Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Neuronal Control of Metabolism through Nutrient-Dependent Modulation of Tracheal Branching.

MPG-Autoren

Linneweber,  Gerit
Max Planck Society;

Jacobson,  Jake
Max Planck Society;

Busch,  Karl Emanuel
Max Planck Society;

Hudry,  Bruno
Max Planck Society;

Christov,  Christo P.
Max Planck Society;

Dormann,  Dirk
Max Planck Society;

Otani,  Tomoki
Max Planck Society;

/persons/resource/persons219326

Knust,  Elisabeth
Max Planck Institute of Molecular Cell Biology and Genetics, Max Planck Society;

Miguel-Aliaga,  Irene
Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Linneweber, G., Jacobson, J., Busch, K. E., Hudry, B., Christov, C. P., Dormann, D., et al. (2014). Neuronal Control of Metabolism through Nutrient-Dependent Modulation of Tracheal Branching. Cell, 156(1-2), 69-83.


Zitierlink: https://hdl.handle.net/21.11116/0000-0001-05CF-1
Zusammenfassung
During adaptive angiogenesis, a key process in the etiology and treatment of cancer and obesity, the vasculature changes to meet the metabolic needs of its target tissues. Although the cues governing vascular remodeling are not fully understood, target-derived signals are generally believed to underlie this process. Here, we identify an alternative mechanism by characterizing the previously unrecognized nutrient-dependent plasticity of the Drosophila tracheal system: a network of oxygen-delivering tubules developmentally akin to mammalian blood vessels. We find that this plasticity, particularly prominent in the intestine, drives-rather than responds to-metabolic change. Mechanistically, it is regulated by distinct populations of nutrient- and oxygen-responsive neurons that, through delivery of both local and systemic insulin- and VIP-like neuropeptides, sculpt the growth of specific tracheal subsets. Thus, we describe a novel mechanism by which nutritional cues modulate neuronal activity to give rise to organ-specific, long-lasting changes in vascular architecture.