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Abstract

A set of layer equations for determining the stability of semi-collisional tearing modes in an
axisymmetric torus, incorporating neoclassical physics, in the small ion Larmor radius limit is
provided. These can be used as an inner layer module for inclusion in numerical codes that
asymptotically match the layer to toroidal calculations of the tearing mode stability index, A4'.
They are more complete than in earlier work and comprise equations for the perturbed
electron density and temperature, the ion temperature, Ampére’s law and the vorticity
equation, amounting to a tenth order set of radial differential equations. While the toroidal
geometry is kept quite general when treating the classical and Pfirsch-Schllter transport,
parallel bootstrap current and semi-collisional physics, it is assumed that the fraction of
trapped particles is small for the banana regime contribution. This is to justify the use of a
model collision term when acting on the localised (in velocity space) solutions that remain
after the Spitzer solutions have been exploited to account for the bulk of the passing
distributions. In this respect, unlike standard neoclassical transport theory, the calculation
involves the second Spitzer solution connected with a parallel temperature gradient, because
this stability problem involves parallel temperature gradients that cannot occur in equilibrium
toroidal transport theory. Furthermore, a calculation of the linearized neoclassical radial
transport of toroidal momentum for general geometry is required to complete the vorticity
equation. The solutions of the resulting set of equations do not match properly to the ideal
MHD equations at large distances from the layer, and a further, intermediate layer involving
ion corrections to the electrical conductivity and ion parallel thermal transport is invoked to
achieve this matching and allow one to correctly calculate the layer 4".

1. Introduction

A number of phenomena in tokamaks, such as the saw-tooth oscillations,
plasma disruptions and confinement degradation, appear to involve tearing
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mode activity. Studies of the linear tearing stability for hot plasma have
exploited the separation of scales between a narrow ‘inner’ radial region around
a resonant surface where reconnection processes occur and the remaining
‘external’ region where a marginal ideal MHD model is adequate. The ideal
MHD solution, characterised by a quantity 4’, is matched to a corresponding
quantity A(w+iy) calculated from the inner solution in order to determine the
mode frequency @ and growth rate, ¥ . Whereas early studies of linear stability

used a simple resistive MHD model for the inner layer, present day, hot,
tokamaks require a much more complete physics model.

In a previous paper (Connor et al. 2009) we presented layer equations for
determining the stability of semi-collisional tearing modes in a toroidal plasma
in the banana regime of collisionality (v, <®,; where v, ~v,/f?is the
effective collision frequency and o,; ~ fv,/L, the bounce frequency of a
particle of species j, f << 1 being the fraction of trapped particles, v; the
frequency for 90-degree Coulomb collisions and L, the connection length
around the torus), therefore incorporating neoclassical physics. The semi-
collisional ordering involves the balance: o ~ k||2vjm/ve , Where Kk, =k, x/L;is the

wavenumber parallel to the magnetic field (K, is a poloidal wavenumber, x is

the distance from a rational surface and L is the magnetic shear length), Vy,. is

the electron thermal speed and v, is the electron 90-degree collision frequency,
so that parallel transport processes compete with the mode frequency, @ . This

balance serves to define the semi-collisional width, &, = (a)ve L2/k2v? )”2.

These equations were formulated for general axisymmetric geometry, thus in
this respect extending the work of Fitzpatrick (Fitzpatrick 1989). A consistent
ordering for semi-collisional theory requires that, as well as the inclusion of
parallel collisional transport processes, one should also incorporate collisional
cross-field transport. The equations of Fitzpatrick (Fitzpatrick 1989) did indeed
include both of these transport processes, albeit using a simplified model
collision operator. While Connor et al. (Connor et al. 2009) discussed the role of
cross-field transport based on a Lorentz collision operator, thus ignoring like-
particle collisions, the emphasis was on the basic semi-collisional physics and
these effects were ignored in the bulk of the paper. The role of the present paper
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Is to rectify this limitation by providing a general axisymmetric formulation,
including cross-field transport which can be used as a semi-collisional tearing
mode layer module for inclusion in numerical codes that asymptotically match
the layer to toroidal calculations of the tearing mode stability index, 4’ (Glasser
et al. 1975). We also include some additional, relatively small, effects in the
electron continuity and thermal equations arising from the poloidal magnetic
drift that were ignored by Connor et al. (Connor et al. 2009).

The model pitch-angle scattering collision operator used by Fitzpatrick
(Fitzpatrick 1989) provides a good description for distribution functions
localised in velocity space around the trapped particle regions, but electric fields,
parallel pressure gradients and thermal forces due to parallel temperature
gradients generate distortions of the whole passing particle region. Nevertheless,
this can be circumvented by the use of the Spitzer functions (Cohen et al. 1950,
Spitzer & Harm 1953) to account for these drives, as demonstrated by
Rosenbluth et al. (Rosenbluth et al. 1972), Connor et al. (Connor et al. 1973)
and Helander and Sigmar (Helander & Sigmar 2002); we shall also adopt this
approach here. The calculation closely follows neoclassical transport theory but
differs in one respect. In equillibrium the electron density and temperature are
constant on a flux surface and the only parallel driving force is due to the
toroidal electric field, resulting in a role for the Spitzer function related to
electrical conductivity. In stability theory, however, parallel gradients of both
density and electron temperature can persist, leading to the need to involve the
Spitzer function describing the parallel heat flux. The calculation below makes
one assumption, namely that the fraction of trapped particles is small. This can
be relaxed, albeit leading to more complex algebra, but the distribution
functions become less localised and the asymptotic accuracy of the approach is
compromised. The derivation of the vorticity equation calls for an expression
for the neoclassical radial transport of toroidal momentum and we extend
previous work by Wong and Chan (Wong & Chan 2005) to cover more general
geometry, though needing to use a model collision operator in order to
determine the required adjoint function.

In Section 2 we introduce the gyro-kinetic model for electrons and ions. An
appropriate ordering scheme is used to obtain solutions for the ion and electron
distribution functions in Section 3. To complete these solutions, equations for
the perturbed densities and temperature of the two species are required. These
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-are obtained in Section 4. The numerical values of various averages of collision
frequencies that are required in Sections 3 and 4 are listed in Appendix A.
Section 5 develops Ampere’s law and the vorticity equation to complete the set

of equations needed to calculate Zl(co+iy). A calculation of the neoclassical
radial transport of toroidal angular momentum for general geometry, required in
the development of the vorticity equation, is performed in Appendix B. Section
6 introduces a set of convenient normalisations for the set of equations. In
Section 7 we discuss an intermediate radial region needed to connect the
solutions of this set of equations to the ideal MHD region where A’is defined.
Finally, we draw some conclusions in Section 8.

2. The Gyro-kinetic Equation
We describe the plasma species j by the gyro-kinetic equation (Tang et al.1980):

(—ico+va-.V+vd/..V)gj —exp -iL;)C (g0 (i L)

=—i eJTfOJ (w—a)*Tj)((Q_VIIAWI)%(Z])+_L57§"Jl(zj)} ?

i kL

where b is a unit vector along the magnetic field, v, is the particle velocity
along the magnetic field, @ is the perturbed electrostatic potential, A is the
perturbed parallel component of the vector potential, 65 is the parallel

component of the perturbed magnetic field and we have written the perturbed
distribution as

: ed
5fj:gjexp(| Lj)—_}—.fOj : (2)
J
with perturbation time dependencies: exp(—iet). Here, L, =kxv,.b /@, with
k the wavenumber and v, the velocity perpendicular to the magnetic field, is

the gyro-phase factor, the operation A is a gyro-phase average over the quantity
A, J,, are Bessel functions of argument: z,=kv /Q,

fo; =1, ()M, 22T, () exp (= m,v2/ 2T (7)) are Maxwell distributions, with , the
poloidal flux, and
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with v the particle speed, @, the cyclotron frequency of species j, « the
curvature vector, ¢ the toroidal mode number of the perturbations and all
gradients are taken at constant (x, v), with x=mv?/2B the magnetic moment,
or (4 v) with i=2u/myv? (thus v, =ovV1-4B, with a:Sign(v")). If 0 is
defined so that the safety factor q=B.Ve/ B.VO, where B=1Vp+VpxVy, IS a
flux function, then

v, = b.vea%+b.v(p% = R!B (%Jréa%j (4)
so if we let
9,(r0.9)—>g;(ro)e ™ (5)
etc., then
v,9 —>+[i(€q—m)gj +igj}e‘("”m9) (6)
R?Bq o0

where /q-m=/q'’x; q =dg/dy with x=x-y,, y, being the resonant surface
where m = /q(y,); prime denotes a derivative with respect to », or equivalently,
X.

Thus

Iv o .. , : - .
—”(—qu xjgj +Vvg;.Vg, —iwg, —exp -iL;)C (g, (iL,)

RZBq | 06
e f,. 0B
= _'JT—OJ(“’_“’IJ')[(dj_VHAﬂ)Jo(Zj)+%?”Jl(zj)]-

]

(7)

Assuming both species are magnetised with kv, /Q, <<1, we expand
exp (iL;)=1+iL; and the Bessel functions for small z,. We also introduce h;:



(8)

T

eV s ;
J—fo{l— ’]+hj
1)

g; = Tj
©)

where A =—(ilw)V,#, so that the parallel electric field, E;, is given by
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E, —-

Then the fundamental kinetic equations are
]hj +v,,.Vh, —iwh, -C,(h,)-L,C,(g,L,)
.
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We note that relations (2) and (8) imply the perturbed density ﬁj Is given by
e ¥ e e.d
N o=— [1—w’jnj— n; +1, (11)
T, w T,
where N; is the leading contribution to the density from h; .
The perturbed and equilibrium quasi-neutrality conditions,
n,=n=N; n,=n =n,, (12)
allow us to obtain
&:1_@&”@_%) S %ﬂ[l T w_] (13)
np n, T, T, w n, n, T, T, T, o
(14)

T T _eVoun
T T 1. o

e

Similarly from egns. (2) and (8) we can obtain the perturbed temperatures:



where T, =(2Tj/3)jdsv(mjV2/2Tj —3/2)h, is the contribution from h; etc.

3. The lon and Electron Solutions
(a) The lon Solution

We consider the ‘collisional’ case: v; > . Introducing the proton charge, e, we
have

|
Ml (inm'xjhi +Vg.Vh —iwh, - C,(h)-L,C (g, L)

R?Bq\ 80
e f, v? e f, T
=i (w—wL)(@—S”+$5B”J— = [1—‘“'Jvdi.vsv
i : w

(15)

We solve this equation by introducing an ordering scheme in terms of a small
parameter, &, where wy; ~ Vv, ~ gy, ® ~ Wy, ~ elo,; . we also order
Z; ~ & . Although we shall later assume a small number of trapped particles,

f, <<1, we do not order it in & . The radial magnetic drift frequency, o, ,
exceeds the azimuthal drift frequency, o,, ,, because of the narrow radial width
of the semi-collisional layer.

Writing h, =hy, +&h, +&’h,; +..., the lowest order solution satisfies

oh,
—pr=0 =y =hy (VA x0) (16)

while in first order we obtain

v, o p) ef. .- 0
Il 0i i
—h, =-v,.—h, +C.(h, )— 1- vV, — 17
Rqu 69 i d"&x 0i |( OI) -I-i ( wj dri aXW ( )
where we note
v, & 1lv

Vyi =V Vy = —0——| 18
drj drj X Rqu GQ[QJ ( )

Thus hy; for passing particles can be annihilated by applying the operation:

(B(-)N,):



()= fb)95 90 6 \redg fRdn (19)

BVH ‘BVO
since
2
1 __9 @& (20)
BVO BVe |

For trapped particles we integrate along the bounce orbit, summing over & in
the usual way, to obtain the constraint

<Eci (h )> -0, (21)

V)

where the integration is now between bounce points. This determines hy, ,

SN
0 i

where u? =m;v?/2T, with j=1.

yielding:

The equation for hy; can then be integrated to give

v 5 ) :
h, :_E'_'F[l—%]sv fo +h0i}+ Hy (V.4 x,0) (23)

where H,remains to be determined. This can be rewritten as

lv : ,
- —“{Af” o(v-3) Aﬂ fo -+ Hy (V.2 00),

-Qi
(i)=_e_gﬂ 1_w*i 1+ )= ﬂ ﬂ =_ ﬂ e;p’ 24
Al Ti [ w ( +71I) I"|0+Ti pOi ’ Ti ’ ( )
o _ [ omer T)_ T
& [ o T +TJ T

where p,, =n,T,, on using eqgns. (13) and (14). Note that the quantities P; and

T,' thus defined, depend on .



The equation for h,; is

v | vl v
2” ihzi + I 0 ” ahll = Cii (hli)+cie (hli) (25)
R“Bq 060 R? Bg 59 OX

(where, for most purposes, we can ignore the small ion — electron collisional

term, but see Section 7 later), which provides the constraint

<E C, (h, )> =0 (26)

Y

For the ions we take the model pitch-angle scattering collision operator that

conserves momentum (Rutherford et al. 1970):

cn(h)=vn(u)(L() r;‘Iv”u”.(h) ) L(h)-—g3 ;(zv”a—ihj,
Uy () = [d®ww, (s [ d®v g, (W))myi/ 2T, v, (u) = VO,%, (27)
e B ) (e T R

The constraint (26) yields an expression for H,, and we find:

I ~ B i 2 9 ) Al /B A
hy :Ei(vll_HVIIB_Oj(Al()+(U _EjAé)]fOi+r-p_i<B_0U|ll>Hvllf 1 (28)

where H(1-4,) is the Heaviside function, and

% ody B,
- i = . (29)
O



Using eqn. (28) and integrating over velocity space:

J‘ d V= ZJ‘ BTI:\‘/Vd‘Vdi (30)
Il

we can calculate U, self-consistently. Thus

U, —é;—'i{l— f <22>J{Af’ {{‘E—:i}‘}—gj@ } f B <?:2'E> , (31)

where we have defined the symbol {...} by

_ (a3 mv’ mVllzh_ u?
}_Idw{szT n_3ﬁfduw e 2
and
Idgv mv? ) maV; B Bty B—z{w} (33)
2T) T B, n °B?

where f,=1-f,, with f, the trapped particle fraction defined by

f, —1—%<BZ>} £ (34)

Solving self-consistently for (BU ), substituting for A? and AP from eqgn. (24)

and using the values of the collisional integrals from Appendix A, we obtain:

o\ 1Tl pl ed' i,'
(BU) = e{ = 1.17T}. (35)

10



Then one can calculate the ion parallel flux from eqgn. (28), to give

>~ ! 2 T
U, =T Py ey gy B T0L (36)
eB| py T <Bz>Ti

It remains to address the determination of A, and T,; A. is already given in

terms of n by egn. (13), whereas fi Is obtained by applying the operator

[()(mv?/2)d* to the next order equation,

! o vl o1y ah, :
R?Bg o0 * RBqod\ @ ) ax  on o (n)-LC (gaL))

37)

2

= Lilo-ol)o-v+ o8
T 20

since it annihilates the first term on the left by means of the flux surface average

and the collision term, C,(h, ), due to its conservation properties. This will be
elaborated in Section 4 (b).

(b) The Electron Solution

For the electrons, egn. (10) becomes
———égﬂmkhﬂwwwkﬂwm—qu—gngg

R*Bq
2 (38)
e f v ef .
— i (-l )| & +—0B, [+—2|1-Z= v, V¥
T w

T 2Q

j e e

We employ a related ordering scheme to that of the ions in order to solve egn.
(38) for the electrons, introducing another small parameter, €. , where

Oyre =~ Ve = EWhi; @O ~ Wyep ~ eeza)be . However, the semi-collisional
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electron model requires the additional ordering: kv, ~ eV, /L, , Where
k) =(a'x/Rq . With h, =hy, +¢&.h, +eh, +...,
the lowest order equation is

ah;e 0 =hy, =h, (V.4 %0) (39)

while in first order we obtain

v, o 0 ef .
Il Oe e
—h,. =-v, —h, +C_(h, )+ 1-
dre aX Oe e( Oe) T (

d
w " ox

e

Jv Oy (40)

As in the case of the ions, h,, can be annihilated for passing particles by
applying the operation:(B(...)/v”>. For trapped particles we again integrate along

the bounce orbit, summing over ¢ in the usual way. Thus we obtain the
constraint

<Ece(h09>>=o, (41)

hye = [:—e + (u 2 g} ::-Te} fo (42)
0

where now u?=m,?/2T, . The energy exchange term in the electron-ion

collision operator is neglected (see eqn. (47) below), which makes the
perturbation in the electron temperature independent of that in the ion
temperature.

The equation for hy, can then be integrated to give

I T
hle = §|:T£(l_ " JSUTOE - hée:| + Hle (V’}" X’O-) (43)
(6]

e e

where the function H,, remains to be determined. This result can be rewritten as
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lv
n =g A+ (w2 a1, 4 L a0)

Qe
' . A -fr =~/ '
Al = &Y (1_we(1+ne)]_ UL P (44)
Te @ nO Te pOe Te
o __[oumer T T
& [ o T, T, T,

with p,, =n,T,, where again we have used eqns. (13) and (14).

The next order equation is

hee =C. (hle) ) (45)

vyl ih . vyl el M ar1_1e+iv”wq'x
R?Bqad *° R’Bqodl @, ) ox  oR®B

leading to the constraint
<Ece(hle>>=w<i>hw (46)

which determines H,,(v,4 x0).

The electron collision operator takes the form

C,(h)=C. (h)+, (u)( L)+ v, fOEJ (@7)

e

where Cee(h) Is the electron-electron collision operator, U, is the ion bulk

parallel velocity, v, (U)=vy/u® with v, =nge* InA(m,/2T, 2/ (4meZm?).

At this point we introduce the two Spitzer functions (Spitzer & Harm 1953):
h{ and h{?’  where

ileg'x( A, T, il¢q'x 5\T,
e LR A LTS “
0

[

so that the constraint equation becomes

<E C.(h, —h, )> =0, (49)

Vi
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with h, =h® +h®_ Now that the collision operator is acting on a localised (to

the trapped and barely passing region) distribution function we can use a model
pitch-angle scattering operator for the electron-electron collisions (Rutherford et
al. 1970).

e

cee<h>=vee<u>(u ) e vnu..e<h>f0ej

Ur.(h j d*vv,, (v b/ j AV fo,v, (UM, V2 2T,, (50)
u
vee(u):VOe%’

To remove the ion flow we write

hg) = hs(l) -F ” U||| fOe’ hes = hs(Z) (51)

e

The functions h 2 are given by (Cohen et al. 1950, Spitzer & Harm 1953):

ho = s® D(l)(u)f NG Vi 5@ D(z)(U)f ’
* R’B u "  R’B u

g _ Azg lgx(n, T | _ iz, Max( B, _e(@-¥) w,e¥ (52)
3\/_ q n0 Te 3\/; q pOe Te w Te

@) iz, Ifq'x'f_e _ it 1g'x E_w*eneg
3Wrn q T, 3Wn g (T, o T,

where z,, =3Jn/4v,, and D® and D® are related to the normalised responses

to a parallel electric field and thermal force, tabulated in Spitzer and Harm
(Spitzer & Harm 1953) (to be precise, D® =-D/A and D® =2D/B as given in

Tables | and Il of Spitzer & Harm 1953)

So, on defining v, = v, +V,, the constraint equation becomes
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<E{Ve L(h, —h, )+ mTV” (vUr (e —h, )+ v,U ) o, D 0 (53)

e

where h, =h® +h®  Thus

0 0 |BOV2 e) » 9 (e)
5(1<V||>5H1e)= 20, (Al a Cl AP |,

2 Wp©® 2)p© 2
_my <B b, U+, U”.)f >_(S DO (u)+S@D?(u)v <i2 ‘-
2T, 2u R

e

Integrating egn. (54) in A, we find

I o B 2 5 e
e :Q_G[V” - HV B_J{Al( T [u _EjAg )Jfoe (55)
(3(1)D<1>(u)+ S<2>D<z>(u)) 1 R
{ < (v Uje +v U|||)> <_2>}HVII foe
Bou R

in eqn. (50) and integrating over velocity space, we

Using the definition of U,
can calculate U,Te(hle —h,) self-consistently. However, as argued by Helander
and Sigmar (Helander & Sigmar 2002), (BU,,)=(BU,)+0(f,), provided
f. <<0(v,/v,). Thus result (55) simplifies to

ei e

(56)
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It remains to determine N, and T, : these are obtained in Section 4(b) by

applying the operators <j(...)d3v> and  [(.)(my?/2)d% to the next order

equation:
vl O . vl (IvlljahZe max oo, vk
R?Bq a0 * ' R?Bq a0 X QgR’B Vi +Vao e VPoe
q q g 2 | (57)
“iwh, -L.C.(g,, e) Oe(a) w,,e)[cp—arwz\%aql}

4. The Perturbed Density and Temperatures

In this Section we derive equations for the perturbed electron density and
temperature and ion temperature in terms of the perturbed potentials @ and ¥ .
The ion density perturbation can be obtained from the leading order quasi-

neutrality condition, see egn. (12).

The other perturbed field that these quantities depend on, is JB,, which is

obtained from the perpendicular component of Ampere’s law. The
perpendicular current can be calculated from the first order in a Larmor radius
expansion of the distribution function (2), again recalling eqns. (8), (22) and
(42). Introducing this result into the perpendicular component of Ampeére’s law

yields (Tang et al. 1980)

5B -~ S~ —_—~
Bll :_/g)zp : fj:ﬁ(Te+Ti)+no<Te+Ti). (58)
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In Section 5 we will discuss the parallel component of Ampeére’s law and find

that in leading order, % is independent of the poloidal angle, 6. Since fi; and

f,— are also independent of ¢, it follows from eqns. (13) and (14) that n,, fj

and @ are also independent of ¢
(a2) The Perturbed Electron Density and Temperature

As mentioned earlier, the determination of A, and T, is accomplished by

applying the annihilators <_f( )d V> and _[ m v /Z)d V  to the third order

equation (57), which both eliminate h,,.

The first operation results in

<jd3vii['i!]5h26> <“qxjd3 ” 1e> (4 Vspe Vo )~ ([0 L.C,(g0cL))

R?*Bq 00\ Q, ) ox R*Bq

£ o-on)o-1)- " 0-0,00n,)

e

:iwﬁe+in0<

(59)

Here one can recognise the first three terms on the left-hand-side as representing,
respectively, the surface-averaged contributions to the electron continuity

equation of the divergences of the radial flux, 7", (which we will see below is

related to Pfirsch-Schliter and neoclassical radial transport), the parallel flux,
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I, and the ‘azimuthal flux’, ry (Fitzpatrick 1989), while the fourth

corresponds to the contribution from classical radial transport.

The second, the energy moment, takes the form

R2Bq 0 2 o/ \Reeg
2
+<Id3V%VdHE'VhOG> <J.d3 . V eCe(QOeLe )> (60)

3. (. nT,) . /3e 508,
:E.a{ne+;_ej+.n0<5T_(w_w*e(1+ne))(qb_yx)_E?“(w_w*e(uzne))>

with a similar interpretation in terms of fluxes.

It is helpful to separate the electron and ion distributions into a Pfirsch-Schliter-

like, h?*, and a banana neoclassical part, h®™", and express the quantities

n and T in terms of n and T.. Thus for the electrons we write
hle - hes = hePS + heBan (61)

where;
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lv,m 2 | B T/ lv,m 2 o '
hy =—1—=/1- 82 {p +(U2—§jT—e}foe+ 1. BZ [p' +e(p}fOe
eB <B > Poe 2 Te eB <B > Poe Te
4'ITe|V|| Iﬁqx 1 B <i>
3/t g |R°B (B?)\R’

B
{D(l)(u |: — w*e(1+7/e)ey/:|+ D(Z)(u)|:i Wi e ey’:|}f
I = - Oe
Poe

- T, o T,

(62)
and:

. Im [ B HY, | 5\T, T diz, 10g'x[ B HY, |/ 1
heB — . < 2>V“- B (U —E)T——l 17T fe— \/_ 5 V”' e
Poe . e 3Wr ¢ <B > B, J\R

{ D( Pe e(o-v) a)*e(l+ne)e¥’}+D(2)(u){i D1, e&”}}f
- - - Oe?

Poe T, w T u T o T,

e

e

(63)

where we have substituted for U, from eqn. (36).

Similarly, it is convenient to separate h; in egn. (28) into Pfirsch-Schliiter, h™

and banana contributions, h®", writing:
hli — hiFIOW + hiPS + hiBan ’ (64)

where ™" describes the mean flow:

lv,m.B T
h_FIow N pl —1.17-L f
I e< B 2 > pOI Ti TI ' (65)

while
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lv,m. BZ 5, e@' 5 'F!
N p—TE [ i 2_2\hije
i eB [ <BZ>J{ 0, + T +(u ZJTJ 0 (66)

and

gan _ 1M, BV||_H\7|| T
hen = e{<32> 3 J( 133) f, (67)

The first term represents a drifting Maxwellian and therefore does not
contribute to the ion-ion collision term.
(i) Electron Radial Fluxes

First we consider the radial fluxes arising from classical transport. Recalling the
definitions of h, j and L,— and noting the conservation of momentum in like-

particle collisions, we obtain

<Jd3vﬁmzi i)

r
_ ~ (68)
2
SV >jds { (&_e%(uz_ﬁjkﬂ,
e? Poe T 2)T,

where r represents a ‘radial-like’ co-ordinate labelling flux surfaces, V, being

the corresponding radial component of the velocity. We note the gyro-

correction to the scattering target ion distribution has the form

v ﬂ(£+£+(u2—§]f—‘]fm (69)
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The velocity integral can be evaluated by observing that it involves the matrix
elements of the collision operator between Laguerre polynomials given by
Helander and Sigmar (Section 4.5 of Helander & Sigmar 2002). The resultant

contribution from eqgn. (68) is the familiar Braginskii expression:

d T /[Vd '\ a2 ( p 3T
——Uﬁ>_‘2§fc;d> [F)——JJ% (70)

dr B* [dx’| p,, 2T,

A similar calculation for the classical heat flux results in

2 2 ~ =
i<qfe>——m§Te<|VX| >d (—§ P +4.66T—9Jn0Te (71)
€ Tei

dr B [dx’| 2 py T,

so that the classical energy flux, (Q%)=(qf,)+(5/2)(rs, ), satisfies

2 2 ~ g
i(Qr‘;):—Z}Te <|VX| >d { P +0.91T—e]noTe (72)
Tei

B® /dx®| py, T,

Turning to the leading term in eqgn. (59), we can eliminate h,, by integrating by

parts in € and using eqn. (45) to obtain

I |
<J dSvRVZ'—'Bq%(Qi'e']hZE>E<F$>

V2l i/ 19"
= LJ‘dsv +i 1|, +|Cﬂv”2h08—vuce(hle)
Q R°Bqod|\ 2, ) dx  R"Bq

e

(73)
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where the first term vanishes if the equilibrium is up-down symmetric, which
we take to be the case here. Thus, finally, we recognise this contribution as the

divergence of the neoclassical radial flux
d d/ I
&<Frl\,irc> - —&<Ejd3W”Ce (hle - hg) - hLSSZ))> (74)

Likewise, for the thermal equation, we find

2
%<Qr’\,lec> - _%<QLI d°wy, mezv C.(h, ~n& ~hC ))> (75)

To evaluate the velocity integrals in egns. (74) and (75), we recall the result (33).

Considering the Pfirsch-Schliter and banana contributions separately, we
introduce their respective distribution functions. From momentum conservation
it is again clear that only e - i collisions contribute to eqgn. (74) in both cases.

For the Pfirsch-Schliter contribution the calculation has the same structure as

the classical case, with the substitution Vv, —V, in the distribution function.

However, since we are now considering the difference h, —h, , the scattering

‘ion distribution’ is effectively at rest when evaluating the collisional matrix

elements. Recalling eqn. (62), the result is
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Ld ey MTo[/L) 1 |d°(F 3T
nyar 1= ezre.'2(<ez> <Bz>}dﬂ(po€ v

()l o))

For the heat flux, we obtain

1 d, e\ mT.I? <1> 1 |d°(p T,
= oo [ =) +0.91-2
NoT, dl’<Qr'e> e’r, [ B? <BZ> dx? Poe T,

=12 r D T
il%gT, < ¥ >_ 1 <i> A5, P @ T 071 Peqn)
eq R%B? <Bz> R*/ |dx| 2 Poe Te To T w

(77)

(76)

Finally, we consider the banana contribution. For the classical and Pfirsch-
Schliter contributions we used the exact collision operator, since the
distributions were not localised in velocity space. However, the banana

contribution to h, —h, is localised and it is sufficient to use the model collision

operator (50), which leads to

e’ e

Ban
an | /m, m.v, .
<Ff _v;(> = _E<Fjd3w'v{hle —h® —p@ —T—(VeeUue +vUy, ) foej > (78)

Substituting expression (63), using result (36) and approximating

(BU.)=(BU,,) as discussed below eqn. (55), we obtain
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e L
d
dx

e A B

e

. o T, u

(79)
Introducing the numerical values of the various collisional averages given by

the integrals in Appendix A, this becomes:

ii<rr8ean> -1.53 f I mT dz |: ﬁ

413901971
ndr' " e*(B?)z, dx* | py, T, .
’ . (80)
67 (L)MAT, d x&—M——(lﬂozne)g 002
<B> R/ eq o\ |pe T o T, T,

Similarly, we find

<
drifg 1, <|2>Ted
3Jnq <BZ> R?/ e dx

e e @ f
(81)
leading to
2 2 = T T
! 1<QBG”> 70f, Ml AP ggple gq7T0
n,T, dr 2<|32>Tei dx® | Poe T, T,
R (7))
2\ it = )
pg7 (L A\MATe d ) P _ee-7) o (1+1.250, )27 0251
(B*)\R*/ eq dx{ [P, T ® T, T,
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(if) Parallel Electron Fluxes and Plasma Current

The contribution to egn. (59) from the parallel flux 7, is

i£1g'x i71g'
< R’Bq Id3W||h1e> = <R2—Bqulle(h1e )> (83)

The part arising from the Pfirsch-Schliter-like part of h, can be calculated

directly, but for the banana contribution we take advantage of the self-

adjointness of the collision operator to circumvent the fact that h, is not

localised in pitch-angle, while still allowing us to use the model collision

operator (Helander & Sigmar 2002).

We first consider the parallel current, which is needed for Ampére’s equation,

but also provides an expression for U, . We can readily calculate j*, the

[le
current arising from the Pfirsch-Schliiter-like contributions to the electron and

ion distribution functions given in egns. (62) and (66), obtaining:

. -1 B 4z, illq'xp,.e
PS :_I "= _ + ei Oe
y p[B <BZ>] 3o mg

which becomes
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5 1 B i1/9'xp.e
= = [-1.97, —
[ <Bz>] X

) (85)
L e T
To calculate the banana regime neoclassical contribution, we write
i = Jie + U= )= i _e,[d3VV||(h1e —h.,) ’ (86)
where
Jis = Mo€Uj; = ejd vV, (87)
so that
4z, nee 19X i/1q'x T

b = 3\/_ R?Bgq m,

L L

which reduces to

jjo =1.97nge 7 14X Te | Pe e(®-¥) 5341 e (1+1.347,)22 (89)
R°Bg M, | Poe T, e @ T,
Now, recalling egn. (48), we can write
2 l
b= = —ejd3vv||(h1e —h® —h? )= eg(l)B .|'d3v = f(hS )(hle ~h{Y —h ) (90)
Oe
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Using the self-adjointness property of c,(h®), we obtain

. eR’B h
By = s =—WIdSVf—Ce(h1e —h® —n). (91)
Oe
so that
(J|| J||s =4 eJ.d V|| h _hg)_hg))
(92)

s T |li

4t DY (u) m.V
_ A ooy 2 v, hy, —hY —h@ -~y f
I J u I (1

where we have used the definitions (52) and the model electron-electron
collision operator (50), since (h1 —h¥ —h? ) Is now localised. Evaluating this

expression using result (63)

4z n, fBIT, | ' [v,DY [5 ZjveD“) T (5 {u?v,)[v,DY] T/
P vwDT (5 T (5 i
3r (B7) | Pe | U 2 o1 2 e [T

G -

(jn - j||s )Ban =

leading to

; . \Ban _ ft Blp, 3 ﬁ' ; fr
(J|| - J||s) —Wl: 1.67 o +l.19_|_ +1. 95Te]

_pg B HIAX Py, < 12> &__e@'y’)__(l 117,)F 017
<Bz>q m, R Poe Te W Te Te

(94)

Combining expressions (85), (89) and (94), we obtain
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. |1 B il 7g'x p,,e B 1
JI"F’[E‘@}”’”H X <Bz><?>

{(1—1-31ft {E_M_&(“ ne)i_yl)+0.34(1—0.69ft) (;_Mﬂﬂ (95)

Oe e e e w Te

f Bl . = -Fr -I:_r
AR {1.67 P —1.19—9—1.95—'}

pOe e e

The first term is the usual Pfirsch-Schliiter current while the second term rep-
resents the effects of the parallel electron pressure gradient, the parallel electric

field and parallel thermal force, whereas the final term is the bootstrap current.

We can now calculate U,. from

lle
]
U =U - (96)

with U,; given by eqn. (36). The contribution to the electron continuity equation

from the divergence of the parallel flux (83) is then:

i/ 19
i120g" il 20g'xp,, T 5 T T
_il quﬁ,< 21 2>_ 1 <i2> L 00 %p. <i2> 167 P _119% 3101t
eq R*B*/ (B*)\R e(B’)g \R Poe T, T,
RCES < 1 >p_{+eiﬁ' 117 <i>i 1977, (19')" py, <i>2
eq RZBZ pOe Te <BZ> R2 Te me<BZ>q2 R2

{(1_1.3”{)[&_@_&(“ne)?r_syj+o.34(1—o.69 ) [;_a’_’?ﬂﬂ

T o T,

[

(97)

—

e e

The energy equation involves the parallel heat flux
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2

m,v 5 myv? 5
Qllezjdsv 5 Vi he =0 += nTU”e, e = Id v[ 5 —ETe]v”h1e (98)

We can decompose Q,, as

Q||e = Q||se + (q||e - q||se) (J|| J||s) e’ Q||se jda m V || hse (99)

The Spitzer contribution is given as

4z, iZ1g’x T,
Qnse :_ oleUpi + NeTe 2q _
3f R*Bgq m,

resulting in

5 IT|( p ed') 117B2 T’
=——n,T, — - — 1— f )—L
Q||se 2 0'e eB [( J ( t) ]

e Te Bz Te
Po (87) ) (101)
_626nT, A%t T [P _e(@-¥) 0T o (1+158y, )L

R?Bq m, | p, T, T T,

Introducing the Pfirsch-Schliter part of h,_, eqn. (62), we can calculate the

corresponding Pfirsch-Schllter contribution to Q,, directly, obtaining :

PS =~ ~y : '
T )
pOe € <B > pOe e meq R°B <B > R . (102)

XK&_e(@-S’/)JrO.SSTe (115802
0. T, T. o T

e e
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We formulate the banana neoclassical contribution for g, by analogy to the
neoclassical current, j., as in egn. (92), so that it can also be evaluated using

the localised distribution function (63):
4z, D®(u) MV
(qlle - qllse): _mTeJ.CPVTVHVe hy, — hs(l) - hs(z) _T—U||i foe (103)

Using expression (63), we obtain the banana contribution to Qe :

fBIT n’ T ~_l
(qne = Ulse Jr ‘tT%pO{O.M pp + 0.641—e —0.051—'}
e Oe e e
f il0g'xT, poe7s B < >{ B, e(®-¥) o,
46 2 _e®-r)
m.q (8°)\R

(1+1.94 ;7e)g+094T
Pe T ) T T,

e e

Inserting the results (94), (101), (102) and (104) into egn. (99), we finally obtain

1 /iflg'x 5i%gxT, [/ 1 1 1 P
Qlle 2R?2 2 —t =
n,T, \R?Bq 2 eq R%B <B > Po. T.
0124 ~ = =
A <i2>'“ AT | 18P 5361 78600
<BZ> R eq Po. . .
5i012gxT,|/ 1 \( p/ e’} 117/ 1\T/ ((g’x)* / 1\* T,z
-= — |- — )1 1+6.26 =
2 eq R?B*/\po. T.) (B*)\R T, (B%)g* \R*/ m,
x[(1—1.11ft)[ P _e(2-¥) o, i—wj+0-58(1—0-31ft)(1—9—%gﬂ.

p Oe Te @ e e w Te

(105)
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(iii) Azimuthal Electron Fluxes

Finally, we require the contributions from the azimuthal drift terms that appear

in egns. (59) and (60).

(JdPwq, Vhy, ) = =i([ [d*w,, (mVO - (v g)h,, )

=i <L x(VInB+x).(mve - £V¢)>T—e(£ + T—e]no
“ el To (106)
2 o
=—i <L x —V(,uo p02+ B ).(mVG - £V¢)>T_e( . ., T_e)no.
Qe B me r10 Te

This can be expressed as

d*w,,.Vh,
J )

T /(1 8 , 1Y oB?
=i/ == B Vy.VO 107
[ . <(BZ ax(ﬂopo+ )+(RBZ) X 20 ]> (107)

Similarly, we also obtain

2
<jd3vm92" vde.Vh08>
5. /(1 0 1Y 0B’
S i N +B2)+ \PAYL 108
2 e<[BZ ax(”"p(’ ) (RBZJ AP ]> (108)
x( Pe +T_e__e(d5 W)—&(1+2ne)e ]nOTe
pOe Te Te @ e
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(b) The Perturbed lon Temperature

In the case of the ions there is no need to obtain the ion density equation for 1,
as it is determined by quasi-neutrality and given in egn. (13). To obtain the

equation for T, we apply the operator I mv2/2)d v to egn. (37).

<J.d3v RV”éq a%(lvlljmv ahZ'> <J.d3 s Vdei-vhoi>
—<jd3vmg/ m> 5 a{ = ?_‘ET_W£1+I—i%(1+;7i)D (109)

i n0<§£|(a)+La)*e(l+ " ))(qb—yf)+g%(w+l—iw*e(l+ 21 )]>

2T, T,

Integrating the first term on the left hand side by parts and substituting for h,,
from eqn. (25), it can be written as the divergence of the neoclassical ion heat

flux

Jrler)

1

di<jd3 mv* 'V“c )>. (110)

The second term is the ion azimuthal flux and the third is the ion classical heat

flux:
< 0= <Id3 Y LE, s Li)>- (111)

This can be evaluated in a similar manner to the electron case, resulting in
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dx e’r, \ B2 [/ %dx® '’

? (o5 -2 <|w|2>n 5 (112

where 7, = (3&/4)4n3§m.1’2Ti3’2/n0e4 InA .

The calculation of the Pfirsch-Schiiiter heat flux proceeds similarly to the

while the banana regime contribution is

? 2 ? z2 - T1° 2
(o) =- T ({U“vﬁ}— b Jn; T-0eln, T L (114)

ri eZ<BZ>
Finally, the azimuthal drift contribution is

2

m.v 5. T/[1 8 1Y oB?
d’v——v, . .Vh J=—"ijr1(| =—— B? Vy.VO
<_[ 2 di 0|> 2 e <£Bz a)C(/quO'F )+(RBZJ X 9 J>

0
x(&+l+—e(¢-lp)—&(l"'z’?i)egn]no-ri
Poi Ty T @ T

I e

(115)

(c) Summary

Here we collect together the above results to obtain the final form of the

equations determining the electron density and temperature perturbations in
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terms of the perturbed fields @ and ¥ . The first, eqn. (59) can be written in the

form

ey {rz ) s (ra i) i ()

o 5 (116)
|~ o e u Wy
:w{n— " fno +< Bo2 >(1_ o (1+77e)jn0}

where k, = 1g'x(LR*B)/q, k, = £q([v6]) and we have substituted eqn. (58) for o5

From egn. (70) we have

d /¢ mT. d? |V){|2 p 3T
I —___e'e P e 7
dr< r‘e> e’r,, dx2< B2 /| p. 2T o (703)

e

From eqgn. (76)

o 3 (76a)
e [<R2182>_ <BlZ> <RL>];_X{X(§__ T +(l_ o (1+”e)jeyjﬂ

From egn. (80)

2 2 [ = T T
L& peny gz el &P Lggele qq7 ]
nodr' " e’(B?)r, dx* | Poe T, e
_ (80a)
e _
g7t (L )MAT d f P _8PP) Oy g 0018 L o0p T
<Bz> R/ eq dx| | py, T, o) T, T,

From eqgn. (97), we have defined
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(97a)

Ipg, < 1 >p_{+eqb' 117 <i>i _L97x, (169'X) Py <i>2
e RZBZ poe Te <BZ> R2 Te me<BZ>q R2
.

x {(1—1-3111 )(pp— _do-¥) D (14 ne)gj +0.34 G— —%gj(l— 0.69 f, )]
w

€ [

oy T, 10 N ? o B2
(r >_eq<|V o) <{Bz o (o po + B?) (RBZJ Vrvo— J> | (1072)

Similarly, for eqn. (60) we obtain

9105+ (0 )+ {087 +ike(Qu) +ik, 02)
3 A+n) . 5/ugp ’ (117)
L
where, from eqgn. (72),
d ey MT VAN (B 0T
Q%)= ezfei< - >dx2{p03 +0.91f]noTe (72a)

from eqn. (77),
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1 2 r D T
il%qT, < 1 2>_ 1 <i2> dis, &_@J_uew[l—w*e (1+2ne)j
eq R?B <BZ> RO/ Jdx|2 \ poe T To T, @

(773)
and from eqn. (82),
L dgeny_ ggor UM & 1B 0T T
nT, dr<Qf’e )=-170f, (B, O Loe 0403% ~117¢
(82a)

-2.97

fi [1°)inT, d X ;——e(¢_¥/)—&(1+1.2511 )el]j+0.25f—e
<|32> R?/ eg dx T T

e e

while, from eqn. (105),

501 2q'xT, < 1 > p. ed’ 1.17< 1 >f iflq’x< 1 >2Terei
-2 L EI LA (it ) Y[ e L
2 eq R*B*/\pee T. ) (B*)\R?/T, (B*)g \R*/ m,

x| (1-1.11f,) P _el@-¥)_o.e¥ +0.58(1—0.31f,) Te _ neww &¥
t UlT o T,

e

(105a)

and, from eqgn. (108),
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L (108a)
X[;)_e""l_e_@_%(lﬁ-z”e)e-rwjno-re
Oe e e e
Summarising for the ions, we can rewrite egn. (109) as:
d )
arf@s)+ (@) +{oim) ik, (o) -
=2 {ﬂ—w*9(1+'7i)—ied5no+§p0i<ﬂ°2§>(1 —iﬁ(1+2;1i)ﬂ
) . 3 B . @
where, from egn. (112),
d m;T; |VX|2 d® ~
&<Qﬁ>=—2 e’r, <B2 >n0 dszi’ (1122)
from eqgn. (113)
gy 2mT o[ 1) 1] d o
dr<Q”>_ e’r, ! [<Bz> <BZ>]n°dx2Ti ’ (113a)
from eqgn. (114)
i Ban\ _ rniTilzft dz =
ar (&)= O e B, (1142)

and, finally, from eqgn. (115):
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5. The Field Equations

The set of equations is completed by using the quasi-neutrality condition (to
higher order than introduced in the previous Section) and the parallel Ampeére’s
law, as in Connor et al. (Connor et al. 2009). These will only be briefly
discussed here, focussing on any differences from the work of Connor et al.
(Connor et al. 2009) arising from the more complete description of the electron
and ion continuity equations in the previous Sections and, effectively, a novel

calculation of the neoclassical angular toroidal viscosity.

A convenient approach to imposing quasi-neutrality in higher order is through

the vorticity equation, obtained by taking the charge density moment of the

gyro-kinetic equations for both species and adding them. Setting N, =N, then

provides one relationship between @ and ¥ . The parallel Ampére’s law
provides a second and hence these two equations lead to an eigenvalue

condition on @, provided the solutions of the various continuity equations for

~ ~

n, T, and T, areexpressed intermsof @ and ¥ .
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(a) The Parallel Ampere’s Law

The parallel Ampére’s Law states that

, d? .
|VX| i = Uy )y (119)

dx?

We expand eqn. (119) in the localisation, X, expressing A, in terms of ¥ as

defined above egn. (9), which we expand in the form ¥ =@ +¥W 4 . |n

leading-order we have

Vyl* 2
Vil 18 0 e gy _ gy, (120)
io R°Bq dx° 060

while in next order

Vi 1 d? (o . :
_|ia)| R%Bg ¢ (£W(”+|£qx¥/(°)(x)J:ﬂoj", (121)

leading to the solubility condition

q'l/ 1 d? (0) j||B
- )= — , 122
wq <R2 > dx? (X ) Ho |V)(|2 ( )

where, from egn. (95),
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x[(l—l.Slft{i—M—&(l+ne)eTSUJ+0.34(1—O.69 ft)G—e—_‘“’ke’7e ﬂ]] . (123)

o T,

e

fl 2 = T ~_f
C L Poe [ B N 67 P g9le 95Tt
<BZ> ‘VX‘ pOe Te Te

(b) The Vorticity Equation

The vorticity equation was obtained in the previous publication (Connor et al.
2009). Here we list the key steps in its derivation and quote the final result. The

procedure was to add the velocity moments of the gyro-kinetic equations for the
electrons and ions, take the long wavelength limit: k’p? <<1 and exploit the

lowest order quasi-neutrality condition: N, =n. , to obtain

2 2
B'V(WX' d B.vsvj _

@’ | u,B* dx*
e’ - mivi|v 2 m.v?
7T ) [ ZejB dx? 2e;B o (124)
+|Ze jdv g‘+i2ejjd3v szCjigjLZj)
B.v | mvi|vyl
LA SLIUE NN Y =
Z -[ ‘ll‘ ( de gJ

2B?

where the divergence of the parallel current has been expressed in terms of

parallel gradients of A, ie ¥, through Ampere’s law, eqn. (119). The
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distribution functions 9; in the velocity space integrations over the magnetic

drift terms are expressed in terms of the quantities h j and we note the final term
vanishes  for  up-down  symmetric  equilibria.  The  expansions
p =04 p® @l o ho=hy +h; +h,;.... are introduced and the equation

for ¥ solved order by order.

In leading order one finds 7@ is independent of ¢, while the equation for ¥ ©® :

2 !
N i[ Vi & O 4 igxw© || =i A (125)
w’R*q* 00| u,R*B* ox*\ o0 wR*q 06\ B?

can be integrated, introducing a constant of integration which can in turn be
determined through a periodicity condition in 4 on ¥® . Applying the same
periodicity condition on ¥® in second order provides the required equation for

PO (x):
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VA o B%) VxvooB
R2BZ 7 | /P "2 | T R2B7 20
2 2 2 2
1/ B mv, | (Vv rpil? 1 B 1
—j— d3VJ—”——(i]h' — 0 _
w<|v;(|2><;I B R?qog(B)’ o ' |v)(|252 |v;(|2 |v;(|2
ﬁzq'paz(xy, ))' <i> 1 _< 1 > B2
W q RZ |VX|2 BZRZ |VX|2

+4t><|w| ><z 146

(126)

where we have substituted for 68, from eqn. (58) (which has the effect of

replacing the VB drift by the curvature drift) and substituted for ¥® from the
solution of eqn. (125). The term involving <Zejjd3v LﬁcjigojLﬁ. )> represents the
]

contribution from the classical radial transport of toroidal momentum,

calculated in egn. (B.2) of Appendix B.
It remains to evaluate the term involving the h;, which we do by repeated

application of the gyro-kinetic equations for hy;,h;,h,;, and h;; with

integrations by parts in ¢ and noting momentum conservation in ion-ion

collisions. The result can be expressed as

42



e
_._<Zjd3 ', V”{ RIVBqa%[ [ jh +C,(n; )+ ioh —ifg'

(127)

i)

The first term can be recognised as involving the neoclassical radial transport of

toroidal angular momentum:
<Hmc> _ <Z:Id€~wmj LBv”vdrjhj> : (128)
i

where the first non-vanishing contribution is from h3/- . The right-hand-side of
expression (127) thus reduces to

!

e Up\ 12/ 1 ~ L (o)j,
w<17 > Imn<B> +—wq <RZBZ>{X(p wposﬂ : (129)

Further use of the gyro-kinetic equation and integrations by parts in 6 implies

<17NC> _i—<zjd3 M3 My [cj(hgj)+3'%cj(hfj)}>. (130)

i

Assembling all the contributions to eqn. (126) and substituting for U,; from eqn.

(36),
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_ HoMiNg q 2
et g/ (UR?)
2

2
o u q B* \ d?
_ /2 0 {|q'<1/R2>} <|VX|2>dX2 <17C +]7Nc>

(131)

Here we have introduced the quantity D, =E+F+H | in the notation of

Glasser et al. (Glasser et al. 1975), and L, appearing in the work of Hahm

(Hahm 1988), where

_ #o Pod B? 132
L [q'<1/R2><BZ>]<|V)(|2> ( )

The quantity D, plays a role in the Mercier stability criterion: D, +1/4 >0

(Mercier 1960) while the combination L+H in egn. (131) is given by

" [q’<ﬂR2>}<mr> 49

An expression for <17NC> has been given by Wong and Chan (Wong & Chan

2005): <HNC>=O.19(nomi2Ti ftglriie3)d2'ﬁ/dx2 , Wwhere T; =Ti/\/§ . but we
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generalise this in Appendix B for arbitrary axisymmetric toroidal geometry, to

obtain the total collisional toroidal angular viscosity:
(1) =(11°)+(11"%), (134)

where

<m>:_@(zmm]2 A"\ d* [B ed T (135)
57, \ e’ B /dx* |py T, T.|

and

e om( 222 ) e
’ 2 B

o | e (82)’

Aprla- GG o

L e [IzmiTijz_
ri<Bz> e’
(T,

2
- [ = (0.376(0)—0.62G[1]+0.94G(2)—O.2G(3)—O.74G(4))dx—[FJ

2

¢ (5,
dx’ Pu T

1

i

with

G(o)=15<|32>2 <i1/BjMaXd/1 ,1(1,13)>, (137)

, (138)
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and

. 15(B7) 1By, 1 1 [\1i=iB\/1-B\ /1-iB
6= L g {Wl < . >< . >_< = >} (141)

Insertion of the results (135) and (136) completes the form of the vorticity
equation (131). Analytic evaluations of the coefficients in egn. (136) in the large

aspect ratio limit are presented in Appendix B and are consistent with those

given by Wong and Chan (Wong & Chan 2005).

6. Normalised Equations

It is convenient to introduce a new radial co-ordinate normalised to the semi-

collisional width, s, (but now expressed in terms of flux co-ordinates) and a set

of normalised parameters

1/2
! 2 2
s:ei“/“ﬁ 1.97T_eﬁ<i2> I le_
q m, o \R <Bz> J,
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w= P=—,Y= 1n:_!te=_rti=_;
[ren(’) Te Te nO e e
p; P 'n
p=—t, p=—t-, k=3l (142)
pOe pOe qn
1

where ¢, is the semi-collisional width in flux coordinates. As a consequence,

the normalised electron continuity equation (116) becomes:

1+ K 1+
n—(f+<”°g°e>p(1— A"ej—AC (pe—((ﬂ—w)—ﬁewj
W B w w 0]
+s{(1—1.31f1)(pe—(¢—w)—%y;)+0.34(1—0.69 fl)(te—nfguﬂ
w w

D
(i o

@) (B°)\R’
{<B]-2>_<Blz>}}(p_ztej+l<l58’i;t <:2>(p +1.39te—1.17t,)]=0 ,

the electron thermal equation (117):

] w
k1 12\ d 1+1.027 kY 1 /12
+1.67 f — — s p.—(p—y)-———"ey +0.02t, | [+1.97| — <7 —
w

(143)
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2 B? w 2

1318 5{(1—1.11 f, )[ P, —((p—w)—ltb”e y/j+0.58 (1-0.31 ft)(te _@WH
2;[<R|; > <Bl><;{2 >J ;(p+t) w<;;><;;>sjs(4.18p—2.36te—7.86ti)
5o oo B ek

el oot

12971, 5 1><|2>§s[8[p ((/J—z//)—lﬁL”S;7 w+0.25t, J]+197

1) <|3
>{<;z>—<;>}]<p+o-we>+l-g;;<;;><p_o.4t s

Sl

the ion thermal equation (118):

3 pi_l;mT_awE HoPre 1+Lﬂ
2 o T, 3\ B T, o

5T x 1+2n, T, kY me, T 1 /12
2 Fclpoat o+ /| WA P I Y V1 A L B L 145
+ ~ (p|+| (¢7 l//) o T WJ"' (A] o T <Bz><R2> ( )

2T, @ .

(e R R =]

Ampére’s Law (122), with result (123) for j||:
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(l 67d—p—l 19d 195d—tj
> |VX| ds ds ds

e j+034(1 066f)(t —”—ey/ﬂ,

(146)

and the vorticity equation (131):

d? 1\ T.n, d(T.n; .
S@(SV/F(D. +Zj( o J op-(L+ H)Sg(p—;wp-v/)
' 2 2
<BZ> m, | en, Vi /\ B coTe ds?
g Pye M, [ £T,1, B2 \ . d2|/12\(T, 12\ 11717
1.97 ALY . )= S V==l @)t
e R L e L N (=)

2 ' 2 2 2 2
197y 0 pgPoe Ti | Tei £TeNg | M I B : d i
) <|32> T. |z, en, )\ mx <BZ> Vy|* / ds

(147)

%fz —_ 0.80<|VB)2|4 ><%>2 %(pi +)+0.80 <é—i>2{<é> .G (;;:;(2))} (;3':4 (p, +0)
+<;_1>2[o_37[@<§>_<%><;3>}o54<Bl> 2 13@‘;”33

d*t,
ds*

+(0376® -062G® +0.94G® —0.2G® —0.74G" )

(148)
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with G, G®, G?, G® and G® given in egns. (137) - (141), respectively.

Because the ion thermal conductivity exceeds that of the electrons by o(,/mi /m, )
the ion temperature is flattened over the semi-collisional width and one can treat
it as constant. In particular, the terms involving the ion temperature gradients in

the classical and neoclassical toroidal viscosity (148) can be neglected,
simplifying it considerably. It is only in the region S~ (mi/me)ll4 that one
needs to solve the ion thermal differential equation. As we shall see the electron

equations simplify in this region of large s, thus simplifying the form of the ion

thermal equation.

Equations (143) - (146) simplify if we ignore the classical and Pfirsch-Schliiter
transport relative to the larger banana contribution. Furthermore, recognising

that the azimuthal fluxes are small and that g, = 2x,p,,/B* <<1, we obtain the

following simpler set. The electron continuity equation (143) becomes:

AS

A+s{(l—1-3lft)(l39 —((p—v/)—liﬂe l/jj4r0.34(1—0.69ft)(te —%t//ﬂ
o w

2 1+1.02
c1e7f Xt <' >d{s(pe—(¢—¢/)— i ’791//+O.02teﬂ
w

S

R?/ds

2 2\2 2

+3.01(lfj <ft>2<;2> ::72([) +1.39t, —1.171, ): 0,
B? S

the electron thermal equation (144) becomes:
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3{pe _1+f7e (pj|+3.1852|:(1—1.11ft )(pe —((p—t//)—1+j7e y/j+o.58 (1-0.31f, )(te —’%WH
w w w

_2’;5;5[<;2> <:2>(4.18 p—2.36t, —7.86t, )—<R'2;2 >(pi +9)+ <1|'3127> <:2>ti]

2 1+1.25¢
+297f % ! <'>dee—(¢—v/)—Aew+0-25teﬂ
w

a)<BZ> R?/ds
+3.35 ("j f 2<'22> d—zz(p—OAte ~1.17t,)=0
w <BZ> R ds
(150)
the ion thermal equation (145) becomes:
3 1+#n T Y mz, T 1 |2 2d2
Plp 2 181 & | e Ti — ) —1t=0, 151
o b sl B e o

and Ampeére’s Law (146) becomes:

2 A 2
9 (sy)=toPu® L[ B (1.67d—p—1.19d£—1.95dij
ds? <sz> X <Bz> |V)(|2 ds s s

_[%jz | Ho Poe < B >s{(1—1.31ft)(pe —(go—y/)—lt?)ne Wj+o.34(1—o.66 ft)(te —”—ngfﬂ ,

2<R’2>2 |V)(|2

(152)

These approximations do not affect the vorticity equation (147).
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7. Boundary Conditions and an Intermediate Region

The purpose in solving the above layer equations is to match solutions of a

given parity at s = 0 to the marginal ideal MHD solutions at large s, which
involve the tearing mode parameter, A", in order to determine the eigenvalue

@ in terms of A" . In this limit, when @ —0, E, oc(p—w)—>0

!

p—> d;?on’ w and we can ignore the momentum flux, the solutions of eqn. (147)

e 0

) 1 : .
should behave as y ~ s, V=—Ei\/— D, in the limit S— 0. However, as
they stand, they do not lead to (¢ —y)— 0. In fact, it is necessary to consider an
intermediate region consisting of two sub-layers: (i) a transition layer around

s=s, ~ fM(m, /me)m, where an ion contribution to the electrical conductivity

enters; and another (ii), around somewhat larger values of s,
S=51“(X||,e/)(||,i J2 ~ (m,/m, )", where parallel ion thermal transport forces

t, > (T./T,) () and ensures (p—w)—0. Clearly s, and s, are not very

different and we can treat them together.
Let us first consider the simplification of the governing equations when s >>1.

The electron continuity equation (143) becomes:
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2{(1 131f)( ]+034(1 0.69 ft)(e—”ewﬂ

Jp+<éz><;:>(167p -1.109t, 3.12ti)—<R'2;2>(pi+¢) <1517>(1 f)<F':”
oty
1+ B

(153)

However, this last equation is dominated by its second term, which requires:

(1—1.311°t)(pe —(go—w)—l;”e l//j+0.34(1—0.69 ft)( _EWJ ~0, (154)

A similar balance, but with different coefficients, appears in the electron

thermal equation (144), so we can conclude that:

1 — R
(pe_(w_l//)_ +A]7€ wj;O, [te_n_,\el/jjzo n;¢—l/j+¥:’ (155)
o ) w

so that eqn. (153) simplifies further:

n—gf+<’u°2°e>p(l—l+j7€]+s{(l—l.31ft{pe (p—y)- L z,u]+0.34(1—0.69f )(t —’“WH
[0} B [0} 0]

_;f)Sjsl[<RIZZB2>_<Blz><;>Jp+<;;><:2>(1.67p—1.19te —3.12ti)—<RIZZBZ>(pi +(p)+<l|;27><l!:2>ti]

(156)

With the results (154), the vorticity equation (147) reduces to
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l/V)(2
_u0p09< | |>c€>si(1+-1r_—eJ(¢—W)+[t.— -

kx  (R?) ds

e
=
S
Ne——
Il
o

where we have neglected the viscous term, which is valid for

3/8( 12 . 3 . .. i .
s> (m,/m,) (5e/v*e)l , with 0, the semi-collisional width normalised to the

plasma minor radius and V., the electron collisionality parameter. Ampére’s

law (146) retains its form.

However, the simplified vorticity equation (157) does not reduce to the ideal

form and we must consider the intermediate layer: S~S, , S,. To address

this. we first calculate the correction to the ion parallel velocity arising from the

parallel ion pressure gradient — this is achieved by modifying eqgn. (21) to give

A

an equation for the correction to the ion distribution function hy;

<E ¢, )> LU (158)

Y q

Using the model ion-ion collision operator (27), we can calculate the resulting

~

modification to the ion velocity arising from hy; , obtaining

54



R e o

where we have used the results in egn. (155), which are valid at large s.

We see that in the absence of the small ion-electron collision frequency, the

friction with trapped ions determines the bulk ion velocity. This velocity

changes the parallel electron velocity term proportional to s’ appearing in the
electron continuity equation (143). This additional contribution modifies the

behaviour (155) at large s:

(1—1.31ft)(pe —((p—y/)—l-;ne y/]+034(1—0.69 ft{te —”Tew]

. . : (160)
_5 el ) — I/ (R |
L R
where, using results for the collision integrals from Appendix A,
5/2 1/2
5. =0.95 (1_f ft)[l—‘J (rr:—j «<1. (161)

In this limit, egn. (146) reduces to

o) gl [ o3 o

We can also calculate the corresponding parallel ion heat flux, finding it is

dominated by the convective component due to the inverse dependence on the

trapped particle fraction of the parallel ion flow in egn. (159):
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This modifies egn. (145):

SRl (o)) 55

+1 —T_'ﬁ!// =—i<’uo—poe>(l+LM(1+:::_i+ne +77i T_'j

P T, 6 3D\ B? T, @

e e

_ Ti (1_ (1+A7I|)+§(1+LJ(§C+<IUO F;Oe >(T_e+ (1+A277| )j]_]-Sgé,SZj(w_l//) '
DT, @ 3 T \o B T )

where

3 ) .

D:1+§<“°B—206>{1+I—i(1+—2'7i)+2330}0.27@32 (165)
and we have again used evaluations of collision integrals given in Appendix A.

The new terms proportional to s, dominate egns. (162) and (164) when

S>>5S,, S, and require

p—w—0, ti—l—iﬂiw—>0 (166)
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When all of conditions (155) and (166) are satisfied we see that eqn. (157) does

indeed reduce to the marginal ideal MHD equation:
S—(Slr//)-l-(Dl +—jl// =0 . (167)

To discuss the transition though the intermediate region we combine egns. (157)

and (146), modifying the latter to take account of egn. (160).

Using the expressions (155) for n and t, to express P and p; in terms of

@, v and t. we obtain

A 2
117 co< B >uo Por 1 )59t

(B%) x \[vxf* | 1R?) ds

- B 2[IVy|? V1/IR?B?
_/quOe w{%[l n. 1+’7)< 12> 1+7’] ‘ ‘ >< > S%

(UR?) x| & (1R?)

2 2
) (D +1/4)w <ﬂopo >/u0p0e<B /‘VX‘ ( 1+,7ej +0.l7:u0p0e<B /‘VX‘ >[ijzélsz:|tl

(1+;7€+T/T 1+;7 12(1/ & Jx? K

K’ |2<1/R2>2

(1R
R <ﬂ0po>ﬂop%58 "V’f‘ 12 ][uneJJW

@Q+n, +T /M Q+n,)) 1201 & .

+0'17K;2 12(1R?)’ n'le : (([1)+;elﬁl)T(/lT+Ilfn))c)o(¢_W)
{1;+<u08206>ﬂ0 plozgs;/z;x >(1 1+d)ne j(’j Ho pOGEBR/;X >(K)2(1+_TFTJ5IS2}(¢W)—0 .

(168)

Then eqns. (157) and (168), with t; given by eqgn. (164), provide a fourth order

system of equations for ¢ and y to connect the semi-collisional electron
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layer solutions to the ideal MHD region through the region S~S;, , S,. Their
boundary conditions at large s are to match to the correct ratio of large and
small solutions arising from the ideal region and ensure ¢-yw —0 . Thus the
jump in the ratio of large to small solutions through this layer, and hence the

layer 4’ , can be computed.

8. Conclusions

We have derived a set of equations to describe the linear stability of semi-
collisional, neoclassical toroidal plasma in general geometry, albeit provided
that: (i) the fraction of trapped particles is small to justify the use of a model,
pitch angle scattering, collision operator; and (ii) that the ions are magnetised.
The assumption that the ions are magnetised may require low magnetic shear or

T, <<T,, otherwise a non-local model for the ion response will be needed

(Fitzpatrick 1989).

This set of equations comprises a pair of second order radial differential

~

equations for the electron density, N (or pressure, P.) and temperature, T,

perturbations (eqns. (116) and (117)) and one for the ion temperature
perturbation, 'F, , egn. (118), in terms of the perturbed electrostatic potential, @,

and parallel vector potential, 5“, described by the potential ¥, with these two
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quantities in turn being determined by Ampeére’s law, eqn. (122), with eqn.
(123) for the parallel current, and the vorticity equation, egn. (131). The

perturbed parallel magnetic field is given simply by eqgn. (58).

The analysis of neoclassical electron physics utilised the Spitzer functions
(Spitzer & Harm 1953), where we remark that parallel gradients in perturbed
electron temperature that have no counterpart in standard neoclassical theory
(Helander & Sigmar 2002), necessitate the introduction of the second Spitzer
function corresponding to parallel electron thermal conduction. The vorticity
equation requires a calculation of radial collisional transport of toroidal angular
momentum and we have needed to generalise the treatment by Wong and Chan
(Wong & Chan 2005 to arbitrary geometry, as in Appendix B, although still
assuming a small number of trapped particles. This calculation employed the
model ion collision operator. Analytical evaluations of the coefficients in the
large aspect ratio limit are presented there; these are consistent with the results

of Wong and Chan (Wong & Chan 2005).

The introduction of general toroidal equilibria and the use of the Spitzer
functions extend the treatment of electron neoclassical physics given by
Fitzpatrick (Fitzpatrick 1989), as well as providing a more consistent treatment
of the neoclassical radial transport than in the work of Connor et al. (Connor et
al. 2009). The general geometry aspect also means we have needed to include

classical collisional transport.
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The resultant equations, summarised in normalised form in eqgns. (143) — (148),
are equivalent to a twelfth order system of radial differential equations if all
effects are retained — it reduces to tenth order if we neglect the radial angular
momentum transport. However, the relatively large ion thermal diffusivity
means one can treat the ion temperature as a constant over the semi-collisional
layer. (This also greatly simplifies the expression for the radial transport of
toroidal angular momentum given in eqgn. (136).) The system of equations then

reduces to tenth order and one only needs to solve a simplified version of the
ion thermal equation in the intermediate region, s ~ (m,/m, ), where the system

reduces further to a fourth order set. A simpler version of eqns. (143) — (146) in
which we ignore the subdominant classical and Pfirsch-Schltter fluxes relative
to the Dbanana contributions, the smaller azimuthal fluxes and effects

proportional to g, = 2u,p,./B* <<1, IS presented in egns. (149) — (152). The

vorticity equation (147) is unaffected by these approximations.

The solution of these equations in the narrow radial layer around a low-order
resonant surface needs to be matched to ‘external’ solutions of the marginal
ideal MHD equations. However, to achieve this matching, as pointed out by
Fitzpatrick (Fitzpatrick 1989), we need to consider the intermediate layer where
small corrections arising from the ion contribution to the electrical conductivity
and the parallel ion thermal diffusivity enter and ensure that the perturbed

parallel electric field vanishes. Since this correction is determined by the
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friction of the passing ion population with the trapped ones, rather than the
schematic ion sound model suggested by Fitzpatrick (Fitzpatrick 1989), we
were able to provide an explicit form for it. This intermediate region is
described by a fourth order set of equations, eqgns. (157) and (164) together with
eqgn. (168), that allow a proper matching to the ideal MHD region. Continuing

the set of equations through this layer allows us to obtain a dispersion relation
Mo+iy)=4 (169)

where 4’ is the toroidal tearing mode stability parameter (Glasser et al. 1975)

and 21(a>+i7/) is obtained from the solution of the layer equations, allowing for

the effect of the intermediate layer.

Although our analysis is linear, the treatment of the semi-collisional,
neoclassical electron physics could be generalised to describe the evolution of
non-linear neoclassical tearing mode islands, extending the analysis given by
Wilson et al. (Wilson et al. 1996) for magnetised ions to this more collisional
regime, or be used in conjunction with a numerical treatment for ions when the
width of the poloidal ion Larmor orbit is comparable to the island width (Imada
et al. 2016). Alternatively, it could serve to incorporate neoclassical physics in

the collisional model of Smolyakov (Smolyakov 1993).
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Appendix A: Some Collisional Integrals

Here we list numerical evaluations of the various integrals, including those

involving the Spitzer functions D% and D® tabulated in Spitzer and Harm
(Spitzer & Harm 1953) (to be precise, D® =—-D/A and D® =2D/B as given in

Tables | and Il of Spitzer & Harm 1953):

v, =1.153 vy, {uv,}=1.284v,,, {u*v,}=2.701v,,

{D‘z(U)} — 2616, {#ﬁj)} - -0.898, {uD®(u)j=-8.297, {uD?(u)}=-4782,

@) @)
{ve D (“)} - —1.666v09,{ve D (“)} — — 0.040v,,,

u

{vuD®(u)}=-2.972v,,, {v,uD?(u)}=- 0.738v,,

@ ()2 W @ @ ()
{v{ D u(”)j } ~3.432v,,, {ve LZD(“)} —0.605v,, , {ve [DT(“)j } — 0.566v,, ,
u

{v;}=0.401 v, , {uzv“}: 0.532 vy, , {U4Vii}=l.19\/’0i ,

{2t }=20.62 Ivy; , {u*lv, |=100.37/v,.

64



Appendix B: Radial Toroidal Angular Momentum Transport
There are two contributions from the radial transport of momentum appearing in
the vorticity equation (131): the classical one,<HC>, and the neoclassical one,

(™). We evaluate these in this Appendix:

(a) Classical radial angular momentum transport

J

The expression for d?(77°)/dx? involves<2ejd3vL2.Cj(ngLﬁ. )> where the sum is

]
dominated by the ions. Thus, substituting for g, from eqgns. (8) and (22) and

recalling the definition of L below eqn. (2), we obtain

1) e 2o (-5 -

The collision integrals in egn. (B.1) can be evaluated using the entropy

functional S(f(v’),@(v)) (Helander &  Sigmar  2002),  with
f=v|’|3 and gj:v”(miVZ/ZTi —5/2). The quantity S can be easily calculated
using Cartesian co-ordinates in velocity space, labelling the direction parallel to
the  magnetic  field as the  x-direction, and introducing
u=(v'—v)/2 and w=(v'+Vv)/2 to execute the velocity space integrations. The

result is
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<HC>=_E[2miT‘j2 VA" \ a2 E+g+3f—‘ (B2)
57, \ e? B* /dx®|py T, T.| '

(b) Neoclassical radial angular momentum transport

Equation (128) requires the evaluation of
NC 3 I
<IY >: <Zjd vm, Ev”vdrjhzj>, (B.3)
]

representing the radial transport of the toroidal angular momentum arising from

the parallel flow: Rv, = Iv,/B. Noting that it is dominated by the ion

contribution, we express this quantity as

v Im?v;
1)t 2 ). @

In order to avoid the need to calculate h,;, we follow Wong and Chan (Wong

and Chan 2005) in defining the adjoint function, g:

v, o v, o (Im2v?
o9 I i V|
—~+C.l(g)=- — foi, B.5
Rqu 00 "(g) Rqu 80( 2eB? | ( )

so that, using the self-adjointness of the collision operator, integrations by parts

and the gyro-kinetic equation for h,;, we obtain

NC |3 3 I I '
(n >:'eiz<;d g(mg(gw (8.6
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We use the gyro-kinetic equation for h,; and eqgn. (B.5) for g, which we expand

for weak collisions, so that we can integrate it to give

Im?v,f

where G is given by the collisional constraint that follows from egn. (B.5):

B Im?v?
<—C,,(— ; B! o +G(/1,V)J>O. (B.8)

Vv, e

Thus

O i R (N s

where the final integral is small in the trapped particle fraction.

Performing further integrations by parts on egn. (B.6), we finally obtain
(M) = (1) + (11", (B.10)

where

()" = '%<J dsvlis"{' é[%j *%}%(h;i )> (B.11)

and

67



(i)’ '%<I avi i, (g)>, (B.12)

where, hj; is given by eqn. (28).

It is helpful to re-write egn. (B.11) as

ey —%<Id3v%[ﬂ%} +%}C”(hl’l )>. (B.13)

The first term can be evaluated by using the model collision operator (27) acting

on hy; given in egn. (64). Since the ion-ion collision operator vanishes when

acting on a displaced Maxwellian distribution, only the perturbed temperature
gradient terms in expressions (66) and (67) contribute. First we consider the
banana contribution (67). Integrating by parts in /1, using the results (30), (32)

and the evaluations in Appendix A, we obtain

o) —oar e[ J[eo-(E)J&F)  ®a

where

G(O):15<BZ>2 illBJ'Maxdll }“(1_’13) ' (B.15)
4 \B o  (V1-iB)

For the Pfirsch-Schliter contribution we apply the collision operator directly to

eqgn. (66). The result is
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(117%)" :0'37%[|2?£T‘ ﬂ<5i>‘ﬁ<8i>];72(9 (B.16)

Thus the total contribution to <17N°>A1 Is given by the sum of results (B.14) and

(B.16):

()" =037 nTOie ( ! Zg‘;Ti Jz{éj;z + <§> - <BZZ> <§>}%GLJ (B.17)

Equation (B.13) also has a contribution from the function g, which is labelled

<17N°>A2. The contribution to this from the banana term in hy;, eqn. (67), can be
evaluated using egn. (B.12) for g. We employ the model collision operator,
recalling the banana contribution to Uﬁi =0, and integrate by parts in 4 twice.
Since ™" is localised, we can approximate 8(/1\/”289/5/1)/8/1 = —Bv*109/0). .
The integral term in expression (B.12) for g only contributes significantly as A

enters the trapping region, but remains small (i.e., 0(5/1) compared to the first
term, where 04 is the trapped width in 4) and can be ignored. Finally, inserting
expression (67) for hffa”, performing the velocity space integrals recalling the
results in Appendix A, and changing the order of the A4 - integration and the

( > averaging operation, we obtain
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(m* )™ = 0.37 Ti?;e2>('2?f‘ ﬂ4<é> —<é>2 —%}%[9 (B.18)

G _151/Bj_Mind <BV1—/IB>< /l—/lB> E< 2><£>1/BMax dia?
3(B?) 0 (Vi-is) \ B [ 16V \B/ ¢ (Ji-iB)
. (B.19)
15 <Bz>1/BIMaX . 1 < 1-.B AB>1/BjMaX di
8 o  (i-2B)\ B ; (v¥1-7B)

The calculation of the Pfirsch-Schluter contribution from eqn. (66) is more

straightforward. We evaluate the collision operator acting on thS , again

neglect the small integral tern in g and evaluate the velocity space integrals

using the results in Appendix A. The result is:

(117)" =037 "¢ ', 2
T e

2
T

(1 :o_s@(wg:.f{%% <§2><§><§><§>%]§@. (B.21)
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Combining the results from eqns. (B.17) and (B.21), we finally obtain
R R Rl e e )
o e B B°/\B/ (B°)\B (2)"  |X*(T,

(B.22)

Turning to the quantity <HN°>B, we first observe that the periodicity constraint

(B.11) allows us to rewrite egn. (B.9) as

() =2 <Jd3 E:::(hBV” <h“BV”>JCn(g)> - (8.23)

We introduce the three contributions to h; from eqn. (64), use the model ion-

ion collision operator (27), substitute

ag _ Imfv? {1_<V|/B>me ’ (B.24)

o, 2 |B <v”>

as follows from eqgn. (B.12), and integrate by parts in 4. The contribution from

h™" is:

(7o)’ _080”:<E;12>['221iTiJ2[<§> <(2)>]§[p% - 117;') (B.25)

where
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G<z>:M<il/BjMaxzdz<B 1w>< 1-75 >> , (B.26)

(B.27)
where
0 15<|3,2>21/BIMin b1 < /—1_,13> <B«/1—AB>_<\/1_—AB>
o (i-iB)\ B () B (B.28)

and from h™" is:

R I ERS

6(4)=15<j2>21/BIMaXd“ 1 [< 1 <1—w><1—13><1—w>) (B.30)

0 (Vi-iB)| (vi-iB)\ B B B?
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Consequently, combining results (B.25), (B.27) and (B.29), we obtain the result

2 ~
<HNC>B =O.80¥{|2$i1—i] {<é>+(6(3) :cj(z))]:Z (£+e-l-_¢]
i <B > X"\ Po; i

2 ~
E('Zmiﬂj {o.z< 1 >+(0.74(6‘1)/3+G(4))—O.94G‘2) +0.2G<3>)] ¢’ [T_J

o € B* (B?)’ dx”

(B.31)

Finally, combining results (B.22) and (B.31), we obtain the expression for the

neoclassical toroidal angular viscosity:

2 ~
<HNC>:O.80¥(|2$iTiJ {<%>+(G(3)2C2(2))]dd22 [&+?I_—¢J
1 <B > X pOI 1

el ) e

2 2 ~
} (037G -0.62G® +0.94G? —0.2G® —0.74G® );—Z(T—J .
X i

L N8 1°’m.T,
‘L'i<BZ>2 e’

Result (B.32) is the expression appearing in egn. (136).

It is interesting to consider the large aspect ratio limit

with B = B,(1—¢cos ), e =r/R, <<1. Analytical evaluation of the coefficients

in egn. (B.32) in this limit yields

()

2 ) o , /= 2 (TY], (B.33)
_ e | zmi-zri 0_862d_2 ﬁ+g —0.7483/2d—2 L +O(82)d_2 L
7, | €%B; dx“\ pei T LT, N



in agreement with Wong and Chan (Wong & Chan 2005).
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