = ZkZTk , Zk ∈ ℝn×zk

with p, m, zk ≪ n and denoting Nk = [ CT Zk(ZTk B) √h−1Zk ], then the Lyapunov equation (3.9) results in
ĀTk Xk+1 + Xk+1Āk = −NkNTk (3.11)

where Āk = A−B(Zk(ZTk B))
T − 1

2h I. Observing that rank(Nk) ⩽ p+m+zk ≪ n, we can use themodified version
of the ADI iteration to solve (3.11). This will ensure low-rank factors Zk+1, of Xk+1, such that Xk+1 ≈ Zk+1ZTk+1,
where Zk+1 ∈ ℝn×zk+1 with zk+1 ≪ n. For an equidistant mesh the latter is sketched in Algorithm 3.4.

Algorithm 3.4 LRF linearly implicit Euler method
Require: A ∈ ℝn×n, B, C, Z0 satisfying (3.10), t ∈ [a, b], and h step size.
Ensure: (Zk , tk) such that Xk ≈ ZkZTk , Zk ∈ ℝ

n×zi with zi ≪ n.
1: t0 = a.
2: for k = 0 to ⌈ b−ah ⌉ do
3: Āk = A − B(Zk(ZTk B))

T − 1
2h I.

4: Nk = [ CT Zk(ZTk B) √h−1Zk ].
5: Determine (sub)optimal ADI shift parameters p1, p2, . . . with respect to the matrix Āk.
6: Compute Zk+1 such that the low-rank factor product Zk+1ZTk+1 approximates the solution of

ĀTk Xk+1 + Xk+1Āk = −NkNTk .
7: tk+1 = tk + h.
8: end for

3.2.2 Rosenbrock method of the second order

Let us now turn our attention to the second order method originally proposed in [20]. There, the method is
applied to atmospheric dispersion problems describing photochemistry, advective, and turbulent diffusive
transport. As explained in [15], the method can be efficiently implemented for solving autonomous RDEs as:

Xk+1 = Xk + 32hK1 + 12hK2 (3.12)

ĀTkK1 + K1Āk = −F(Xk) (3.13)

ĀTkK21 + K21Āk = −h
2K1SK1 + (

1
hγ
+ 2)K1 (3.14)

K2 = K21 + (1 − h)K1 (3.15)

where Āk = A − SXk − 1
2hγ I and γ is a parameter which can be chosen as 1. Moreover, note that (3.12) and

(3.15) can be computed directly as one step iteration like

Xk+1 = Xk + (2h + h22 )
K1 +

1
2
hK21 (3.16)

As for the linearly implicit Euler method, we want to apply the ADI iteration to solve the Lyapunov equations
(3.13) and (3.14). Once again let us assume (3.10) and note that,

ATZkZTk + ZkZ
T
k A = A

TZk(ZTk A + Z
T
k ) + Zk(Z

T
k A + Z

T
k ) − A

TZkZTk A − ZkZ
T
k

= (ATZk + Zk)(ZTk A + Z
T
k ) − A

TZkZTk A − ZkZ
T
k

= (ATZk + Zk)(ATZk + Zk)T − [ ATZk Zk ][ ATZk Zk ]T .

Brought to you by | Max Planck eBooks
Authenticated

Download Date | 3/14/18 10:21 AM



14 | P. Benner and H. Mena, Numerical solution of the infinite-dimensional LQR problem

Algorithm 3.5 LRF Rosenbrock method of the second order
Require: A ∈ ℝn×n, B, C, Z0 satisfying (3.10), t ∈ [a, b], and step size h.
Ensure: (Zk , tk) such that Xk ≈ ZkZTk , Zk ∈ ℝ

n×zi with zi ≪ n.
1: t0 = a.
2: for k = 0 to ⌈ b−ah ⌉ do
3: Āk = A − SXk − 1

2hγ I.
4: Determine (sub)optimal ADI shift parameters p1, p2, . . . with respect to the matrix Āk.
5: Uk = [ CT ATZk + Zk ].
6: Compute T̃k1 such that the low-rank factor product T̃

k
1(T̃

k
1)
T approximates the solution of

ĀTk K̃1 + K̃1Āk = −UkU
T
k .

7: Nk = [ ATZk Zk Zk(ZTk B) ].
8: Compute T̂k1 such that the low-rank factor product T̂

k
1(T̂

k
1)
T approximates the solution of

ĀTk K̂1 + K̂1Āk = −NkN
T
k .

9: T1k = [ T̃
k
1 iT̂

k
1 ].

10: N̄k = [ CT hT1k ((T
1
k )
TB) i√ 1

hγ + 2 T
1
k ].

11: Compute T2k such that the low-rank factor product T
2
k (T

2
k )
T approximates the solution of

ĀTk K̂21 + K̂21Āk = −N̄kN̄
T
k .

12: Zk+1 = [ Zk √2h+h22 T1k √
1
2hT

2
k ].

13: tk+1 = tk + h.
14: end for

Denoting Uk = [ CT ATZk + Zk ] and Nk = [ ATZk Zk Zk(ZTk B) ] then,

F(Xk) = UkUTk − NkN
T
k (3.17)

thus, in order to solve (3.13) we can split the Lyapunov equation. The second equation (3.14) is solved using
the factored form, for the right-hand side,

N̄k = [ CT hT1k ((T
1
k )
TB) i√ 1

hγ
+ 2 T1k ]

where K1 = T1k (T
1
k )
T , i.e., T1k represents the low-rank factor of K1 in step k. The method is sketched in Al-

gorithm 3.5. There, Steps 6 and 8 can be computed simultaneously by the factored ADI iteration as a linear
systems of equations to be solved in each step that have the same coefficient matrices.

Remark 3.1. The computation of Algorithm3.5 is performed in complex arithmetics (Steps 9 and 10 computed
complex factors). It is possible to keep the computation in real arithmetics such that the method works only
with factors of the form (T̂k , T̃k) which approximate the solution Xk ≈ Z0ZT0 + h(T̂k T̂

T
k − T̃k T̃

T
k ). However,

the number of columns increases considerably in each step and the ADI iteration slows down [38]. A remedy
for this problem was recently suggested in [34], where instead of a low-rank Cholesky-like factorization, a
low-rank LDLT factorization is employed.

Remark 3.2. Anadaptive code in terms of the low-rank factors can be easily implemented taking into account
that the first stage of the method could be used to estimate the error and changing the step size.

3.2.3 The non-autonomous case

The ideas described above can be extended to the non-autonomous case. In this case, ∂F/∂t appears, so in
order to obtain a low-rank version of the method this term, or an approximation of it, has to be represented
as a low-rank matrix product combination.
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If we approximate the derivatives involved in Ftk , e.g., using central differences as:

Q̇k :=
Qk+1 − Qk−1

2h
, Ȧk :=

Ak+1 − Ak−1
2h

, Ṡk :=
Sk+1 − Sk−1

2h

(note that, in the context of RDEs arising in optimal control thematrix Q(t) is generally constant, it represents
the output matrix), then Ftk can be approximated by

Ftk ≈
1
2h [
(Qk+1 − Qk−1) + 2hATk F(Xk) + (ATk+1 − ATk−1)Xk + 2hF(Xk)Ak + Xk(Ak+1
− Ak−1) − 2hF(Xk)SkXk − Xk(Sk+1 − Sk−1)Xk − 2hXkSkF(Xk)]. (3.18)

By (3.17) we know that F(Xk) can be expressed as a combination of low-rank factor matrix products, then
by re-arranging terms we can obtain a low-rank matrix representation of (3.18). Finally, we point out that
although we have focused on two particular Rosenbrock methods the ideas can be applied to a general s-
stage Rosenbrock method or to an embedded method described in [15].

4 Numerical results

4.1 Diffusion problem

We consider a diffusion problem on a square domain (see Fig. 2). The equations that describe the model have
the form

ϱxt(ξ, t) = ∆x(ξ, t) in Ω × (0, T)
∂νx(ξ, t) = b(ξ)u(t) − x(ξ, t) on Γc
∂νx(ξ, t) = −x(ξ, t) on ∂Ω\Γc
x(ξ, 0) = 1 in Ω

(4.1)

where x(ξ, t) represent the state at time t in the point ξ , b(ξ) = 4(1−ξ)ξ for ξ ∈ Γc and0otherwise. Thus, for all
t ∈ ℝ+, we have u(t) ∈ ℝ. The problem parameters chosen can be found in Table 2. There, n is the dimension,
Q, R, G are the operators from the finite-dimensional LQR problem, h is the step size (or the initial step size)
and Tf is the time horizon.

We use the finite element software package FEINS [46] to generate the data for different mesh sizes, n =
289, 1089, 4225, 16641, 66049. In Fig. 1, the initial and controlled (at 0.01s) states are plotted. We applied
the BDF method up to order three with variable step size for n = 289, 1089; and for the refined meshes
n = 4225, 16641, 66049, the linearly implicit Euler method was applied.

In Table 1 the cost functional values, computed by (2.10), are shown. These values are plotted over the
mesh size in Fig. 3.

We can visualize the convergence result from Section 2.1 as the cost functional values are computed by
(2.10). But, we have not sufficiently many refinements at hand to provide a reasonable estimate of the conver-
gence rate based on the the experimental order of convergence (EOC).

n Boundary n Diffusion

371 9.1375e+7 289 1.2881034e-1
1357 5.0823e+7 1089 1.1592931e-1
5177 4.0613e+7 4225 1.1478002e-1
20209 3.9508e+7 16641 1.1476854e-1
79841 3.9506e+7 66049 1.1476848e-1

Tab. 1: Cost functional values for the boundary control problem and the
diffusion problem.
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Fig. 1: Diffusion problem on a square domain: initial state (left) and controlled state at time 0.01 (right).
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Fig. 2: Domain diffusion problem (left) and boundary control problem (right).

4.2 Boundary control problem

Let us consider a boundary control problem for the heat equation. This problem arises in a rolling mill when
different steps in the production process require different temperatures of the rawmaterial. An infinitely long
steel profile is assumed so that a 2-dimensional heat diffusion process is considered. Exploiting the symmetry
of theworkpiece, an artificial boundary Γ0 is introduced on the symmetry axis (see Fig. 2). A linearized version
of the model has the form

cϱxt(ξ, t) = λ∆x(ξ, t) in Ω × (0, T)
−λ∂νx(ξ, t) = gi(t, x, u) on Γi , i = 0, . . . , 7

x(ξ, 0) = x0(ξ) in Ω
(4.2)

Test n Q R G Tf h

1 289 I I 0 1 1e-3
2 1089 I I 0 1 1e-3
3 4225 I I 0 1 1e-3
4 16641 I I 0 1 1e-3
5 66049 I I 0 1 1e-3

Tab. 2: Control parameters for the diffusion problem.
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Test n Q R G Tf h

1 371 I I 0 20 1e-2
2 1357 I I 0 20 1e-2
3 5177 I I 0 20 1e-2
4 20209 I I 0 20 1e-2
5 79841 I I 0 20 1e-2

Tab. 3: Parameters for the boundary control problem.

Fig. 3: Cost functional values for different mesh sizes for the boundary control problem (left) and the diffusion problem (right)

where x(ξ, t) represent the temperature at time t in point ξ , gi includes temperature differences between
cooling fluid and profile surface, intensity parameters for the cooling nozzles and heat transfer coefficients
modeling the heat transfer to cooling fluid [12, 44, 48].

We applied the BDF method up to order three with variable step size for n = 371, 1357; and for the
refined meshes n = 5177, 20209, 79841, the Rosenbrock method of order one was applied.

The problem parameters chosen can be found in Table 3. There, n is the dimension, Q, R, G are the
operators from the finite-dimensional LQR problem, h is the temporal step size (or the initial step size) and
Tf is the time horizon.

In Table 1 the cost functional values, computed by (2.10), are shown. These values are plotted over the
mesh size in Fig. 3.We also computed the EOCbased on these numbers, like in a similar numerical experiment
performed in [16]. The obtained numbers aremuch better than expected from themesh refinement (bisection)
and do not settle to a value, but keep increasing. As we only have five mesh instances reported here, we
refrain from reporting the numbers here as they give no indication of the actual convergence rate of the cost
functional.

4.3 Convection–diffusion problem

We consider a finite differences semi-discretized heat equation with convection on the unit square with ho-
mogeneous first kind boundary conditions,

xt(ξ, t) − v ⋅ ∇x(ξ, t) − ∆x(ξ, t) = f(ξ)u(t) in Ω × (0, T) (4.3)

where x(ξ, t) represent the state at time t in the point ξ , Ω := (0, 1) × (0, 1) and the vector v is chosen as
v = [10 100]T . This problem is used in LyaPack demonstration scripts [41].

We applied the BDF method up to order three with variable step size for n = 1600, 2500 and for the
refined meshes n = 3600, 4900, 6400, 10000, 40000 the Rosenbrock method of order one was applied. In
Table 4 the cost functional values, computed by (2.10), are shown. These values are plotted over the mesh
size in Fig. 4. Once again we can visualize the convergence result from Section 2.1.
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n Convection–diffusion

1600 1.43730e+5
2500 1.42300e+5
3600 1.40900e+5
4900 1.28090e+5
6400 0.62760e+5
10000 0.60820e+5
40000 0.60810e+5

Tab. 4: Cost functional values for the convection–diffusion problem.

Fig. 4: Cost functional values for different mesh sizes for the
convection–diffusion problem.

5 Conclusions
The numerical treatment of linear quadratic regulator problems for parabolic partial differential equations
on a finite-time horizon requires solving large-scale RDEs resulting from semi-discretization. In order to pro-
vide an approximation framework for the computation of the finite-dimensional Riccati equations, we have
shown the convergence of the infinite-dimensional Riccati operators to the finite-dimensional ones for the
(non)autonomous case. Typically the coefficient matrices of the resulting RDE there have a given structure,
e.g., sparse, symmetric, low-rank. We develop efficient numerical methods capable of exploiting this struc-
ture based on matrix-valued versions of the BDF and Rosenbrock methods. The implementation uses a low-
rankADI iteration for solving the Lyapunov equations arising in themethods. The crucial question of suitable
step-size and order selection strategies is also addressed in terms of the low-rank factors of the solution. The
numerical experiments confirm the good performance of the proposed methods and show their potential for
being used in large-scale problems.

Acknowledgment: We thank Jens Saak for providing the first example. We also would like to thank the refer-
ees for their valuable comments. They greatly helped to improve this manuscript.

References
[1] H. Abou-Kandil, G. Freiling, V. Ionescu, and G. Jank,Matrix Riccati Equations in Control and Systems Theory, Birkhäuser,

Basel, Switzerland, 2003.
[2] A. C. Antoulas, D. C. Sorensen, and Y. Zhou, On the decay rate of Hankel singular values and related issues, Syst. Contr.

Lett. 46 (2000), No. 5, 323–342.
[3] E. Arias, V. Hernández, J. Ibanes, and J. Peinado, A family of BDF algorithms for solving Differential Matrix Riccati Equations

using adaptive techniques, Procedia Computer Science 1 (2010), No. 1, 2569–2577.
[4] U. M. Ascher and L. R. Petzold, Computer Methods for Ordinary Differential Equations and Differential-Algebraic Equa-

tions, PA, SIAM, Philadelphia, 1998.
[5] H. T. Banks and K. Kunisch, The linear regulator problem for parabolic systems, SIAM J. Cont. Optim. 22 (1984), 684–698.
[6] P. Benner, Solving large-scale control problems, IEEE Control Systems Magazine 14 (2004), No. 1, 44–59.

Brought to you by | Max Planck eBooks
Authenticated

Download Date | 3/14/18 10:21 AM



P. Benner and H. Mena, Numerical solution of the infinite-dimensional LQR problem | 19

[7] P. Benner and S. Hein, Model predictive control for nonlinear parabolic differential equations based on a linear quadratic
Gaussian design, In: Proc. in Applied Mathematics and Mechanics, 9, pp. 613–614, 2009.

[8] P. Benner and S. Hein,Model Predictive Control Based on an LQG Design for Time-Varying Linearizations, Chemnitz Scien-
tific Computing Preprints, Report No. 09-07, TU Chemnitz (Germany), 2010.

[9] P. Benner and S. Hein, MPC/LQG for infinite-dimensional systems using time-invariant linearizations, In: System Modeling
and Optimization. 25th IFIP TC 7 Conference, Berlin, Germany, September 12-16, 391, pp. 217–224, IFIP AICT, 2011.

[10] P. Benner, P. Kürschner, and J. Saak, Eflcient handling of complex shift parameters in the low-rank cholesky factor ADI
method, Numerical Algorithms 62 (2012), No. 2, 225–251.

[11] P. Benner, J. R. Li, and T. Penzl, Numerical solution of large Lyapunov equations, Riccati equations, and linear-quadratic
control problems, Numer. Lin. Alg. Appl. 15 (2008), No. 9, 755–777.

[12] P. Benner, V.Mehrmann, and D. Sorensen (eds.), Dimension Reduction of Large-Scale Systems, Lecture Notes in Computa-
tional Science and Engineering 45, Springer-Verlag, Berlin/Heidelberg, Germany, 2005.

[13] P. Benner and H.Mena, BDF methods for large-scale differential Riccati equations, In: Proc. of Mathematical Theory of
Network and Systems, MTNS 2004 (Eds. B. DeMoor, B.Motmans, J.Willems, P. VanDooren, and V. Blondel), 2004.

[14] P. Benner and H.Mena, Numerical Solution of the Infinite-Dimensional LQR-Problem and the Associated Differential Riccati
Equations, Max Planck Institute Magdeburg, Preprint No.MPIMD/12-13, August 2012, Available from http://www.mpi-
magdeburg.mpg.de/preprints/.

[15] P. Benner and H.Mena, Rosenbrock methods for solving differential Riccati equations, IEEE Trans. Automat. Control 58
(2013), No. 11, 2950–2957.

[16] P. Benner and J. Saak, Suboptimality estimates for the semi-discretized LQR probelm for parabolic PDEs, In: Proc. in Ap-
plied Mathematics and Mechanics, 10, pp. 591–592, 2010.

[17] P. Benner and J. Saak, Numerical solution of large and sparse continuous time algebraic matrix Riccati and Lyapunov equa-
tions: a state of the art survey, GAMMMitteilungen 36 (2013), No. 1, 32–52.

[18] A. Bensoussan, G. Da Prato, M. C. Delfour, and S. K.Mitter, Representation and Control of Infinite Dimensional Systems,
Volume I, Systems & Control: Foundations & Applications, Birkäuser, Boston–Basel–Berlin, 1992.

[19] A. Bensoussan, G. Da Prato, M. C. Delfour, and S. K.Mitter, Representation and Control of Infinite Dimensional Systems,
Volume II, Systems & Control: Foundations & Applications, Birkäuser, Boston–Basel–Berlin, 1992.

[20] J. G. Blom, W. Hundsdorfer, E. J. Spee, and J. G. Verwer, A second order Rosenbrock method applied to photochemical
dispersion problems, SIAM J. Sci. Comput. 20 (1999), No. 4, 1456–1480.

[21] F. Bornemann and P. Deuflhard, Scientific Computing with Ordinary Differential Equations, Text in Applied Mathemat-
ics 42, Springer, NewYork, 2002.

[22] C. Choi and A. J. Laub, Eflcient matrix-valued algorithms for solving stiff Riccati differential equations, IEEE Trans. Au-
tomat. Control 35 (1990), 770–776.

[23] R. F. Curtain and A. J. Pritchard, Infinite-dimensional Riccati equation for systems defined by evolution operators, SIAM J.
Cont. Optim. 14 (1976), 951–983.

[24] R. F. Curtain and H. Zwart, An Introduction to Infinite-Dimensional Linear System Theory, Texts in Applied Mathematics,
Springer-Verlag, New York, 1995.

[25] L. Dieci, Numerical integration of the differential Riccati equation and some related issues, SIAM J. Numer. Anal. 29 (1992),
No. 3, 781–815.

[26] E. Eich, Projizierende Mehrschrittverfahren zur numerischen Lösung von Bewegungsgleichungen technischer Mehrkörper-
systeme mit Zwangsbedingungen und Unstetigkeiten, Ph.D. thesis, University of Augsburg, 1991.

[27] J. S. Gibson, The Riccati integral equation for optimal control problems in Hilbert spaces, SIAM J. Cont. Optim. 17 (1979),
No. 4, 537–565.

[28] L. Grasedyck, Existence of a low rank or H-matrix approximant to the solution of a Sylvester equation, Numer. Lin. Alg.
Appl. 11 (2004), 371–389.

[29] E. Hairer and G.Wanner, Solving Ordinary Differential Equations II-Stiff and Differerntial Algebraic Problems, Springer
Series in Computational Mathematics, Springer-Verlag, New York, 2000.

[30] S. Hein,MPC/LQG-Based Optimal Control of Nonlinear Parabolic PDEs, Ph.D. thesis, TU Chemnitz, February 2010, avail-
able from http://nbn-resolving.de/urn:nbn:de:bsz:ch1-201000134.

[31] K. Ito and K. Kunisch, Receding horizon optimal control for infinite dimensional systems, ESAIM Control Optim. Calc. Var. 8
(2002), 741–760.

[32] K. Ito and K. Kunisch, Receding horizon control with incomplete observations, SIAM J. Cont. Optim. 45 (2006), No. 1, 207–
225.

[33] M. Kroller and K. Kunisch, Convergence rates for the feedback operators arising in the linear quadratic regulator problem
governed by parabolic equations, SIAM J. Numer. Anal. 28 (1991), No. 5, 1350–1385.

[34] N. Lang, H.Mena, and J. Saak, On the benefits of the LDL factorization for large-scale differential matrix equation solvers,
Lin. Alg. Appl. 480 (2015), 44–71.

[35] I. Lasiecka and R. Triggiani, Differential and Algebraic Riccati Equations with Application to Boundary/Point Control Prob-
lems: Continuous Theory and Approximation Theory, Lecture Notes in Control and Information Sciences 164, Springer,
Berlin, 1991.

Brought to you by | Max Planck eBooks
Authenticated

Download Date | 3/14/18 10:21 AM

http://www.mpi-magdeburg.mpg.de/preprints/
http://www.mpi-magdeburg.mpg.de/preprints/
http://nbn-resolving.de/urn:nbn:de:bsz:ch1-201000134


20 | P. Benner and H. Mena, Numerical solution of the infinite-dimensional LQR problem

[36] I. Lasiecka and R. Triggiani, Control Theory for Partial Differential Equations: Continuous and Approximation Theories I.
Abstract Parabolic Systems, Cambridge University Press, Cambridge, UK, 2000.

[37] J. R. Li and J.White, Low rank solution of Lyapunov equations, SIAM J. Matrix Anal. Appl. 24 (2002), No. 1, 260–280.
[38] H.Mena, Numerical Solution of Differential Riccati Equations Arising in Optimal Control Problems for Parabolic Partial

Differential Equations, Ph.D. thesis, Escuela Politecnica Nacional, 2007.
[39] T. Penzl, Numerische Lösung großer Lyapunov-Gleichungen, Ph.D. thesis, Technische Universität Chemnitz, 1998.
[40] T. Penzl, Eigenvalue decay bounds for solutions of Lyapunov equations: the symmetric case, Sys. Control Lett. 40 (2000),

139–144.
[41] T. Penzl, Lyapack Users Guide, Sonderforschungsbereich 393 Numerische Simulation auf massiv parallelen Rechnern,

TU Chemnitz, Report No. SFB393/00-33, 09107 Chemnitz, Germany, 2000, Available from http://www.tu-chemnitz.de/
sffi393/sffi00pr.html.

[42] I. R. Petersen, V. A. Ugrinovskii, and A. V. Savkin, Robust Control Design Using H∞ Methods, Springer-Verlag, London, UK,
2000.

[43] A. J. Pritchard and D. Salamon, The linear quadratic control problem for infinite dimensional systems with unbounded
input and output operators, SIAM J. Cont. Optim. 25 (1987), 121–144.

[44] J. Saak, Eflziente numerische Lösung eines Optimalsteuerungsproblems für die Abkühlung von Stahlprofilen, Diplomar-
beit, Fachbereich 3/Mathematik und Informatik, Universität Bremen, D-28334 Bremen, 2003.

[45] J. Sabino, Solution of Large-Scale Lyapunov Equations via the Block Modified Smith Method, Ph.D. thesis, Rice University,
Houston, Texas, 2007.

[46] R. Schneider, FEINS: Finite element solver for shape optimization with adjoint equations, In: Progress in Industrial Mathe-
matics at ECMI 2010, Mathematics in Industry, Springer, 2011, Software available at http://www.feins.org/.

[47] V. Simoncini, A new iterative method for solving large-scale Lyapunov matrix equations, SIAM J. Sci. Comput. 29 (2007),
No. 3, 1268–1288.

[48] F. Tröltzsch and A. Unger, Fast solution of optimal control problems in the selective cooling of steel, Z. Angew. Math.
Mech. 81 (2001), 447–456.

[49] X.Wu, B. Jacob, and H. Elbern, Optimal Actuator and Observation Location for Time-Varying Systems on a Finite-Time Hori-
zon, arXiv:1503.09031, March 2015.

[50] J. Zabczyk, Remarks on the algebraic Riccati equation, Appl. Math. Optim. 2 (1976), 251–258.

Brought to you by | Max Planck eBooks
Authenticated

Download Date | 3/14/18 10:21 AM

http://www.tu-chemnitz.de/sfb393/sfb00pr.html
http://www.tu-chemnitz.de/sfb393/sfb00pr.html
http://www.feins.org/

