Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

A divide and conquer strategy for the maximum likelihood localization of low intensity objects.

MPG-Autoren
/persons/resource/persons219351

Krull,  Alexander
Max Planck Institute of Molecular Cell Biology and Genetics, Max Planck Society;

Steinborn,  André
Max Planck Society;

/persons/resource/persons218968

Ananthanarayanan,  Vaishnavi
Max Planck Institute of Molecular Cell Biology and Genetics, Max Planck Society;

/persons/resource/persons219565

Ramunno-Johnson,  Damien
Max Planck Institute of Molecular Cell Biology and Genetics, Max Planck Society;

Petersohn,  Uwe
Max Planck Society;

/persons/resource/persons219741

Tolic-Norrelykke,  Iva M.
Max Planck Institute of Molecular Cell Biology and Genetics, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Krull, A., Steinborn, A., Ananthanarayanan, V., Ramunno-Johnson, D., Petersohn, U., & Tolic-Norrelykke, I. M. (2014). A divide and conquer strategy for the maximum likelihood localization of low intensity objects. Optics Express, 22(1), 210-228.


Zitierlink: https://hdl.handle.net/21.11116/0000-0001-051F-8
Zusammenfassung
In cell biology and other fields the automatic accurate localization of sub-resolution objects in images is an important tool. The signal is often corrupted by multiple forms of noise, including excess noise resulting from the amplification by an electron multiplying charge-coupled device (EMCCD). Here we present our novel Nested Maximum Likelihood Algorithm (NMLA), which solves the problem of localizing multiple overlapping emitters in a setting affected by excess noise, by repeatedly solving the task of independent localization for single emitters in an excess noise-free system. NMLA dramatically improves scalability and robustness, when compared to a general purpose optimization technique. Our method was successfully applied for in vivo localization of fluorescent proteins.